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ABSTRACT 
 
This paper describes a Histogram of Oriented Gradients 
(HOG) feature extraction processor for HDTV resolution 
video (1920 × 1080 pixels). It features a simplified HOG 
algorithm with cell-based scanning and simultaneous 
Support Vector Machine (SVM) calculation, cell-based 
pipeline architecture, and parallelized modules. To evaluate 
the effectiveness of our approach, the proposed architecture 
is implemented onto a FPGA prototyping board. Results 
show that the proposed architecture can generate HOG 
features and detect objects with 40 MHz for SVGA 
resolution video (800 × 600 pixels) at 72 frames per second 
(fps). The proposed schemes are easily expandable to 
HDTV resolution video at 30 fps with 76.2 MHz if a high-
resolution camera and higher operating frequency are 
available. 
 

Index Terms— HOG, FPGA, VLSI, HDTV 
 

1. INTRODUCTION 
 
Real-time object detection has been a key technology in 
various application domains such as surveillance, 
automotive systems, and robotics. An important algorithm 
used in object detection systems, Histogram of Oriented 
Gradients (HOG) [1], has robustness to change of 
illumination and attains high computational accuracy in 
detection of variously textured objects. 

Recent high-performance general-purpose processors 
can achieve real-time object detection at a heavy 
computational cost. However, the processor requires high 
power consumption and is therefore unsuitable for mobile 
systems under limited battery conditions. Consequently, a 
low-power and high-performance HOG feature extraction 
processor is necessary to widen the range of applications. 

Figure 1 presents the image resolution versus frame 
rate for several published descriptions of HOG hardware. 
Zhang et al. [2] proposed efficient object detection using 
GPGPU. Some FPGA implementations [3], [5], [6], [8], [9] 

and an FPGA-GPU architecture [4] have been proposed for 
real-time applications. Cao et al. [7] realized an FPGA 
implementation with the best performance compared with 
other implementations. However, this study particularly 
targets stop-sign detection. HOG features are adaptable to 
widely various applications. Consequently, next-generation 
HOG feature extraction processors must provide higher 
expandability and higher performance. Therefore, our goal 
is to develop design techniques for a real-time HOG feature 
extraction processor for HDTV resolution video. 
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Fig. 1.  Previous works of HOG feature extraction processor. 
 

Most conventional processors employ a window-based 
approach. For the window-based approach, a workload of 
447.7 GOPS and memory bandwidth of 55 Gbps are 
required for HDTV resolution because of repetitive 
computations. The workload and memory bandwidth are 
greatly reduced by reusing calculated data or adopting 
efficient computation. However, data reuse causes an 
increase of memory capacity and circuit area. Consequently, 
a cooperative design between algorithm and architecture is 
necessary.  

To achieve real-time and low-power HOG feature 
extraction for HDTV resolution video, we propose the 
following three techniques. 

• Simplified HOG algorithm with cell-based scanning 
and simultaneous Support Vector Machine (SVM) 
calculation for workload reduction. 

• Cell-based algorithm and architecture for memory 
bandwidth reduction. 
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• Parallelized architectures for cell histogram 
generation, histogram normalization, and SVM 
classification to reduce the necessary cycle count. 

As described in this paper, details of the simplified 
HOG algorithm are described in Section 2. The proposed 
architecture is addressed in Section 3. Then, these are 
followed by FPGA implementation in Section 4. Section 5 
concludes this paper. 
 

2. ALGORITHM 
 
2.1. Original HOG Algorithm 
 
Figure 2 portrays a flow diagram of object detection using 
the original HOG algorithm [1]. Scanning on the input 
image is based on detection window. The window is 
divided into cells, for each cell accumulating a histogram of 
gradient orientations over the pixels of the cell. For better 
invariance to illumination, histogram normalization can be 
done by accumulating a measure of the local histogram 
energy over blocks and using the results to normalize all 
cells in the block. The normalized histograms (HOG 
features) are collected over the detection window. The 
collected features are fed to a linear SVM for object/non-
object classification. 
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Fig. 2.  Original HOG algorithm flow. 

 
2.2. Simplified HOG Algorithm for Hardware 
Implementation 
 
A simplified HOG algorithm for VLSI implementation is 
introduced in this subsection. Figure 3 shows a flow 
diagram of object detection using simplified HOG 
algorithm. This flow is modified from the original flow 
using the following five techniques. 
1. Cell-based scanning (Section 2.3) 
2. Gradient calculation using CORDIC [10] 
3. Approximation of weighted voting for spatial and 
orientation anti-aliasing 
4. Newton method with approximated initial value 
5. Simultaneous SVM calculation (Section 2.4) 
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Fig. 3.  Simplified HOG algorithm flow. 

