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Abstract—This paper presents a novel NMOS-inside 6T SRAM 

cell layout that reduces a neutron-induced MCU SER on a same 

wordline. We implemented a 1-Mb SRAM macro in a 65-nm 

CMOS process and irradiated neutrons as a neutron-accelerated 

test to evaluate the MCU SER. The proposed 6T SRAM macro 

improves the horizontal MCU SER by 67–98% compared with a 

general macro that has PMOS-inside 6T SRAM cells. 
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I.  INTRODUCTION 

Nanoscaled integrated circuits are susceptible to particle-
induced soft error effect (SEE) because of their low signal 
charge and noise margin [1–3]. Particularly multiple cell upsets 
(MCUs), which are defined as simultaneous errors in more than 
one memory cell induced by a single event, have been closely 
scrutinized. The MCUs are caused by a collection of charges 
produced by secondary ions in neutron-induced nuclear 
reaction. The ratio of the MCUs to single-event upsets (SEUs) 
is increasing drastically in nanoscaled SRAMs [4–6]. Process-
scaling reportedly causes multiple MCU modes: charge sharing 
among memory storage nodes, bipolar effect in a P-well, and 
multi-coupled bipolar interaction (MCBI) [7]. In the literature, 
fail bits are spread over about a 1000 × 1000 bit area in 22-nm 
SRAM design; it is apparently impossible to correct multiple 
bit upsets (MBUs = MCUs in the same word) merely by error 
correction coding (ECC) [8]. 

Respective Figs. 1 and 2(a) show a schematic and layout of 
a general 6T SRAM cell with a 65-nm CMOS logic rule. In the 
design, the sizes of the transistors are relaxed to suppress 
threshold voltage variation so that the cell area is about twice 
as large as a commercial 65-nm 6T cell [9]. The 6T cell 
consists of PMOS load transistors (PL0, PL1), NMOS driver 
transistors (ND0, ND1) and access transistors (NA0, NA1). A 
wordline (WL) and two bitlines (BL, BLN) are horizontally 
and vertically connected among cells, respectively. In the 
layout of the general 6T cell, the PMOS transistors are 
sandwiched by the NMOS transistors; this structure is called an 
NMOS-PMOS-NMOS (NPN) layout in this paper. On the 
other hand, the proposed 6T cell is designed as a PMOS-
NMOS-PMOS (PNP) layout in Fig. 2(b). The PNP 6T cell can 
lower a horizontal MCU rate because we have observed that an 
NMOS has a four-times larger SEU cross section than a PMOS 
for a wide range of supply voltages (see Fig. 3) [10–11]. 

Furthermore, in the PNP layout, the NMOSes are horizontally 
separated from adjacent ones. 

In this paper, we present horizontal MCU improvement of 
the PNP 6T layout with 65-nm 1-Mb SRAM test chips. The 
SRAMs are designed in both of twin-well and triple-well 
structures because well engineering drastically affects the 
MCU SER [12-13]. We will show experimental results that the 
proposed layout improves the horizontally MCU SER by 67–
98% in the both of the twin- and triple-well structures. The 
novel layout enhances effectiveness of single error correcting - 
double error detecting ECC (SEC-DED ECC). 
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Figure 1.  Schematic of 6T SRAM cell. 
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Figure 2.  Layouts of (a) general NMOS-PMOS-NMOS (NPN) 6T cell and 

(b) novel PMOS-NMOS-PMOS (PNP) 6T cell designed with a 65-nm logic 

rule. 
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Figure 3.  SEU cross sections of NMOS and PMOS with a twin-well 65-nm 

process calculated using the iRoC TFIT simulator [10]. 

II. SRAM DESIGN 

We designed and fabricated a 1-Mb SRAM test chip 
consisting of 256-Kb macros of four types (NPN layout with 
twin well, PNP layout with twin well, NPN layout with triple 
well (Fig. 4), and PNP layout with triple well), as presented in 
Fig. 5(a). Additionally, Fig. 5(b) illustrates the block diagram 
of a 16-Kb block (128 columns × 128 rows). The SRAM 
macros using the four-type 6T cells occupy same areas so that 
the SRAM macros share same peripheral circuits. In the two 
macros with the triple-well structures, the memory cells are 
merely allocated in the triple well; the peripheral circuits are on 
the twin well. In the memory cells on the triple-well structure, 
the deep N-well narrows the area of the P-well; thereby the 
parasitic bipolar effect increases the MCU SER. 

Fig. 6 presents a layout of the implemented SRAM cell 
arrays and well taps. The NPN and PNP 6T cells designed by 

the 65-nm logic rule have 2.11 × 0.60 mm
2
 area (see Figs. 1 and 

2; the gate length is relaxed to 80 nm to suppress variation). 

