
A Low Memory Bandwidth Gaussian Mixture Model (GMM) Processor for
20,000-Word Real-Time Speech Recognition FPGA System

Kazuo Miura, Hiroki Noguchi, Hiroshi Kawaguchi, and Masahiko Yoshimoto
Kobe University, Kobe, 657-8501 Japan

k-miura@cs28.cs.kobe-u.ac.jp

Abstract

We propose a GMM processor for large vocabulary
real-time continuous speech recognition. This
processor achieves low operating frequency and low
memory bandwidth using parallelization and vector
look-ahead schemes, which are suitable to FPGA
implementation. We designed the proposed processor
on a Celoxica RC250 FPGA board, and confirmed that
the required frequency and memory bandwidth for
real-time operation are reduced by 89.8% and 84.2%,
respectively. The 20,000-word real-time GMM
computation is made at a frequency of 30.4 MHz and
memory bandwidth of 47 Mbps, on the prototype.

1. Introduction

There are some software-based recognition systems,
but they are not suitable for mobile devices because
those solutions require high-performance processors
that consume far more power than mobile processors
[1, 2]. Therefore, a hardware approach, such as a VLSI
or FPGA, which is superior to the general software-
based implementation in terms of power and speed, is
needed.

Yoshizawa et al. implemented a real-time
recognition system onto a VLSI for 800-word isolated
word recognition [3]. Edward C. Lin et al. investigated
FPGA implementation for 1,000-word continuous
speech; but it did not run in real time [4]. S J
Melnikoff et al. implemented real-time continuous
recognition system, but the recognition accuracy was
impractical less than 60% [5]. As far as the authors
know, large vocabulary (more than 5,000 words) real-
time continuous speech recognition (LVRCSR) in high
accuracy using hardware approaches is not realized yet.

In LVRCSR, computation of GMM occupies more
than 60% of whole execution time. In this paper, in
order to achieve LVRCSR in practical accuracy, we
propose a novel GMM processor’s architecture, and
embed it on an FPGA.

2. Speech recognition overwiew

2.1. Hidden Markov model (HMM)

The HMM algorithm is de facto of the speech
recognition. The HMM is shown in Fig. 1. It is
modeled as follows: π is initial-state probability, aij is
transition probabilities from state i to state j and bj(xt)
is output probability density functions of GMM),
where xt is a feature vector extracted from speech. For
instance, if we assume that a feature vector sequence is
x1, x2, x3 and transition sequence is q1, q2, q3, q4, then
the probability of the transition from q1 to q4,
P(q1→q4), can be calculated with (1).

Transition probability

)(1 txb
Output probability

4q

π
Initial state probability

Initial-state Final-state

3q2q1q0q

11a
01a 12a 23a 34a

)(2 txb)(3 txb

22a 33a

Figure 1. Left-right HMM.

3433232212110141)()()()(axbaxbaxbaqqP ××××=→ π (1)

In the HMM algorithm, each HMM corresponds to a
phone. Each word is expressed as a sequence of
phones, and each sentence is represented as sequence
of words.

2.2. Time-synchronous Viterbi search

Initialization:

πδ log)0(0 = (2)
Recursion:

)(log]log)([max)(1,1 tjijtjjit xbaij ++= −−=
δδ

for stateNjTt ≤≤≤≤ 1,1
(3)

Termination:
)]([max),,,|(21 ixxxwP TNT

f

δ=L , for Tt = (4)

The above formulas show the log-Viterbi algorithm.
To prevent from underflow, logarithms are taken. Here,

T is the number of frames, Nstate is the number of all
HMM states, Nf is the states set that correspond to
word end, and i and j are state indexes. δt(j) is a
likelihood value at a time index t and state j. w is a
recognition output sentence. First in the HMM
algorithm, the likelihood value is initialized as
log[π].Speech is divided into frames (15-25 ms), and a
feature vector is calculated in each frame. Equation (3)
shows that, once a feature vector is obtained, each state
in the HMM move to the next state that maximizes the
likelihood value. This is the reason why the transition
sequence is uniquely determined.

