
ARCHITECTURAL STUDY OF HOG FEATURE EXTRACTION PROCESSOR
FOR REAL-TIME OBJECT DETECTION

Kosuke Mizuno1, Yosuke Terachi1, Kenta Takagi1,

Shintaro Izumi1, Hiroshi Kawaguchi1 and Masahiko Yoshimoto1,2

1 Department of Information Science, Kobe University,
1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo 657-8501, Japan

2 JST CREST, Japan

ABSTRACT

This paper describes a Histogram of Oriented Gradients
(HOG) feature extraction processor for HDTV resolution
video (1920 × 1080 pixels). It features a simplified HOG
algorithm with cell-based scanning and simultaneous
Support Vector Machine (SVM) calculation, cell-based
pipeline architecture, and parallelized modules. To evaluate
the effectiveness of our approach, the proposed architecture
is implemented onto a FPGA prototyping board. Results
show that the proposed architecture can generate HOG
features and detect objects with 40 MHz for SVGA
resolution video (800 × 600 pixels) at 72 frames per second
(fps). The proposed schemes are easily expandable to
HDTV resolution video at 30 fps with 76.2 MHz if a high-
resolution camera and higher operating frequency are
available.

Index Terms— HOG, FPGA, VLSI, HDTV

1. INTRODUCTION

Real-time object detection has been a key technology in
various application domains such as surveillance,
automotive systems, and robotics. An important algorithm
used in object detection systems, Histogram of Oriented
Gradients (HOG) [1], has robustness to change of
illumination and attains high computational accuracy in
detection of variously textured objects.

Recent high-performance general-purpose processors
can achieve real-time object detection at a heavy
computational cost. However, the processor requires high
power consumption and is therefore unsuitable for mobile
systems under limited battery conditions. Consequently, a
low-power and high-performance HOG feature extraction
processor is necessary to widen the range of applications.

Figure 1 presents the image resolution versus frame
rate for several published descriptions of HOG hardware.
Zhang et al. [2] proposed efficient object detection using
GPGPU. Some FPGA implementations [3], [5], [6], [8], [9]

and an FPGA-GPU architecture [4] have been proposed for
real-time applications. Cao et al. [7] realized an FPGA
implementation with the best performance compared with
other implementations. However, this study particularly
targets stop-sign detection. HOG features are adaptable to
widely various applications. Consequently, next-generation
HOG feature extraction processors must provide higher
expandability and higher performance. Therefore, our goal
is to develop design techniques for a real-time HOG feature
extraction processor for HDTV resolution video.

0

10

20

30

40

50

60

70

QVGA VGA SVGA HDTV

Our target

Fr
am

e
R

at
e

[f
ps

]

Image resolution

[5] H. Hiromoto (2009)

[2] Li. Zhang (2008)

[6] R. Kadota (2009)

[8] Y.Yazawa (2011) [3] S.Bauer (2009)

[4] S.Bauer (2010)

(320x240) (640x480) (800x600) (1920x1080)

[7] T. P. Cao (2008)

[9] K. Negi (2011)

Fig. 1. Previous works of HOG feature extraction processor.

Most conventional processors employ a window-based
approach. For the window-based approach, a workload of
447.7 GOPS and memory bandwidth of 55 Gbps are
required for HDTV resolution because of repetitive
computations. The workload and memory bandwidth are
greatly reduced by reusing calculated data or adopting
efficient computation. However, data reuse causes an
increase of memory capacity and circuit area. Consequently,
a cooperative design between algorithm and architecture is
necessary.

To achieve real-time and low-power HOG feature
extraction for HDTV resolution video, we propose the
following three techniques.

• Simplified HOG algorithm with cell-based scanning
and simultaneous Support Vector Machine (SVM)
calculation for workload reduction.

• Cell-based algorithm and architecture for memory
bandwidth reduction.

2012 IEEE Workshop on Signal Processing Systems

978-0-7695-4856-2/12 $26.00 © 2012 IEEE

DOI 10.1109/SiPS.2012.57

197

• Parallelized architectures for cell histogram
generation, histogram normalization, and SVM
classification to reduce the necessary cycle count.

As described in this paper, details of the simplified
HOG algorithm are described in Section 2. The proposed
architecture is addressed in Section 3. Then, these are
followed by FPGA implementation in Section 4. Section 5
concludes this paper.

