
A 34.7-mW Quad-Core MIQP Solver Processor for Robot Control
Hiroki Noguchi, Junichi Tani, Yusuke Shimai, Masanori Nishino,

Shintaro Izumi, Hiroshi Kawaguchi, and Masahiko Yoshimoto
Kobe University, Kobe, 657-8501 Japan

h-nog@cs28.cs.kobe-u.ac.jp

Abstract— We propose a quad-core mixed integer quadric
programming (MIQP) solver processor. The MIQP solver is
applicable to hybrid control systems including real-time
control robotics. Using multi-core architecture, fixed-point
calculations, and branch-and-bound method with high-
dispersion performance while processing a 50-variable
problem, our design achieves 34.7-mW operation at a
frequency of 52 MHz in measurement results, although a core
2 duo PC requires 3.16 GHz to solve it as rapidly.

Keywords—MIQP, multi core, real-time hybrid control

I. INTRODUCTION

Recently, control for robots has attracted great interest.
Robots with improved control are expected to enrich human
life. Many studies have examined them; hybrid system
control by solving mixed integer quadratic programming
(MIQP) is one such system. Hybrid system control is
applicable to various systems. It is therefore possible to
control a fuel cell reactor and gas turbine [1], multi-vehicle
pass planning [2], and robot manipulation [3]. An earlier
report [4] presented derivation of the hybrid system for
solving an MIQP problem. However, in general, it takes a
long time to solve an MIQP problem. Consequently, a high-
speed MIQP solver is sought for real-time robotic control.

We specifically examine future dexterous robotics
control using a hybrid system. Fig. 1 portrays examples of
the multiple degree-of-freedom (DoF) robotics. These are
categorized as complex hybrid systems with continuous time
and discrete events, which realizes dexterous operation.
Using the mixed logical dynamical (MLD) system model,
we can formulate this hybrid system control problem as an
MIQP problem (Eq. 1) [5]. The mathematical definition of
the MIQP problem is as shown below.

. ,
 ,

 ,where

subject to
2
1)(minimize

bc

TT

IE

IE

RbRb
RARA
RHZRx

bxA
bxA

xgHxxx

IE

IE

II

EE

x

mm

nmnm

nnnn

f

��
��
���

�
�

��

��

�
(1)

n
nb
nc # of continuous variables
H A symmetric positive definite matrix

Constant vectors and matrices
R The set of real numbers
Z The set of integers

The objective function

g,bE,bI,AE,AI

f(x)

Variables Description
nc + nb
of integer variables

Therein, f(x) is called an objective function; the MIQP has a
linear equality constraint and an inequality constraint. If x
satisfies all constraints, then it is called a feasible point. The
integer entries in x are called integer variables. The
programming problem is classified as a binary programming
(BP) problem if every integer variable has either 0 or 1. The
MIQP problem is, however, an NP-hard problem. In practice,
the computational complexity increases drastically with the
number of the variables (presented in Fig. 2). In addition, the
number of DoFs is correlated to the number of variables in
the MIQP problem. For the most extreme example, shown in
Fig. 1, the number of human DoFs is about 400, which
engenders more than 2,400 variables in MIQP (each joint is
assumed to have six DoFs). The computational cost of the
MIQP problem is quite high, but the hybrid system control
with the MIQP solver gives mobile robotics intelligence.
Complex planning and movements must be supported online
for real time. Consequently, low-power calculations are
necessary: a high-speed but low-power MIQP solver is
important for mobile robot applications. Such a supreme
MIQP solver provides a new paradigm for modeling,
planning, and controlling robots.

Biped walker

400 ~

Forceps manipulator

25 ~

Multi contact robot

15 ~
of variables

in MIQP problem

Degree of freedom
(DoF)

2,400 ~150 ~ 30090 ~

Switching
contact
mode

)(1 xfx ��

)(2 xfx ��
)(3 xfx �� Ax�

Fig. 1. Examples of multi-DoF robotics and normalized
computational amounts.

N
or

m
al

iz
ed

 c
om

pu
ta

tio
na

l
am

ou
nt

s

of variables :n
25 50 75 100

10

102

103

104

1

This work (n=50)

Normalized
criteria (n=16)
FPGA [7]

Fig. 2. Examples of multi-DoF robotics and normalized
computational amounts.