The well taps are inserted every 32 cells (= 19.2 mm) in the 
vertical direction. Since the memory cell incorporates the 
Metal-1 layer as internal connections, the vertical Metal-2 and 
horizontal Metal-3 layers are assigned as BLs and WLs. 
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Figure 4.  Cross section of NMOS when using triple well. 
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Figure 5.  (a) Micrograph of a 1-Mb SRAM test chip including NPN and 

PNP SRAMs with twin and triple wells. (b) Block diagram of a 16-Kb block. 
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Figure 6.  Layout of memory cell array and well taps. 
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III. EXPERIMENTAL RESULTS 

Fig. 7 presents an experimental setup for a neutron-
accelerated test. The neutron irradiation experiment is 
conducted at The Research Center for Nuclear Physics (RCNP), 
Osaka University. Spallation neutron beam generated by a 400-
MeV proton beam irradiates a measurement board 7892-mm 
far from a tungsten target, on which three sample chips are 
placed in a measurement board, for 30 hrs. The neutron flux is 
normalized to 13 cph / cm

2
 above 10 MeV at ground level in 

New York City [14]. Fig. 8 shows a timeline of an FPGA on 
the measurement board. The FPGA automatically generates 
input data pattern to the SRAM macro before the irradiation 
and finally outputs addresses of the fail bits. 
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Figure 7.  Setup for neutron-accelerated test. 
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Figure 8.  Timeline of the FPGA on the measurement board. 

Fig. 9 portrays measurement results of single-bit-upset 
(SBU) SERs when a checkerboard (CKB) pattern is used. The 
supply voltage is varied from 0.6 V to 1.2 V to assess the 
dependence of the SERs on the supply voltage. Results show 
that the SBU SERs were ranging from 500 FIT / Mb to 1400 

FIT / Mb depending on the supply voltage, but no apparent 
difference on the SBU SER is observed among the four layouts. 
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Figure 9.  Measured neutron-induced SBU SERs in the CKB pattern at 0.6-

1.2 V (four layouts). 
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Figure 10.  Data patterns: (a) checker-board (CKB), (b) all zero (All0), (c) 

column stripe (CS), and (d) row stripe (RS). 
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Figure 11.  MCU SER improvements at 1.2 V when using (a) CKB, (b) All0, (c) CS, and (d) RS patterns. A gray bar shows MCUBL=1 and a black bar shows 

MCUBL>1. 
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Figure 12.  Multiple-cell-upset patterns: (a) MCUBL=1 and (b) MCUBL>1 are 

defined respectively by vertical fail bits in a same column and by horizontal 

fail bits in two or more columns. 

 

In addition to the SBU SER, we measured MCU SER 
using four data patterns presented in Fig. 10: (a) CKB, (b) all 
zero (All0), (c) column stripe (CS), and (d) row stripe (RS), in 
which sensitive node patterns differ. 

Figs. 11(a)–(d) portray measured MCU SER in the four 
data patterns at the supply voltage of 1.2 V. Hereinafter, as 
presented in Fig. 12, an MCU SER in the vertical direction is 
called MCUBL=1, and an MCU SER in the horizontal direction 
is called MCUBL>1. The MCUBL>1 is more important for 
designers to adopt the interleaving and/or ECC strategy. When 
using the CKB, CS, and RS patterns, the MCUBL>1 in the PNP 
6T SRAM can be suppressed by 86–98% compared to the 
general NPN layout. The novel PNP layout separates NMOSes 
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from adjacent ones in the horizontal direction, which reduces 
the MCUBL>1 SER. However, only 67% improvement is 
observed in the All0 pattern because no horizontally adjacent 
sensitive node exists even in the NPN layout in this pattern. 
The novel PNP layout with the twin-well structure achieves 
MCUBL>1 SERs of 6, 5, 9, and 5 FIT/Mb in the CKB, All0, CS 
and RS patterns and the PNP layout with the triple-well 
structure achieves MCUBL>1 SERs of 6, 5,19 and 3 FIT/Mb. 

IV. CONCLUSION 

Reducing the horizontal MCUBL>1 SER is more crucial than 
the vertical one, which can be suppressed by SEC-DEC ECC. 
This paper presented a novel PNP (NMOS-inside) 6T SRAM 
that makes a neutron-induced MCUBL>1 SER lower than the 
general NPN 6T SRAM in the horizontal direction. We 
designed a 65-nm 1-Mb SRAM test chips including the NPN 
and PNP SRAM macros. The measurement results 
demonstrate that the PNP layout suppresses the horizontal 
MCUBL>1 SER by 67–98% in the CKB, All0, CS and RS 
patterns with the twin-well and triple-well structure in which 
the tap density is 1/32 of memory cells. 
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