2. ALGORITHM

2.1. Original HOG Algorithm

Figure 2 portrays a flow diagram of object detection using
the original HOG algorithm [1]. Scanning on the input
image is based on detection window. The window is
divided into cells, for each cell accumulating a histogram of
gradient orientations over the pixels of the cell. For better
invariance to illumination, histogram normalization can be
done by accumulating a measure of the local histogram
energy over blocks and using the results to normalize all
cells in the block. The normalized histograms (HOG
features) are collected over the detection window. The
collected features are fed to a linear SVM for object/non-
object classification.

Input Image

Image Scanning &
Gradient Calculation

Cell
Histogram
Generation

Histogram
Normalization

Linear SVM
Classification

Classification
Results

Scan next detection window

Collect HOG feature over detection window

Fig. 2. Original HOG algorithm flow.

2.2. Simplified HOG Algorithm for Hardware
Implementation

A simplified HOG algorithm for VLSI implementation is
introduced in this subsection. Figure 3 shows a flow
diagram of object detection using simplified HOG
algorithm. This flow is modified from the original flow
using the following five techniques.
1. Cell-based scanning (Section 2.3)
2. Gradient calculation using CORDIC [10]
3. Approximation of weighted voting for spatial and
orientation anti-aliasing
4. Newton method with approximated initial value
5. Simultaneous SVM calculation (Section 2.4)

Input Image

Image Scanning &
Gradient Calculation

Orientation Histogram
Generation

Histogram
Normalization

Linear SVM
Classification

Classification
Results

Cell-based scanning
(Section 2.3)
Gradient calculation
using CORDIC

Approximation of
weighted voting for
spatial & orientation
anti-aliasing

Newton method
with approximated
initial value

Simultaneous
SVM calculation
(Section 2.4)

Parameter optimization (Section 2.5)
Fig. 3. Simplified HOG algorithm flow.

Figure 4 portrays the workload analysis of HOG-based
object detection. Simplified HOG algorithm with cell-based
scanning and simultaneous SVM calculation reduces the
workload to 10.6 GOPS, as portrayed in Fig. 4. However,
the workload of 10.6 GOPS is still heavy for a processor
with low operating frequency. To accommodate the
workload in real time, our architecture has parallelized
modules for cell histogram generation, histogram
normalization, and SVM classification.

W
or

kl
oa

d
[G

O
PS

]

100

200

300

400

500

52.6

447.7

0

Detection window-based
approach

Our
approach

HDTV
(1920x1080)

HDTV
(1920x1080)

VGA
(640x480)

10.6

Workload reduction by
the simplified algorithm

Gradient calc. + Magnitude & Orientation calc. + Histogram generation
+ Histogram normalization + Classification
= 0.12 + (2.11 + 1.43) + 0.25 + 0.33 + 6.34
= 10.6 [GOPs]

Our approach

Detection window-based approach
Gradient calc. + Magnitude & Orientation calc. + Histogram generation
+ Histogram normalization + Classification
= 13.7 + (233 + 158) + 5.6 + 30.3 + 6.34
= 447.7 [GOPs]

Fig. 4. Workload analysis.

2.3. Cell-based Scanning Method

Object detection with the HOG feature is executed by the
scanning detection window on an input image, as presented
in Fig. 5 left. The detection window size is compliant with
original algorithm [1]. When one window is finished, the
next window is scanned using an offset of 1 cell. The
memory bandwidth is increased by reloading input pixels
for the next window. Consequently, extensive data reuse is
desirable for memory bandwidth reduction.

Figure 5 right shows cell-based scanning approach.
HOG feature is extracted from cell-based calculations. No
cell overlaps with other cells. Consequently, sharing and
reuse of a cell have a great impact on memory bandwidth
reduction.

Detection Window
(64 × 128 pixels)

Raster Scan

Input Image

Window-based scanning

Cell

No cell
overlaps

Input ImageCell (8 × 8 pixels)

Block
(2 × 2 cells)

Cell 1

Cell-based scanning

Cell 2

Overlap
scanning

Window 1
Window 2

. . .

. . .

Fig. 5. Image scanning methods.

2.4. Simultaneous SVM Calculation

In the window-based approach, HOG features of 105 blocks
are collected. Then the features are multiplied by SVM
coefficients corresponding to one window. However, the
cell-based approach provides partial HOG features after
normalization for one block; then the features are

198

multiplied by SVM coefficients corresponding to 105
windows.