978-1-4244-5760-1/10/$26.00 ©2010 IEEE

II. DISTRIBUTED ALGORITHM FOR MIQP SOLVER

We divide a problem into child sub-problems by
branching. Then we solve the child sub-problems. To
distribute computations to several cores equally and to solve
an MIQP problem efficiently, we must first schedule the
assignment of quadratic-programming (QP) sub-problems.
We apply the branch-and-bound method to the MIQP solver
to produce a distribution. The branch-and-bound method has
been used to solve mixed integer programming problems in a
grid-computing system [6]. Consequently, the MIQP
problem is divisible into QP sub-problems. We can achieve
decentralization of the computation. The number of
generated QP sub-problems depends on the MIQP problem.
Fig. 3 presents an example of a QP sub-problem grouping.
Each core is assigned adaptively to one group.

0
1

5
2

4

6

3

Su
b

pr
ob

le
m

s
(Q

P)

Original MIQP

Pruning

9 7 8

Group A
Group B Group C

Pruning

Fig. 3. Example of the branch-and-bound search tree.

III. CORE ARCHITECTURE

We have already implemented the MIQP solver that can
solve problems with 16 variables onto the FPGA [7]. In
contrast, the designed quad-core MIQP solver processor can
solve problems with 50 variables. Furthermore, compared
with the implementation onto the FPGA, the bit-width of
fraction of fixed-point can be increased from 22 to 26. In
doing so, the error margin can be decreased for judgment of
whether the target variable is an integer or not. Each core
solves different QP sub-problems based on the dual active
set method [8]. The input to each core is the QP sub-problem
(= 327.2 kb); the output is its solution (= 2 kb). Each core
has a dedicated SRAM and multiply and accumulation
(MAC) unit, and various other arithmetic units including a
distance calculator, a square root calculator, and fixed-point
divider for adding and deleting the active constraints. All
calculating units are implemented with pipelining and 26-b
fixed-point computing to reduce the total computational
cycles and amounts. Among them, the fixed-point divider
has a critical path. To guarantee the computation at 120-
MHz operation frequency, the multi-cycled CLKs are set to
the fixed-point divider (Fig. 5). The multi-cycled fixed-point
divider needs a 5-cycle delay at every calculation, but it
maintains a sufficient-speed operation capability. Actually,
100-MHz operation enables the MIQP processor to solve the
50-variable MIQP problem, which is targeted according to
omnidirectional mobile robotics, and which can be
controlled at every 100 ms.

Control processor
First point calculator

Branch-and-bound method control
Bus sequence control

Global busExternal DRAM
Problem indices
Original problem

The first point
Sub-problems

Optimal solution
Optimal values

Chip nChip2Chip1Chip0

Core1

SRAM

Logic
…

Core2

SRAM

Logic

Core1

SRAM

Logic

Core2

SRAM

Logic

Core1

SRAM

Logic

Core2

SRAM

Logic

Core1

SRAM

Logic

Core2

SRAM

Logic

Core1

SRAM

Logic

Core2

SRAM

Logic

Core1

SRAM

Logic

Core2

SRAM

Logic

Core0

SRAM

Logic

Core0

SRAM

Logic

Core0

SRAM

Logic

Core0

SRAM

Logic

MIQP
problem

Optimal
solution

(a)

Sequence
control
module

QP solver core 0

SRAM
422kb

Dual active set
calculator

Solution

QP problem

Solution

QP problem

Solution

Problem
indices QP solver core 3

SRAM
422kb

Dual active set
calculator

Buffer
problem
solution

Solution

Problem

Local bus

(b)

Dual active set
calculator

SR
A

M

109kb

SR
A

M

109kb

SR
A

M

204kb

I/O
 control

m
odule

C
om

pute
inequality

C
om

pute step

D
eterm

ine
s-pair

MAC

Fixed divider

Sequencer

M
em

ory bus

Solution
Q

P
problem

SRAM
422kb

(c)
Fig. 4. Block diagrams of (a) multi-chip MIQP solver, (b) MIQP

solver chip, and (c) QP solver core.

