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ABSTRACT 
 
We propose a power management method using a digital 
voice activity detection (VAD) module for intelligent 
ubiquitous sensor systems. When this VAD module detects 
a speech signal, a main signal processing circuit is 
connected to a power source. When no speech signal is 
detected, most circuits except VAD are blocked off, thereby 
reducing stand-by power for the specialized sensor nodes 
used for speech signal processing. We implemented the 
VAD algorithm, using zero crossing of input signals to an 
FPGA, thereby achieving 2.10 mW operation. We 
synthesized this VAD module using CMOS 0.18-μm 
process, achieving 3.49 μW power consumption for 
operation at 1.8 V and 100 kHz. 
 

Index Terms— VAD, low power, zero crossing, sensor 
node, ubiquitous 
 

1. INTRODUCTION 
 
In recent years, digital human interfaces have been 
developed for living spaces, medical centers, robotics, and 
automobiles. Future applications will enable one person to 
control thousands of microprocessors without consciousness 
of their existence. Some speech and face recognition 
systems are in practical use, but most systems operate only 
in constrained environments according to installation 
conditions, angle, or distance to a device. For most people, 
these constraints are not convenient for everyday life. 

Various intelligent ubiquitous sensor systems have been 
developed as new human interfaces [1]. In the near future, 
numerous cameras and microphones will be located on 
walls and roofs of living spaces. They will obtain speech 
data and visual information automatically and support 
absolutely hands-free systems. As described herein, we 
specifically examine speech signal processing with such 
ubiquitous sensor systems because speech interfaces are the 
fundamental mode of human communication; moreover, 
speech interfaces have a much broader range of application. 
One such specific application is a meeting system with a 
128-channel square microphone array [2], which captures 
speech data from every microphone: each sensor node with 

some microphones must not only process signal recording 
but also noise reduction, sound-source separation, speech 
recognition, speaker identification, and other tasks [2–6]. 

As described herein, for the intelligent ubiquitous sensor 
system described above, we implement a voice activity 
detector (VAD) to reduce the power consumption of each 
sensor node. The rest of this paper is organized as follows. 
The next section presents a description of the intelligent 
ubiquitous sensor system. Section 3 introduces VAD 
algorithms. Section 4 describes the system implementation 
and experiment results. Section 5 explains subjects of future 
work. Finally, section 6 summarizes the paper. 
 

2. INTELLIGENT UBIQUITOUS SENSOR 
NETWORK 

 
Fig. 1 shows a brief description of the intelligent ubiquitous 
sensor network and a magnified block diagram of one 
ubiquitous sensor. We assume that each ubiquitous sensor 
has a microphone array and a microprocessor. 
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Fig. 1. Intelligent ubiquitous sensor network and a magnified 
block diagram showing a microprocessor and microphone 
array. 

A general button-type battery supplies approximately 
60–200 mAh as the total energy budget. The estimated 
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energy consumption of each sensor is 14.0 mA for a 
wireless transceiver [7] and 0.1 mA for a microphone. 
When each sensor samples the signals, a microprocessor 
runs with estimated power consumption of 10 mA: if all 
node modules operate continuously, this sensor node can 
run for about 7 hr with the 150 mAh battery. The sensor 
node must run for 24 hr to sense speech signals all day long. 
Therefore, it is necessary to reduce the power consumption 
during operating. To achieve 24 hr continuous operation, 
6.25 mA is the limit of the average energy consumption. 

We propose a power management method using a digital 
voice activity detection (VAD) module and a power 
management module (marked as black in Fig. 1). The VAD 
circuit outputs whether an input signal includes speech data 
or not. When the VAD module detects a speech signal, a 
main application module and signal-processing module are 
connected to a power source. When a speech signal is not 
detected, these circuits are blocked off. According to the 
speech signal emergence ratio, the power management 
described above can save energy. To increase this saving 
factor, it is important to reduce the VAD circuit power 
consumption. 
 

3. VOICE ACTIVITY DETECTION 
 
3.1. VAD Algorithms 
 
The VAD algorithms determine the difference between 
noise wave patterns and speech signals, and find the 
beginning and end of speech. The VAD algorithms have 
been used progressively in speech recognition and voice 
over internet protocol (VoIP) applications [8]. For use in 
real-time applications, such as internet telephony, the 
complexity of the VAD algorithm must be low, but for 
almost all VAD algorithms, the power consumption is 
merely a secondary concern. Consequently, advanced VAD 
algorithms attract attention for their use of complicated 
algorithms such as Fourier Transforms, acoustic, and 
language model bases [9] 

To minimize VAD circuit power consumption, the time-
domain algorithm is the most suitable. Although the time-
domain VAD algorithms’ speech detection performance is 
poor, they are computationally less complex than frequency-
domain algorithms. Frequency-domain algorithms have 
better immunity to low S/N than the time-domain algorithms, 
but they have higher computational complexity [8]. The 
zero-crossing VAD, which is a time-domain algorithm, is 
used to recover some low-energy phonemes that are rejected 
by an energy-based detector [8]. In subsections 3.2 and 3.3, 
we describe the zero-crossing VAD mechanism and 
algorithm in detail. 
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Fig. 2. Zero-crossing point example. The offset shows the direct 
current (DC) component. 
 