Figure 4 portrays the workload analysis of HOG-based 
object detection. Simplified HOG algorithm with cell-based 
scanning and simultaneous SVM calculation reduces the 
workload to 10.6 GOPS, as portrayed in Fig. 4. However, 
the workload of 10.6 GOPS is still heavy for a processor 
with low operating frequency. To accommodate the 
workload in real time, our architecture has parallelized 
modules for cell histogram generation, histogram 
normalization, and SVM classification. 
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Fig. 4.  Workload analysis. 

 
2.3. Cell-based Scanning Method 
 
Object detection with the HOG feature is executed by the 
scanning detection window on an input image, as presented 
in Fig. 5 left. The detection window size is compliant with 
original algorithm [1]. When one window is finished, the 
next window is scanned using an offset of 1 cell. The 
memory bandwidth is increased by reloading input pixels 
for the next window. Consequently, extensive data reuse is 
desirable for memory bandwidth reduction. 

Figure 5 right shows cell-based scanning approach. 
HOG feature is extracted from cell-based calculations. No 
cell overlaps with other cells. Consequently, sharing and 
reuse of a cell have a great impact on memory bandwidth 
reduction. 
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Fig. 5.  Image scanning methods. 

 
2.4. Simultaneous SVM Calculation 
 
In the window-based approach, HOG features of 105 blocks 
are collected. Then the features are multiplied by SVM 
coefficients corresponding to one window. However, the 
cell-based approach provides partial HOG features after 
normalization for one block; then the features are 
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multiplied by SVM coefficients corresponding to 105 
windows. 

Figure 6 presents simultaneous SVM calculations for 
cell-based processing. Partial HOG feature belongs to 105 
windows maximally and are located at different positions in 
each window. Partial HOG features are multiplied and 
accumulated by the SVM coefficients of each window. The 
accumulation result is stored and reused in the subsequent 
SVM calculation. Simultaneous SVM calculation is suitable 
for parallel computing in hardware. 
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Fig. 6.  Simultaneous SVM classification. 

 
2.5. Parameter Optimization 
 
Figure 7 shows parameters of each process in object 
detection using HOG features. In general, a software 
implementation employs floating-point calculations to 
provide high accuracy. However, the floating-point unit 
uses hardware resources to a great degree. Therefore, fixed-
point operation is often used for hardware implementation. 
The accuracy of fixed-point operation depends on the bit 
width itself, although the bit width affects the memory 
capacity and the circuit area. Optimized parameters provide 
reasonable classification accuracy and minimize hardware 
costs. Table 1 presents the results of parameter adjustment. 
 

Gradient Magnitude 
& Orientation

Orientation Histogram L2-norm Weight Vector

Normalization divisor Classification Result

Input Image

Scan Image &
Compute Gradients

Orientation Histogram 
Generation

Histogram 
Normalization

Linear SVM 
Classification

Classification 
Results

HOG feature

 
Fig. 7.  HOG algorithm parameters. 

 
Table 1.  Optimized bit width 

Sign Integer Fractional
Gradient magnitude 1 9 0
Gradient orientation 1 3 3
Orientation histogram 0 11 0
1st L2-norm 0 25 0
1st normalization divisor 0 0 11
2nd L2-norm 0 0 14
2nd normalization divisor 0 3 7
HOG feature 0 0 4
SVM coefficient 1 3 7
Classification buffer 1 4 8

Parameter
Bit width [bit]

 

2.6. Simulation Results 
 
A simulation was conducted using software for object 
detection to estimate performance and accuracy degradation 
by the simplified algorithm. The software was produced 
using Microsoft Visual C++ 2008 Express Edition 
(Microsoft Corp.) with the INRIA Person Dataset [11], 
which includes several people in various backgrounds. 
Figure 8 presents a graph of false positives per window 
(FPPW) versus the miss rate. The simulation results with 
the simplified algorithm and the optimized bit width show 
that the miss rate degradation is 3% at 0.0001 FPPW. The 
algorithm that was used provides sufficient performance for 
general-purpose applications. 
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Fig. 8.  Accuracy degradation by the simplified algorithm. 