1bit

40bits

1bit

40bits

40bits

40bits

40bits

M
U

X
M

U
X

65
bi

ts
40

bi
ts

40
bi

ts

1/5

CLK

Divided
CLK

f

f/5

Count

c0

c1

a0

a1

b0

b1

1bit

R
es

ul
t

Fi
ni

sh

Fixed-point
divider

DIV

Critical path

Fig. 5. Multi-cycled fixed-point divider.

RAM0 RAM1

RAM2 RAM3

Core0 Core1

Core2 Core3 PLL

Fig. 6. Chip micrograph of a Quad-core MIQP solver processor
designed with 65-nm technology.

IV. MULTI-CORED FLEXIBILITY

To parallelize the QP solver cores efficiently, their idle
cycles must be reduced. Each QP solver core is given a
different QP problem through the external control processor
(portrayed in Fig. 4). Each core solves it asynchronously.
The solutions are sent to external processor; then it updates
the optimal solution and the optimal values in external
DRAM. Simultaneously, child sub-problems that must be
solved later are generated and saved in DRAM. The total
communications traffic is a sum of the input QP problems
and the results of their problems. In our 65-nm design, we
implemented quad cores on a chip. In reality, the core
number depends on an area constraint and the
communication traffic limits. As portrayed in Fig. 4, all chips
that have quad cores connect to an external branch-and-
bound module through a global bus; QP cores can solve an
MIQP problem all together.

V. HARDWARE RESULTS

We designed the 65-nm quad-core MIQP solver
processor test chip depicted in Fig. 6. This chip is optimized
for a QP problem with 50 entries of variables and runs at a
maximum operating frequency of 120 MHz. The core size is
1.1 × 1.2 mm2. Each core has 422 kbits SRAM as a local
working memory. The total size, including the quad cores
and PLL circuit, is 3.2 × 3.2 mm2; the number of logic gates
is 1.36 M. Fig. 7 presents the evaluation environment––the
FPGA board, LSI chip, external DRAM, and power
supplies––used for the experiments described herein. Fig. 8
shows the measurement power consumptions at several
operation frequencies. Fig. 9 shows the required frequencies,
which are times that the MIQP solver would finish
calculations before PCs need to process them: (core 2 duo
3.16 GHz (Intel Corp.) and 3 GB memory). Table I presents
specifications of each implementation. When considering the
16-variable MIQP problem, the single-chip implementation
indeed yields over a tenth higher performance than the
FPGA implementation. Even with a much more complicated

problem, a 50-variable MIQP problem, the 3-chip
implementation achieves 33 MHz operation, which is a
50.7% reduction of the required frequency. To advance that
reduction, more MIQP solver cores are effective.

FPGA chip
Altera Stratix II

External DRAM
LSI chip

Test board

Power supply

(Board) (PLL) (Logic&SRAM)

Fig. 7.Evaluation environments for a test chip using an FPGA,
dual external-DRAMs, and power supplies.

Operating frequency [MHz]

0

20

40

60

80
M

ea
su

re
d

po
w

er
 [m

W
]

40 60 8050 70 100 12090 110

Single core
Quad cores

Fig. 8. Measurement results of frequency vs. power consumption.

3160

67

2 1.2
0

20

40

60

80

100

120

3160

R
eq

ui
re

d
fr

eq
ue

nc
y

[M
H

z]

Frequency
−98.2%

33

Frequency
−50.7%

52

16 variables 50 variables

Fig. 9. Frequency and power comparisons.

Fig. 10 presents a comparison of the power consumption
values shown for a PC, FPGA, single chip, and three-chip
implementations. Operating frequencies are set, according to
Fig. 9. When we consider a 50-variable problem, the single-
chip implementation achieves 35-mW operation in actual
measurements, which represents a 99% power reduction
compared with the FPGA implementation.

TABLE I. MIQP solver specifications
PC FPGA [7] This work

of variables 50 16 50
of equality constraints 10 16 10
of inequality constraints 100 32 100
of active set nodes 50 32 50
The bit width of the fraction 22 26
The bit width of the integer 14 14
Maximum operating frequency 3.16GHz 67MHz 120MHz

Float
Float

65W
@3.16GHz

0

65
Power
−99%

16 variables 50 variables

4.5mW
@2MHz

70mW
@33MHz

0.05

0.1

4

5

35mW
@52MHz

12mW
@1.2MHz

Po
w

er
 [W

]
@

re
qu

ire
d

fr
eq

ue
nc

y

4.2W
@67MHz

Fig. 10. Frequency and power comparisons.