 
3.2. Zero-Crossing VAD Algorithm 
 
Fig. 2 portrays the zero-crossing algorithm mechanism. The 
zero crossing is the first intersection point between the input 
signal and the offset line, after the signal amplitude crosses 
the trigger lines: the high trigger and the low trigger. 
Between a speech signal and non-speech signal, the 
appearance ratios of this zero crossing differ. The zero-
crossing VAD detects this difference and outputs the 
beginning point and the end point of a speech segment. 
 
3.3. Modification the Zero-Crossing Algorithm 
 
For the zero-crossing VAD to detect speech, all 
requirements are to catch the crossing over the trigger line 
and the offset line. A detailed speech signal is unnecessary. 
For that reason, the sampling frequency and the number of 
bits can be reduced. Once the VAD module detects a speech 
signal, the main signal processor begins to run and the 
sampling frequency and the number of bits are increased to 
sufficient values. These parameters, which decide the 
analog digital converter (ADC) specifications, are 
changeable depending on the specific applications that are 
integrated on the system. As described herein, we adopt 
standard parameters: the quality of 16 kHz sampling 
frequency and 16 bits per sample, for which most speech-
recognition systems require continuous sensing [10]. 
Furthermore, only for the VAD algorithm, the sampling 
frequency is set to 2 kHz and the number of bits per sample 
is set to 10 bits, which are sufficient to detect human speech. 

When considering the hardware implementation, it is 
important to adapt to the ADC circuits. The direct current 
(DC) offset presented in Fig. 2 is the mean value of the 
ADC outputs; it changes depending on the temperature, 
voltage, noise, and other operating parameters. Therefore, 
the output from ADC is usually normalized, such as to a 
range of 0 to 1, or -1 to 1, to operate correctly as a 
continuous system. However, to minimize the total 
computation of VAD, all calculations must be not floating 
point but integer arithmetic. To solve this problem, we 
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adopt a DC offset adjust process that is specialized for the 
zero-crossing algorithm. 
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Fig. 3. Zero-crossing VAD algorithm flow. 
 

Fig. 3 portrays the VAD flowchart with the DC offset 
process and details of each step in this flow. The following 
items describe concrete steps. 
 
Step 1: Input data are adjusted to avoid overflowing. 
Step 2: Input data are judged whether they have a zero cross 

or not. 
Step 3: The zero-cross count is incremented if the input data 

exceed a threshold. 
Step 4: To calculate the mean value in the present frame, the 

input data are added to the temporary sum. 
Step 5: Input data are counted to control the frame length. 
Step 6: The temporary sum is divided by the frame length 

only with the shift operation; the mean value in the 
present frame is obtained. 

Step 7: The DC offset is adjusted according to the mean 
value. 

Step 8: The output state is renewed based on the zero 
crossing count; the processing returns to the first step. 

 
In step 6, the average of the input amplitudes is obtained 
using only integer arithmetic. The condition precedent is 
that the frame length corresponds to a multiple of 2 to 
obtain the average simply using the adder and the shifter 
circuits. After obtaining the average of the ADC outputs, 
VAD can count the zero crossings (steps 2 and 3). The total 
calculation amount from step 1 to step 8 is approximately 3 
kops. 
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Fig. 4. Block diagrams of the integrated devices. The D flip-
flop (DFF) circuits keep up each input data asynchronously. 
 
 

4. EXPERIMENTAL MEASUREMENTS 
 
4.1. Hardware Implementation 
 
To clarify the proposed VAD performances, we 
implemented our proposed VAD algorithm using an FPGA 
(Spartan 3; Xilinx Inc.). We measured the FPGA board 
power consumption including the ADC, excepting the 
microphone. Fig. 4 portrays the board block diagram. The 
supply voltage to the board is 5 V. The ADC that we used 
takes a sample of 10 bits at a sampling rate within 16 ksps; 
this sampling rate is controlled by a dedicated circuit 
configured on FPGA. In Fig. 4, the signals sampled by ADC 
input to the FPGA chip directly and FPGA chip output the 
state signal whether the input signal includes speech or not. 
The calculations executed in this FPGA chip are almost 
identical to the flow depicted in Fig. 3. The zero crossing, 
the offset controller and the judgment modules shown in Fig. 
4 respectively correspond to steps 1 and 2, steps 4, 6, and 7, 
and step 8, in Fig. 3. All calculations are integrated using 
integer arithmetic. Table 1 presents the device utilization 
summary. The slice flip flops and 4-input LUTs are, 
respectively, 1,015 and 3,831. 