 
3. ARCHITECTURE 

 
3.1. Cell-based Pipeline Architecture 
 
Figure 9 depicts a block diagram of the cell-based pipeline 
architecture and external peripherals for a demonstration 
system detailed in Section 4. The proposed architecture 
comprises a controller, a cell histogram generation module, 
a histogram normalization module, an SVM classification 
module, SRAMs for several image data, a CPU interface, 
and a memory interface. The HOG feature extraction 
processor is controlled by an external CPU, and the input 
grayscale image is loaded to a cell-line buffer from an 
external SRAM via a memory interface. The CPU receives 
a detection result from HOG feature extraction processor; 
then it draws the result on an LCD display. 
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Fig. 9.  HOG feature extraction architecture. 

 
Our architecture adopts a cell-based pipeline flow, as 

presented in Fig. 10. Figure 10 above shows a relation 
between cells, blocks, windows, and a frame. One cell 
contains 8 × 8 pixels. One block is composed of 2 × 2 cells. 
One window is made up of 7 × 15 blocks. Each block 
overlaps with neighboring blocks. Cell-based pipeline 
processing is conducted as follows: 

1.  A cell histogram is generated with cell-based 
scanning. 

2. When the process described above reaches the block 
level, a block-level cell histogram is normalized; 
then the block-level HOG feature is extracted. 

3. Block-level HOG features and SVM coefficients 
corresponding to each window are multiplied and 
accumulated. 

4. An accumulation result of window level is compared 
with the SVM threshold. Then the detection result is 
obtained. 

The cell-based pipeline architecture greatly reduces the 
memory bandwidth because it prevents reloading of input 
pixels in different detection windows. 
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Fig. 10.  Cell-based pipeline flow. 

 
Figure 11 portrays the memory bandwidth analysis of 

HOG-based object detection. The window-based approach 

for HDTV resolution requires memory bandwidth of 55 
Gbps. In general, the mobile system under limited battery 
conditions adopts a lower operating frequency. Therefore, 
the memory bandwidth must be reduced as low as possible 
for low-power and real-time operation. Our approach 
adopts a cell-based algorithm and architecture to reduce the 
memory bandwidth to 0.499 Gbps.  
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Fig. 11.  Memory bandwidth analysis. 

 
3.2. Cell Histogram Generation 
 
In cell histogram generation, a magnitude and an 
orientation of a pixel gradient are calculated; then a 
weighted magnitude is voted into a bin corresponding to its 
orientation. Figure 12 presents the architecture for cell 
histogram generation. Four-way architecture is adopted 
because one cell is commonly used for four blocks 
maximally. One processing element (PE) executes weighted 
voting and binning to generate a histogram of one cell. 
Spatial anti-aliasing is conducted in four processing 
elements corresponding to one block. 
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Fig. 12.  Block diagram and processing flow of cell 

histogram generation. 
 
3.3. Histogram Normalization 
 
Figure 13 shows the architecture for histogram 
normalization. The architecture consists of two stages to 
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implement L2-Hys normalization [12]. The first stage 
includes four Cell MAC modules, an approximation 
module, a Newton method module, and a threshold module. 
The second stage comprises four Cell MAC modules and a 
Newton method module. 

In the first stage, Cell MAC modules first calculate the 
sum of squares of input cell histogram. Secondly, an initial 
value for Newton method is approximated to bit shift 
operation. Thirdly, Newton method calculates an inverse 
number of square roots. Furthermore, then Cell MAC 
modules normalize a cell histogram. Finally, a normalized 
cell histogram is compared with a threshold and outputted 
to the second stage. 

In the second stage, the sum of squares and an inverse 
number of square roots is calculated as in the first stage. 
Furthermore, then Cell MAC modules normalize a cell 
histogram and extract 36-dimension HOG features. 
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Fig. 13.  Block diagram of histogram normalization. 

 
3.4. SVM Classification 
 
In SVM classification, extracted features and SVM 
coefficients are multiplied and accumulated until the 
operations reach window level. Then the accumulation 
result is compared with an SVM threshold to judge whether 
the window includes a target object. Figure 14 shows a 
block diagram for simultaneous SVM classification. This 
architecture includes 15 classification cores. One 
classification core manages MAC operations of 7 blocks. 
Consequently, the architecture is able to handle 105 blocks 
corresponding to one detection window. Sufficient 
parallelism reduces the required cycle count to manage the 
workload of 10.6 GOPS. 
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Fig. 14.  Block diagram of SVM classification module. 

