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Abstract— We propose a quad-core mixed integer quadric 
programming (MIQP) solver processor. The MIQP solver is 
applicable to hybrid control systems including real-time 
control robotics. Using multi-core architecture, fixed-point 
calculations, and branch-and-bound method with high-
dispersion performance while processing a 50-variable 
problem, our design achieves 34.7-mW operation at a 
frequency of 52 MHz in measurement results, although a core 
2 duo PC requires 3.16 GHz to solve it as rapidly. 
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I. INTRODUCTION

Recently, control for robots has attracted great interest.
Robots with improved control are expected to enrich human 
life. Many studies have examined them; hybrid system 
control by solving mixed integer quadratic programming 
(MIQP) is one such system. Hybrid system control is 
applicable to various systems. It is therefore possible to 
control a fuel cell reactor and gas turbine [1], multi-vehicle 
pass planning [2], and robot manipulation [3]. An earlier 
report [4] presented derivation of the hybrid system for 
solving an MIQP problem. However, in general, it takes a 
long time to solve an MIQP problem. Consequently, a high-
speed MIQP solver is sought for real-time robotic control. 

We specifically examine future dexterous robotics 
control using a hybrid system. Fig. 1 portrays examples of 
the multiple degree-of-freedom (DoF) robotics. These are 
categorized as complex hybrid systems with continuous time 
and discrete events, which realizes dexterous operation. 
Using the mixed logical dynamical (MLD) system model, 
we can formulate this hybrid system control problem as an 
MIQP problem (Eq. 1) [5]. The mathematical definition of 
the MIQP problem is as shown below. 
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n
nb
nc # of continuous variables
H A symmetric positive definite matrix

Constant vectors and matrices
R The set of real numbers
Z The set of integers

The objective function

g,bE,bI,AE,AI

f(x)

Variables Description
nc + nb
# of integer variables

Therein, f(x) is called an objective function; the MIQP has a 
linear equality constraint and an inequality constraint. If x
satisfies all constraints, then it is called a feasible point. The 
integer entries in x are called integer variables. The 
programming problem is classified as a binary programming 
(BP) problem if every integer variable has either 0 or 1. The 
MIQP problem is, however, an NP-hard problem. In practice, 
the computational complexity increases drastically with the 
number of the variables (presented in Fig. 2). In addition, the 
number of DoFs is correlated to the number of variables in 
the MIQP problem. For the most extreme example, shown in 
Fig. 1, the number of human DoFs is about 400, which 
engenders more than 2,400 variables in MIQP (each joint is 
assumed to have six DoFs). The computational cost of the 
MIQP problem is quite high, but the hybrid system control 
with the MIQP solver gives mobile robotics intelligence. 
Complex planning and movements must be supported online 
for real time. Consequently, low-power calculations are 
necessary: a high-speed but low-power MIQP solver is 
important for mobile robot applications. Such a supreme 
MIQP solver provides a new paradigm for modeling, 
planning, and controlling robots. 
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Fig. 1. Examples of multi-DoF robotics and normalized 
computational amounts. 
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Fig. 2. Examples of multi-DoF robotics and normalized 
computational amounts. 
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II. DISTRIBUTED ALGORITHM FOR MIQP SOLVER

We divide a problem into child sub-problems by 
branching. Then we solve the child sub-problems. To 
distribute computations to several cores equally and to solve 
an MIQP problem efficiently, we must first schedule the 
assignment of quadratic-programming (QP) sub-problems.
We apply the branch-and-bound method to the MIQP solver 
to produce a distribution. The branch-and-bound method has 
been used to solve mixed integer programming problems in a 
grid-computing system [6]. Consequently, the MIQP 
problem is divisible into QP sub-problems. We can achieve 
decentralization of the computation. The number of 
generated QP sub-problems depends on the MIQP problem.
Fig. 3 presents an example of a QP sub-problem grouping. 
Each core is assigned adaptively to one group. 

0
1

5
2

4

6

3

Su
b 

pr
ob

le
m

s
(Q

P)

Original MIQP

Pruning

9 7 8

Group A
Group B Group C

Pruning

Fig. 3. Example of the branch-and-bound search tree. 

III. CORE ARCHITECTURE

We have already implemented the MIQP solver that can 
solve problems with 16 variables onto the FPGA [7]. In 
contrast, the designed quad-core MIQP solver processor can 
solve problems with 50 variables. Furthermore, compared 
with the implementation onto the FPGA, the bit-width of 
fraction of fixed-point can be increased from 22 to 26. In
doing so, the error margin can be decreased for judgment of 
whether the target variable is an integer or not. Each core 
solves different QP sub-problems based on the dual active 
set method [8]. The input to each core is the QP sub-problem 
(= 327.2 kb); the output is its solution (= 2 kb). Each core 
has a dedicated SRAM and multiply and accumulation 
(MAC) unit, and various other arithmetic units including a
distance calculator, a square root calculator, and fixed-point 
divider for adding and deleting the active constraints. All 
calculating units are implemented with pipelining and 26-b
fixed-point computing to reduce the total computational 
cycles and amounts. Among them, the fixed-point divider 
has a critical path. To guarantee the computation at 120-
MHz operation frequency, the multi-cycled CLKs are set to 
the fixed-point divider (Fig. 5). The multi-cycled fixed-point 
divider needs a 5-cycle delay at every calculation, but it 
maintains a sufficient-speed operation capability. Actually, 
100-MHz operation enables the MIQP processor to solve the 
50-variable MIQP problem, which is targeted according to 
omnidirectional mobile robotics, and which can be 
controlled at every 100 ms. 
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Fig. 4. Block diagrams of (a) multi-chip MIQP solver, (b) MIQP 

solver chip, and (c) QP solver core. 
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Fig. 6. Chip micrograph of a Quad-core MIQP solver processor 
designed with 65-nm technology. 