2.3. N-gram model

To achieve high-accuracy recognition, a language
model is added to (3) as P(w). w is a sentence and a
language model represents grammatical accuracy of
sentences. Generally N-gram model is used.

2.4. Speech recognition flow with HMM

Fig. 2 shows a speech recognition flow with HMM.
The following items describe concrete steps.

Wave

Feature vector Language model

Compute

),,,(
21 m

wwww L=　
Sentence

Phonemic model
Phoneme HMM

Step 1 Step 2 Step 5

Result
jb)(twPijalog

Final frame
calculation has
finished

)(log tj xbCompute
GMM

computation

tx

[])(log+)(log+log+)(max=)(1
,1=

tjtijt
jji

t xbwPaiδjδ

Final frame
calculation has
not finished

Recursion Step 4

I want to
be …..

Step 3
Output

sentence
that has

the largest
probability

Feature
vector

extraction
Viterbi
search)(log tj xb

 Figure 2. Speech recognition flow
1. Feature vector extraction: a feature vector is

extracted on a frame-by-frame basis.
2. GMM calculation: compute GMM probabilities

log[bj(xt)] of all active states.
3. Viterbi beam search: calculates δt(j) by using the

GMM probabilities and N-gram model, P(wi).
4. Recursion: repeats Steps 1-3 in all frames.
5. Output: after the final frame, the transition

sequence of the word-end state that has the
maximum likelihood value is output as the result
of recognition.

2.5. Computation Time Analysis

To identify the highest-load part in speech
recognition, we estimated each execution time by
using a well-known Japanese speech recognition
system software, Julius [1]. Julius has two phases: The
first phase (hereafter, we call “the 1-path”) is based on

a frame synchronized with a Viterbi beam search. The
second phase (hereafter, we call “the 2-path”) is based
on a heuristic search, which reuses the output of the 1-
path as a heuristic function.

Table 1. Parameters and models used in Julius.

1-path 2-path

Phonemic model Gaussian 16 mixture tri-phone model

Language model 20000 word bi-gram 20000 word tri-gram

Others
26.7%

Compute output
probabilities

73.3%
Others 1.9%
Load model 2%
2-path 7.7%

1-path

88.4%

(a) (b)
Figure 3. Computation time breakdowns

in (a) whole flow and (b) 1-path.

As well, Table 1 shows the parameters and models

in the estimation. Fig. 3 (a) illustrates that the 1-path
dominates 88.4% of the total computation time, in
which computing output probabilities occupies 73.3%.
For LVRCSR recognition, minimizing the computation
time of the output probabilities is effective.

3. Design of GMM processor

3.1. GMM computation

The GMM computation obtains log[bj(xt)] from a
feature vector xt and parameters of a GMM, which is
used in the Viterbi search algorithm. As expressed in
(5), log[bj(xt)] is expressed as logarithm of a sum of the
Gaussian distribution multiplied by weight functions.
We assume ∑i is diagonal matrix and simplify it.

∑ Σ=
mix

i
iititj xNxb),,()(log μλ (5)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧ −Σ−−

Σ
= ∑

mix

i
iti

t
it

i

Pi
xx)()(

2
1exp

)2(

1log
2
1

2

μμ
π

λ

⎥
⎦

⎤
⎢
⎣

⎡
−+= ∑

=

P

s
ijsijstsij xwadd

1

2)(log σμ (6)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠

⎞
⎜
⎝

⎛ Σ

+=

∏
=

2
1

1

2)2(

1loglog
P

s
ijs

P
ijw

π
λ

[] ∑
=

=
mix

i
ii XXadd

1

loglog

where each parameter is as follows: bj(xt) is a GMM
PDF, N is a Gaussian distribution PDF, P is the
number of dimensions in a feature vector, mix is the
number of mixtures in the GMM, xt is a feature vector,
µ is a mean parameter, Σ is a variance-covariance

matrix, and λ is a weight function. wij is a constant
number, and can be computed before speech
recognition, offline. Equation (6) indicates that the
GMM computation at one dimension consists of one
addition, one subtraction, two multiplications, P
summations, and taking a logarithm of them.

