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Abstract— This report describes a robust method of 

Instantaneous Heart Rate (IHR) detection from noisy 

electrocardiogram (ECG) signals. Generally, the IHR is 

calculated from the interval of R-waves. Then, the R-waves are 

extracted from the ECG using a threshold. However, in 

wearable biosignal monitoring systems, various noises (e.g. 

muscle artifacts from myoelectric signals, electrode motion 

artifacts) increase incidences of misdetection and false 

detection because the power consumption and electrode 

distance of the wearable sensor are limited to reduce its size 

and weight. To prevent incorrect detection, we use a short-time 

autocorrelation technique. The proposed method uses 

similarity of the waveform of the QRS complex. Therefore, it 

has no threshold calculation Process and it is robust for noisy 

environment. Simulation results show that the proposed 

method improves the success rate of IHR detection by up to 

37%. 

I. INTRODUCTION 

A growing interest exists in wearable biosignal 

monitoring systems. Biosignal measurements during daily 

life at home are important for us to ascertain our health 

condition [1]. This report specifically describes IHR detection 

from noisy ECG signals for a wearable ECG monitoring 

system. The IHR is an important biosignal that is useful for 

heart disease detection, heart rate variation (HRV) analysis 

[2], and exercise intensity estimation [3].  

The key factor affecting wearable system usability is 

miniaturization and weight reduction. A wearable and 

wireless ECG telemetry system [4, 5] and single-chip ECG 

monitoring system LSIs [6, 7, 8] have been developed. 

However, the wearable ECG monitor is sensitive to noise 

because its electrodes are close together. Especially, if a 

subject is not at rest (e.g. during exercise), the signal-to-noise 

ratio (SNR) of ECG signals will be degraded.  

In general, to prevent SNR degradation, sophisticated 

analog front-end circuits are necessary. The analog front-end 

of the ECG monitoring system consists mainly of amplifiers, 

analog filters, and an analog to digital converter (ADC). 

Unfortunately, analog circuits have high power-consumption 

and area. The battery weight is dominant in the wearable 
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system. Therefore, the battery capacity and power 

consumption must be reduced for weight reduction. 

The amplifier has a tradeoff between the power 

consumption and its performance (e.g., gain, phase 

characteristic, common mode rejection ratio). Moreover, the 

analog filter in ECG monitor has a large RC time constant 

because the frequency range of ECG signals is low (f < 1 kHz). 

Consequently, it is difficult to use a high performance 

amplifier and analog filters, which have a high quality factor.  

However, ultra-low-power ADCs, which have sub-uW 

power consumption and limited sample rate, are developed 

for biomedical applications [9, 10]. Furthermore, according 

to Moore's law, a power of digital portions is scaled down 

with the progress of Process technology. In contrast, the 

power consumption of analog circuits will not scale at the 

same rate as that of digital circuits. Therefore, the feature and 

purpose of our approach is digital signal Processing to reduce 

the performance requirements of the analog portion and 

minimize the power consumption of the entire system. 

II. CONVENTIONAL METHOD 

Extracting R-waves with a threshold determination is a 

general approach for IHR detection from ECG. Recently, 

more robust IHR detection approaches have been proposed 

such as using a wavelet transform [11], artificial neural 

networks [12], a root-mean-square threshold determination 

[13], and adaptive filtering [14]. However, these methods 

have a threshold determination Process. Thereby, 

misdetections and false detections increase drastically in 

noisy conditions. 

A wavelet transform with quadratic spline wavelet 

(QSW) has been used in several robust ECG monitoring 

systems [7]. The QSW requires a small amount of calculation 

and hardware cost because it can be implemented using only 

adders and shift operators. Fig. 1 presents frequency 

characteristics of the QSW. The sampling rate is 128 Hz, and 

the pass band is from 10 Hz to 30 Hz. Fig. 2 depicts the ECG 

and well-known noise waveforms. 

Figs. 1 and 2 show that the base-line wander and hum 

noise can be removed easily using QSW or other digital filters. 