IV. MULTI-CORED FLEXIBILITY

To parallelize the QP solver cores efficiently, their idle 
cycles must be reduced. Each QP solver core is given a 
different QP problem through the external control processor 
(portrayed in Fig. 4). Each core solves it asynchronously. 
The solutions are sent to external processor; then it updates 
the optimal solution and the optimal values in external 
DRAM. Simultaneously, child sub-problems that must be 
solved later are generated and saved in DRAM. The total 
communications traffic is a sum of the input QP problems 
and the results of their problems. In our 65-nm design, we 
implemented quad cores on a chip. In reality, the core 
number depends on an area constraint and the 
communication traffic limits. As portrayed in Fig. 4, all chips 
that have quad cores connect to an external branch-and-
bound module through a global bus; QP cores can solve an 
MIQP problem all together. 

V. HARDWARE RESULTS

We designed the 65-nm quad-core MIQP solver 
processor test chip depicted in Fig. 6. This chip is optimized 
for a QP problem with 50 entries of variables and runs at a
maximum operating frequency of 120 MHz. The core size is 
1.1 × 1.2 mm2. Each core has 422 kbits SRAM as a local 
working memory. The total size, including the quad cores 
and PLL circuit, is 3.2 × 3.2 mm2; the number of logic gates 
is 1.36 M. Fig. 7 presents the evaluation environment––the 
FPGA board, LSI chip, external DRAM, and power 
supplies––used for the experiments described herein. Fig. 8
shows the measurement power consumptions at several 
operation frequencies. Fig. 9 shows the required frequencies,
which are times that the MIQP solver would finish 
calculations before PCs need to process them: (core 2 duo 
3.16 GHz (Intel Corp.) and 3 GB memory). Table I presents 
specifications of each implementation. When considering the 
16-variable MIQP problem, the single-chip implementation 
indeed yields over a tenth higher performance than the 
FPGA implementation. Even with a much more complicated 

problem, a 50-variable MIQP problem, the 3-chip 
implementation achieves 33 MHz operation, which is a 
50.7% reduction of the required frequency. To advance that 
reduction, more MIQP solver cores are effective. 
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Fig. 7.Evaluation environments for a test chip using an FPGA, 
dual external-DRAMs, and power supplies. 
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Fig. 10 presents a comparison of the power consumption 
values shown for a PC, FPGA, single chip, and three-chip 
implementations. Operating frequencies are set, according to 
Fig. 9. When we consider a 50-variable problem, the single-
chip implementation achieves 35-mW operation in actual 
measurements, which represents a 99% power reduction 
compared with the FPGA implementation. 

TABLE I. MIQP solver specifications 
PC FPGA [7] This work

# of variables 50 16 50
# of equality constraints 10 16 10
# of inequality constraints 100 32 100
# of active set nodes 50 32 50
The bit width of the fraction 22 26
The bit width of the integer 14 14
Maximum operating frequency 3.16GHz 67MHz 120MHz
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Fig. 10. Frequency and power comparisons. 

0

40

50

60

70

80

65nm 45nm 32nm 22nm 15nm 

100MHz
200MHz
300MHz

Technology node 

# 
of

 v
ar

ia
bl

es
 :n

This work

(4 cores) (8 cores) (16 cores) (32 cores) (64 cores)

Fig. 11. Future performance prediction with a single chip. 

VI. PREDICTION

Fig. 11 shows the scale prediction of MIQP problems 
that is solvable within 100 ms using the future process 
technology on a single chip. The gate transistor size was 
shrunk, and the number of cores and the SRAM memory size 
in the 3.2 × 3.2 mm2 area are considered. At 22-nm and later 
nodes, the over-70-variable problem will be handled, which 

means that advanced robotics with higher DoFs can be 
controlled with a single chip. When involved with our 
proposed multi-chip solution, more dexterous robotic control 
can be achieved in the same technology node. 

VII. SUMMARY

The branch-and-bound method is applied to the multi-
core MIQP solver. A 26-b fixed-point computing is 
implemented to reduce the total computational amounts. The 
multi-cycled fixed-point divider is adopted to eliminate the 
critical-path timing problem. Using these conditions and 
arrangements, our designed processor achieves 34.7 mW at a 
52-MHz operation. At a frequency of 100 MHz, our quad-
core processor can achieve almost twice faster calculation 
than a PC with a 50-variable MIQP problem. We also 
propose a multi-chip solution, which increases the number of 
MIQP problems that are solvable simultaneously. 
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