3.2. Implementation of GMM computation

The GMM calculations occupy over 60% of whole
execution time as shown in Section II. To achieve
speech recognition in real time yet at a lower operating
frequency than an FPGA, we propose parallel
architecture with low memory bandwidth. Our
proposed scheme features the following three points.
• Parallel computing of Gaussian distributions as to

the number of GMM mixtures.
• Parallelization in taking logarithms based on a

look-up table
• Pipeline architecture for reading Gaussian

distribution parameters and calculating them.
In the first feature, the parallelism can be

theoretically increased up to the number of the
mixtures in the GMM; however, it linearly increases
memory bandwidth. For this reason, in our FPGA
implementation, the parallelism in computing the
Gaussian distributions is limited to four.

As the second one, we prepare 2-input addlog units.
The 2-input addlog unit calculates an approximate
logarithmic value of a sum of two inputs. For instance,
to carry out four “addlog”s, four data are divided into
two groups; each group is input to two 2-input addlog
units, and individually calculated at the same time. The
two 2-input addlog units output two results. Repeating
this operation, we can obtain a desired output for any
number of data. This way reduces computation cycles.
The number of parallelism in taking logarithms is four
by the restriction of our FPGA.

The third one means that, in our dedicated hardware,
reading memory and calculating Gaussian distributions
are simultaneously performed.

3.3. Vector look-ahead scheme

The GMM calculations require high memory
bandwidth because many GMM parameters should be
read from memory. For a low memory bandwidth
suitable to an FPGA, we propose a novel vector look-
ahead scheme using locality of GMM data.

Each state in the HMM has a specific GMM. For its
GMM calculation, it is necessary to load GMM data
from memory. However, each phonemic HMM has

self transition, and fortunately the GMM data used in
the present frame will be reused in the next frame, at
high probability. This probability reaches more than
90%.

In the vector look-ahead scheme, several feature
vectors are buffered in advance, and their output
probabilities are computed in parallel. Then, the
answers are stored in cache. If a duplicated state
appears at the next frame, the answer stored in the
cache is outputted. This scheme reduces the memory
bandwidth and cycles. The maximal number of vector
look-ahead depth is seven and their feature vectors are
24-bit fixed point accuracy. This is limited by the
maximum circuit scale allowed on the FPGA.

3.4. Architecture

We utilized an RC250 FPGA board produced by
Celoxica. Fig. 4 shows the proposed architecture
implemented on RC250. Input data are the feature
vectors and the state ID that decides which GMM is
used. Output is the output probability that corresponds
to the state ID.

8 KB
RAM

x(n + 2)

Cache
check

Address
calculator

Probability

ID # 16 bits

24 bits

Control

GMM address

Cache read address

C
ac

he
 w

rit
e

 a
dd

re
ss

11 bits
11 bits 20 bits

Gaussian distribution
probabilities

n: # of Look-ahead vectors

24 bits x n
Probability

0.8 KB
RAM

x (n+1)

Feature vector
24 bits x 25

Cache read address 11 bits

Probability

24 bits

24 bits x 25 x (n+1)

1.6 MB
SRAM

x 4

200 K
SRAM

Addlog
calculator

x4

24 bits x 16 x (n+1)

Gaussian
distribution
calculator x (n+1)

Vector

Feature vector
RAM

Cache

Figure 4. Proposed architecture.
First a first vector and n look-ahead vectors are

stored in the feature vector RAM. After this, the oldest
vector is overwritten with a new vector. Next the
address calculator calculates a cache read address, the
GMM address and the cache write addresses that point
where the calculated output probabilities will be
cached. Then the cached data are checked. If hit, the
cached probability is output as a result. If not, the
output probabilities of contiguous n+1 vectors are
computed in parallel. Finally the computation result
that corresponds to the present frame is output. The
other probabilities regarding n look-ahead vectors are
stored in the cache.

4. Implementation results

To verify the implementation and compare with a
PC, we constructed all operations concerning the
speech recognition. However, the FPGA
implementation only includes the computation of the
GMM. So, the other operations in the speech
recognition are implemented as software using Julius.
The models and parameters have been listed in Table 1.