0

40

50

60

70

80

65nm 45nm 32nm 22nm 15nm

100MHz
200MHz
300MHz

Technology node

of

 v
ar

ia
bl

es
 :n

This work

(4 cores) (8 cores) (16 cores) (32 cores) (64 cores)

Fig. 11. Future performance prediction with a single chip.

VI. PREDICTION

Fig. 11 shows the scale prediction of MIQP problems
that is solvable within 100 ms using the future process
technology on a single chip. The gate transistor size was
shrunk, and the number of cores and the SRAM memory size
in the 3.2 × 3.2 mm2 area are considered. At 22-nm and later
nodes, the over-70-variable problem will be handled, which

means that advanced robotics with higher DoFs can be
controlled with a single chip. When involved with our
proposed multi-chip solution, more dexterous robotic control
can be achieved in the same technology node.

VII. SUMMARY

The branch-and-bound method is applied to the multi-
core MIQP solver. A 26-b fixed-point computing is
implemented to reduce the total computational amounts. The
multi-cycled fixed-point divider is adopted to eliminate the
critical-path timing problem. Using these conditions and
arrangements, our designed processor achieves 34.7 mW at a
52-MHz operation. At a frequency of 100 MHz, our quad-
core processor can achieve almost twice faster calculation
than a PC with a 50-variable MIQP problem. We also
propose a multi-chip solution, which increases the number of
MIQP problems that are solvable simultaneously.

ACKNOWLEDGMENTS

The VLSI chip in this study was fabricated in the chip
fabrication program of VLSI Design and Education Center
(VDEC), the University of Tokyo in collaboration with
STARC, e-Shuttle, Inc., and Fujitsu Ltd.

The authors thank Prof. Zhi-Wei Luo for valuable
discussion related to hybrid system control and predictive
control using the MIQP problem.

REFERENCES
[1] P.Costamagna, L. Magistri, and A. F. Massardo, “Design and

part-load performance of a hybrid system based on a solid
oxide fuel cell reactor and a micro gas turbine,” Journal of
Power Sources 96 (2001) 352-368.

[2] M. Mukai, T. Azuma, and M. Fujita, “A Collision avoidance
Control for Multi-Vehicle Using PWA/MLD Hybrid System
Representation,” Proc. of the IEEE Conference on Control
Applications (ICCA), pp. 872-877, Sep. 2004.

[3] D. Dimitrov, P. Wieber, O. Stasse, H. J. Ferreau, and H.
Diedam, “An Optimized Linear Model Predictive Control
Solver for Online Walking Motion Generation,” Proc. of the
IEEE International Conference on Robotics and Automation
(ICRA), pp. 1266-1271, May 2009.

[4] D. Axehill, “Applications of Integer Quadratic Programming
in Control and Communication,” Linköping Studies in
Science and Technology, thesis no. 1218, pp. 9-45, 2005.

[5] Y. Yin, S. Hosoe, and Z. Luo, “A mixed logic dynamical
modeling formulation and optimal control of intelligent
robots,” Optimization and Engineering (Springer), Vol. 8, No.
3, pp. 321-340, Sep. 2007.

[6] K. Aida, and T. Osumi, “A case study in running a parallel
branch and bound application on the grid,” Proc. of the IEEE
Symposium on Applications and the Internet, pp. 164-173,
Jan. 2005.

[7] Y. Shimai, J. Tani, H. Noguchi, H. Kawaguchi, and M.
Yoshimoto, “FPGA implementation of mixed integer
quadratic programming solver for mobile robot control,” Proc.
of IEEE International Conference on Field-Programmable
Technology (FPT), pp. 447-450, Dec. 2009.

[8] D. Goldfarb, and A. Idnani, “A numerically stable dual
method by solving strictly convex quadratic programs,”
Mathematical Programming (Springer), Vol. 27, pp. 1-33,
1983.