 
3.5. Performance Evaluation 
 
The number of cycle counts was estimated using a Verilog-
HDL simulator. The proposed architecture was compared 
with architecture without parallelization and without a 
pipeline. Estimation results are presented in Fig. 15, which 
demonstrates the superiority of the proposed architecture 
for HDTV resolution. The parallelization in the cell 
histogram generation and histogram normalization 
contributes to reduction of the cycle counts. Introduction of 
the proposed simultaneous SVM calculation architecture 
enables the reuse of intermediate results, allowing the cycle 
count reduction. Results show that the number of cycle 
counts in cell histogram generation, histogram 
normalization, and SVM classification are reduced by 85%, 
65%, and 99%, respectively, compared with the number of 
cycle counts of architecture without parallelization and 
without pipeline. In the proposed architecture, the overall 
process requires 2.54 × 106 cycles per frame. Therefore, it 
is inferred that the proposed architecture can accommodate 
HDTV resolution video at 30 fps with 76.2 MHz. 
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Fig. 15.  Reduction of cycle count. 

 
4. FPGA IMPLEMENTATION 

 
To evaluate the effectiveness of our approach, we 
implemented the proposed architecture onto a prototyping 
board (tPad Multimedia Development Kit; Terasic 
Technologies Inc.). The board has DE2-115 with Cyclone 
IV EP4CE115 (Altera Corp.), a 5-megapixel digital image 
sensor module, and an 8-inch LCD touch screen module. 
Figure 16 portrays a demonstration system of real-time 
object detection to verify the proposed technique. 
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Resource utilization and comparison to conventional 
FPGA implementations are presented in Table 2. Our 
FPGA implementation can generate HOG features and 
detect objects with 40 MHz for SVGA resolution video at 
72 fps. The FPGA resource utilizations are as follows: 
34,403 LEs, 68 embedded multipliers, and 0.34 Mbit block 
RAMs. Our implementation shows the best performance 
with minimum memory usage and minimum operating 
frequency. If a high-resolution camera, 0.63 Mbit block 
RAMs, and the operating frequency of 76.2 MHz are 
available, then the proposed schemes are readily 
expandable to HDTV resolution video at 30 fps. 
 

5-megapixel camera
8-inch LCD touch screen

Detection window

 
Fig. 16.  Architecture verification by FPGA implementation. 
 

Table 2.  Resource utilization 
[3] [5] [6] [7] [8] [9]

FPGA Spartan 3 Virtex-5 Stratix II Virtex-4 Cyclone III Virtex-5
# of LUTs 42,435 28,495 37,940 8,921 34,838 17,383
# of registers N/A 5,980 66,990 4,221 22,612 2,181
# of DSP blocks 18 2 120 3 N/A N/A
Working memory (Mbits) 1.08 2.196 N/A 1.584 2.094 1.296 0.34 0.63
Resolution 800×600 320×240 640×480 752×480 640×480 640×480 800×600 1920×1080
Frame rate (fps) 20 38 30 60 20 62.5 72 30
Operating frequency (MHz) 63 167 127.49 N/A 70 44.85 40 76.2
Image scanning method
in HOG feature extraction

Cell-based

Image scanning method
in classification

Window-based
Cell-based

Window-based

Ours

34,403
Cyclone IV

23,247
68

 
 

5. CONCLUSION 
 
This paper presents a proposal of a novel architecture of 
real-time HOG feature extraction for HDTV resolution 
video. The proposed scheme has a simplified HOG 
algorithm with cell-based scanning, simultaneous SVM 
calculation, cell-based pipeline architecture, and 
parallelized modules. The simplified algorithm contributes 
to reduction of the workload from 447.7 GOPS to 10.6 
GOPS with 3% accuracy degradation. The cell-based 
algorithm and pipeline architecture provide memory 
bandwidth of 0.499 Gbps at HDTV resolution. The memory 
bandwidth of 0.499 Gbps can be handled by a 32-bit 
memory bus with reasonably low operating frequency. 
Parallelized modules greatly accelerate HOG feature 
extraction and object detection. The proposed architecture 
on FPGA prototyping board shows the best performance 
with minimum memory usage and minimum operating 
frequency, compared with the performance of conventional 
processors. The proposed schemes provide expandability to 
HDTV resolution video (1920 × 1080 pixels) at 30 fps at 
76.2 MHz. 
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