4.1. Accuracy degradation by fixed point

We adopted the fixed point for simple hardware;
however, it might give a negative impact on the
recognition accuracy. The recognition accuracy
degradation is shown in Table. 2. In 24 bit fixed-point,
the degradation is up to 0.3%.

Table 2. Accuracy affected by fixed point.
The # of bits Accuracy

PC (Floating point) 92.9

24 92.6

4.2. Gate utilization

Implementing the parallel computation and vector
look-ahead scheme augments a hardware size. Table. 3
shows the number of NAND gates used, when the
parallel computation is implemented and the vector
look-ahead depth is changed.

Table 3. Gate utilizations.
Parallel computation Don`t Do Do Do Do Do

The # of look-ahead 0 0 1 3 5 7

The # of NAND gates [106 gates] 0.55 0.83 1.5 2.4 3.4 4.3

4.3. Frequency and memory bandwidth

Fig. 5 shows the required frequency for real-time
operation. As well as Table. 3, Fig. 5 shows the both
cases that the parallelization is implemented and not.
The vector look-ahead depth is also changed.

of look-
ahead

Parallel
computation Do

0 0 1 3 5 7

Don’t Do Do Do Do

Th
e

re
qu

ire
d

Fr
eq

ue
nc

y
fo

r
re

al
-ti

m
e

[M
Hz

]

0

100

300

50

125
Frequency

89.8%
reduction

296.8

86.5 75.9
51.8 40.1

30.4

Figure 5. Required frequencies.

From the figure, the required frequency is

dramatically reduced to 86.5 MHz (70% reduction).
This is because the parallelism is four. In addition, as

the vector look-ahead depth is increases, the frequency
is decreased. When the vector look-ahead depth is
seven, the required frequency is suppressed to 89.8%.

For the vector look-ahead scheme, we can also
reduce the memory bandwidth as shown in Fig. 6,
because the cache memory reduces the times of GMM
data loading. The scheme reduces 84.2% when the
depth is seven.

M
em

or
y

ba
nd

w

id
th

 [M
B

/s
]

0

100

200

300
Memory band
width 84.2%

reduction

298

162
88

47

58

298

of look-
ahead

Parallel
computation Do

0 0 1 3 5 7

Don’t Do Do Do Do

Figure 6. Memory bandwidths.

5. Summary

We proposed a novel FPGA implementation of the

GMM computation, with a parallelization and vector
look-ahead schemes. The required frequency and
memory bandwidth for real-time operation are reduced
by 89.8% and 84.2%, respectively, compared with the
case without these schemes. As a result, our
architecture achieves real-time GMM computing for
20,000 words speech recognition FPGA system. The
operating frequency is 30.4 MHz and memory
bandwidth is 47 Mbps.

References

[1] A. Lee, T. Kawahara and K. Shikano, “Julius – an open
source real-time large vocabulary recognition engine,” Proc.
European Conference on Speech Communication and
Technology,2001, pp. 1691-1694.
[2] The CMU Sphinx Speech Recognition Engines
http://cmusphinx.sourceforge.net/html/cmusphinx.php
[3] S. Yoshizawa, N. Wada, N. Hayasaka and Y. Miyanaga,
“Scalable Architecture for Word HMM-Based Speech
Recognition and VLSI Implementation in Complete System,”
IEEE Trans. on Circuits and Systems, 2006, pp. 70-77
[4] E. C. Lin, K. Yu, R. A. Rutenbar, and T. Chen, “A 1000-
Word Vocabulary, Speaker-Independent, Continuous Live-
Mode Speech Recognizer Implemented in a Single FPGA,”
International Symposium on Field-Programmable Gate
Arrays (FPGA), 2007.
[5] S. J. Melnikoff, S. F. Quigley and M. J. Russell,
“Performing Speech Recognition on Multiple Parallel Files
Using Continuous Hidden Markov Models on an FPGA,”
Proc. IEEE international conference on Field
Programmable Technology (FPT),2002, pp. 399-402.