However, unfortunately, the frequency range of the muscle 

artifact and electrode motion artifact is similar to the desired 

ECG signals. Consequently, if a subject is not at rest (e.g. 

during exercise) and the SNR is low, it is difficult to extract 

the R-waves. 
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Figure 1.  Frequency characteristics of QSW. 
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Figure 2.  Waveform examples of (a) electrocardiogram with  

(b) baseline wander, (c) hum noise, (d) muscle artifact, 

 (e) electrode motion artifact, and (f) white noise. 
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Figure 3.  Block diagram of the proposed system. 

III. PROPOSED METHOD 

A. System Overview 

We specifically examined an autocorrelation method [15] 

for IHR detection that uses similarity of the QRS complex's 

waveform. Therefore, the autocorrelation is effective for 

noise containing muscle artifacts and electrode motion 

artifacts. 

As shown in Fig. 3, the proposed method comprises three 

components: a QSW filter, a short-time autocorrelation, and 

a window-length controller. The sampling rate of input ECG 

signals is set to 128 Hz, and the output rate of IHR is set to 1 

Hz. 

Previously, autocorrelation was used in a non-invasive 

monitoring system [16]. However, this method requires 

numerous computations because it calculates the average 

heart-rate in a long duration (e.g. 30 s). In contrast, our 

proposed method calculates the short-time autocorrelation to 

obtain accurate IHR with few computations. 

B. Short-time Autocorrelation 

Fig. 4 and Eq. (1) show that the short-time 

autocorrelation is calculated to detect IHR from the output 

signal of QSW filter (x[t]). In Fig. 4, IHR[n] denotes the 

nearest RR interval at time tn, Lwindow denotes the length of a 

search window, tshift denotes the window shift length, and 

toffset[tn] signifies the time length from a nearest R-peak to tn. 

The heart rate of a healthy subject is from 40 bpm to 220 bpm. 

Therefore, the value of tshift is set from 0.273 s to 1.5 s. 
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In eq. (1), C(tshift) denotes the weight constant. To choose 

the recent peak of the correlation coefficient from time tn, C is 

set as presented below. 
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Then, the range of tshift is determined by the maximum 

rate of beat-to-beat variation, which is generally 20% in a 

healthy subject [17]. If we must address larger variation than 

20%, then a longer range of tshift is necessary. 

The time interval of the IHR calculation depends on 

applications, and the total amount of computations is 

inversely proportional to the time interval. For this study, the 

time interval is set to 1 s because the HRV analysis requires 

up to 0.5 Hz frequency components [2]. 
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Figure 4.  Short-time autocorrelation for IHR detection. 
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Figure 5.  Flow chart of the proposed method.  

C. Window-length optimization 

The control parameter Lwindow is updated according to the 

estimated IHR. To obtain the IHR from eq. (1), at least one 

R-wave is included in window 1. However, if the Lwindow is 

adjusted to the minimum length with one R-wave, then the 

computational amount and the accuracy of estimated IHR 

will be improved. 

To realize the adaptive Lwindow optimization, Lwindow must 

be set to longer than the maximum length of toffset [tn]. If the 

IHR[n-1] is smaller than 0.316 s, then three R-waves exist 

between tn-1 and tn at maximum. Consequently, the worst 

case of toffset [tn] is IHR[n-1]  (1.2)3 because the maximum 

beat-to-beat variation is 20%. Similarly, if the IHR[n-1] is 

0.316–0.695 s, then the maximum value of toffset [tn] is 

IHR[n-1]  (1.2)2. If the IHR[n-1] is larger than 0.695 s, then 

toffset [tn] is up to IHR[n-1]  (1.2). Therefore, Lwindow can be 

given as presented below. 
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Fig. 5 shows a flow chart of the proposed method. 

Unfortunately, the computational cost of the proposed 

method is about one hundred times as great as that for general 

threshold methods. However, this method can be 

implemented in the digital domain. We estimate that the 

power consumption of the proposed method is one-tenth that 

of the analog portion, which includes an instrumental 

amplifier, analog filter, and ADC. Furthermore, the power 

consumption of the analog portion will be reduced using the 

proposed method because it has high tolerance for noise. 

Therefore, the total power consumption of the wearable 

monitor can be reduced. 

IV. PERFORMANCE EVALUATION 

To verify the effects of the proposed method, we 

performed simulation experiments using MATLAB. In the 

simulation, the proposed method is compared to the 

threshold-based IHR detection method [6, 13]. 