Fig. 5 presents the equipment––the FPGA board, 
microphone, and tester––used for the experiments described 
herein. Measurement results show that the board, except the 
microphone, requires 0.42 mA electric current and 2.10 mW 
power consumption. Results show that the stand-alone VAD 
module can run about 70 hr with a 150 mAh battery. 
 
Table 1. Device utilization summary. 

Logic utilization Used Available Utilization
# of slice flip flops 1,015 26,624 3%
# of 4-input LUTs 3,831 26,624 14%  
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Fig. 5. FPGA board with a microphone and a current tester. 
 

500μm

500μm

CMOS 180-nm process 

 
Fig. 6. Layout plot of the zero-crossing algorithm integrated 
using CMOS 0.18-μm process technology. 
 

All blocks of the zero-crossing VAD module are 
implemented using CMOS 0.18-μm process technology. Fig. 
6 depicts the layout plot. The power consumption is 3.49 
μW at the 1.8 V supply voltage and 100 kHz frequency, 
which implies 1,700-day operation with the 150 mAh 
battery. 
 
4.2. Experimental Results 
 
The S/N easily affects the zero-crossing VAD algorithms 
because they are based only on changes in amplitude. For 
S/N dependencies of the VAD performance, we experiment 
using various S/N environments of -20 – 20 dB. In every 
S/N condition, we use identical 15-min speech data 
comprising 24 ATR phoneme balanced sentences [11]. The 
frame length of the VAD algorithm, depicted in Fig. 3, is 

256. In each S/N condition experiment, the number of VAD 
results is 7,030. For this experiment, we counted the 
quantities of correct, surplus, and deficit VAD results. Each 
condition is defined as follows. 
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Fig. 7. The number of correct VAD outputs using the number 
of outputs from VAD as normalized criteria. 
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Fig. 8. The false acceptance rate (FAR) in VAD outputs using 
the number of non-speech frames of the recorded condition as 
normalized criteria. 
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Fig. 9. The false rejection rate (FRR) in VAD outputs using the 
speech frames of the recorded condition as normalized criteria. 
 
Correct: A case in which the VAD output is correct. 
False acceptance (FA): A case in which the VAD output is 

speech, although the input frame is non-speech. 
False rejection (FR): A case in which the VAD output is 

non-speech, although the input frame is speech. 
 
Figs. 7, 8 and 9 respectively depict results of correct, FA, 
and FR VAD output quantities. Fig. 7 shows that zero-
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crossing VAD retains greater than 80% accuracy, even for 
S/N of -20 dB, compared to the S/N of the 20 dB condition. 
Figs. 8 and 9 show that the power saving factor and stability 

of the zero-crossing VAD decreases according to 
deterioration of the S/N. Fig. 10 shows input waveforms and 
the VAD results for S/N of -20 dB, 0 dB, and 20 dB. 
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Fig. 10. Waveforms and zero-crossing results at (a) S/N=20 dB, (b) S/N=0 dB, and (c) S/N=-20 dB. 
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5. FUTURE WORK 

 
To adapt to various S/N environments, the threshold 
parameters, the high trigger, and the low trigger (shown in 
Fig. 2) must be adjusted adaptively according to the zero-
crossing counts while a speech signal is not detected. These 
parameters can be updated using the standard deviation 
(SD). The SD is calculated using the zero crossing and 
averages of amplitude, which are obtained while a speech 
signal is not detected. Equation (1) is the correction 
equation of SD. 

α
α

+
+

= −

1
1 nn

n
SDSDDmodified S  (1) 

The system is adjustable to the circumstances, with various 
S/N, by changing the threshold using learning coefficients α, 
as shown in Eq. (1). In Eq. (1), modified SDn is obtained 
from SDn-1 and observed SDn. The learning coefficients α 
make the temporal changes of SDs in input signals smooth. 
The system becomes unstable for an accidental noise when 
α is large, because SD is renewed sensitively. However, the 
system becomes stable but the time for convergence of SD 
increases for small α, because SD is renewed gradually. 
That is, α is a trade-off parameter for the system robustness. 
Therefore, we should examine the optimum α to realize a 
fully autonomous sensor node. Furthermore, we must adjust 
the learning equation above to low-power sensor nodes. 
 

6. CONCLUSIONS 
 
For intelligent ubiquitous sensor systems, we proposed a 
power management method using a voice activity detector 
(VAD) module. This VAD module reduces the stand-by 
power. We implemented the VAD algorithm using the zero 
crossing of input signal to an FPGA. Using the 
measurement result, the FPGA implementation achieved 
2.10 mW operation. We also synthesized the VAD module 
to an LSI using CMOS 0.18-μm process, and achieved 3.49 
μW power consumption for operation at 1.8 V and 100 kHz. 
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