First, we evaluate the accuracy of estimated IHR and noise 

tolerance using the public ECG database (MIT-BIH 

arrhythmia database [18]) and the noise database (MIT-BIH 

noise stress test database [19]). Fig. 6 shows the relation 

between the intensity of muscle artifact noise and the success 

rate of IHR detection. Here, Conv. 1 shows conventional 

threshold based methods using QSW [11] with RMS [13]. 

The second conventional method (Conv. 2 in Fig. 6) uses a 

derivative-based algorithm [6]. 

The SNR is calculated as shown below. 
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Then, xi denotes the original ECG signal and yi signifies the 

noise applied ECG signal. The xmax, xmin, and N respectively 

denote the maximum value of xi, the minimum value of xi, 

and the data length. 

Table 1 presents simulation results of absolute error, 

relative error, and the success rate (less than 5% relative 

error) with the muscle artifact, electrode motion artifact, and 

white noise. In Table 1, "Mean" is the mean value of the 

absolute errors and "P90" is the spread of errors is computed 

using the 90th percentile of the errors [20]. 

Simulation results show that the proposed method has 

high accuracy despite its use in a noisy condition. From Fig. 6, 

the noise tolerance with the muscle artifact is improved about 

5.6 dB at the 95% success rate compared with the second 

conventional method [6]. 

Next, we evaluate the success rate using a measured ECG 

waveform obtained using a wearable ECG monitoring system 

(WHS-1; Union Tools Co. [21]). Fig. 7 shows the success rate 

comparison in a resting condition and during exercises 

(push-ups, sit-ups, and running). Then, the data length is 30 s 

in each condition. Fig. 8 portrays an example of a measured 

waveform during push-up. The sensor is pasted to the chest. 

Therefore, an intensive myoelectric signal caused by the 

muscle of chest is mixed into the ECG signal. The proposed 

method achieves success rate improvement of up to 37%. 
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Figure 6.  Relation between the muscle artifact noise intensity  

 and the success rate. 
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Figure 7.  Comparison of IHR detection success rate with measured ECG. 

 
Figure 8.  Example of measured ECG waveform during push-up exercise. 

TABLE I.  SIMULATION RESULTS 

Prop. Conv.2 Prop. Conv.2 Prop. Conv.2 Prop. Conv.2 Prop. Conv.2

35 5.3 7.4 7.8 15.6 0.7 0.9 1.1 2.0 98.5 98.4

30 5.5 7.4 7.8 15.6 0.7 0.9 1.1 2.0 98.4 98.4

25 5.5 33.6 7.8 31.3 0.7 4.3 1.1 3.7 98.4 91.8

20 14.0 231 15.6 532 1.8 29.5 2.0 66.1 94.4 48.5

35 4.9 7.4 7.8 15.6 0.6 0.9 1.1 2.0 98.5 98.4

30 5.0 8.4 7.8 15.6 0.6 1.1 1.1 2.0 98.6 98.1

25 5.1 37.6 7.8 39.1 0.6 4.8 1.1 4.8 98.5 90.1

20 17.1 176 23.4 508 2.2 22.7 3.0 65.1 91.6 56.5

35 5.3 7.5 7.8 15.6 0.7 0.9 1.1 2.0 98.4 98.4

30 6.2 508 7.8 555 0.8 64.9 1.1 67.0 98.0 0.0

25 101 508 336 555 12.9 64.9 42.6 67.0 63.3 0.0

20 317 508 477 555 40.4 64.9 60.4 67.0 7.8 0.0

Absolute error [ms] Relative error [%]
Success rate [%]

Mean
SNR

[dB]
Noise

muscle

artifact

electrode

motion

artifact

white

noise

P90 Mean P90

 

V. CONCLUSION 

As described in this paper, we proposed a robust IHR 

detection algorithm using short-time autocorrelation. 

Simulation results show that the proposed method improves 

IHR accuracy despite its use in noisy conditions. The noise 

tolerance with the muscle artifact is improved 5.6 dB at the 

95% success rate. The proposed method can contribute to the 

power and area reduction of the wearable biosignal 

monitoring system because it can be processed digitally. 
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