Figure 6 presents simultaneous SVM calculations for
cell-based processing. Partial HOG feature belongs to 105
windows maximally and are located at different positions in
each window. Partial HOG features are multiplied and
accumulated by the SVM coefficients of each window. The
accumulation result is stored and reused in the subsequent
SVM calculation. Simultaneous SVM calculation is suitable
for parallel computing in hardware.

SVM
Weight 7

(Window 7)

SVM
Weight 98

(Window 98)

SVM Weight 0
(Window 0)

SVM Weight 1
(Window 1)

SVM Weight 6
(Window 6)

SVM Weight
104

(Window 104)

a Normalized
Block

Window B

Window A

Mth feature for
Window B

Nth feature for
Window A

Partial
HOG

feature

7 blocks

15 blocks

Partial
HOG

feature

. . .

Fig. 6. Simultaneous SVM classification.

2.5. Parameter Optimization

Figure 7 shows parameters of each process in object
detection using HOG features. In general, a software
implementation employs floating-point calculations to
provide high accuracy. However, the floating-point unit
uses hardware resources to a great degree. Therefore, fixed-
point operation is often used for hardware implementation.
The accuracy of fixed-point operation depends on the bit
width itself, although the bit width affects the memory
capacity and the circuit area. Optimized parameters provide
reasonable classification accuracy and minimize hardware
costs. Table 1 presents the results of parameter adjustment.

Gradient Magnitude
& Orientation

Orientation Histogram L2-norm Weight Vector

Normalization divisor Classification Result

Input Image

Scan Image &
Compute Gradients

Orientation Histogram
Generation

Histogram
Normalization

Linear SVM
Classification

Classification
Results

HOG feature

Fig. 7. HOG algorithm parameters.

Table 1. Optimized bit width

Sign Integer Fractional
Gradient magnitude 1 9 0
Gradient orientation 1 3 3
Orientation histogram 0 11 0
1st L2-norm 0 25 0
1st normalization divisor 0 0 11
2nd L2-norm 0 0 14
2nd normalization divisor 0 3 7
HOG feature 0 0 4
SVM coefficient 1 3 7
Classification buffer 1 4 8

Parameter
Bit width [bit]

2.6. Simulation Results

A simulation was conducted using software for object
detection to estimate performance and accuracy degradation
by the simplified algorithm. The software was produced
using Microsoft Visual C++ 2008 Express Edition
(Microsoft Corp.) with the INRIA Person Dataset [11],
which includes several people in various backgrounds.
Figure 8 presents a graph of false positives per window
(FPPW) versus the miss rate. The simulation results with
the simplified algorithm and the optimized bit width show
that the miss rate degradation is 3% at 0.0001 FPPW. The
algorithm that was used provides sufficient performance for
general-purpose applications.

0.0001

0.001

0.01

0.1

1

0.00001 0.0001 0.001 0.01 0.1 1

M
is

s R
at

e

FPPW

Simplified algorithm
Original

Better

of test samples : 12457
 (positive : 1132, negative : 11325)

Fig. 8. Accuracy degradation by the simplified algorithm.

3. ARCHITECTURE

3.1. Cell-based Pipeline Architecture

Figure 9 depicts a block diagram of the cell-based pipeline
architecture and external peripherals for a demonstration
system detailed in Section 4. The proposed architecture
comprises a controller, a cell histogram generation module,
a histogram normalization module, an SVM classification
module, SRAMs for several image data, a CPU interface,
and a memory interface. The HOG feature extraction
processor is controlled by an external CPU, and the input
grayscale image is loaded to a cell-line buffer from an
external SRAM via a memory interface. The CPU receives
a detection result from HOG feature extraction processor;
then it draws the result on an LCD display.

199

32bit

Cell histogram
generation

Controller

SRAM for intermediate
cell histogram

Cell line buffer

MEMORY I/FCPU
I/F

 MEMORY BUS

 CPU BUS
32bit

Camera

External
SDRAM Input image

Histogram
normalization

SVM
classification

SRAM for
intermediate results

HOG feature extraction processor

CPU

SRAM for SVM
coefficients

LCD display

SDRAM
controller LCD controller Grayscale

conversion

SRAM controller

External
SRAM Gray image

Detection-window
drawing module

Detection result
Detection-window annotated frame

Input image Cell histogram HOG features

Classification
result

Detection resultSt
ar

t s
ig

na
l

Control signal Control signal Control signal

Input image

Detection result

Control signal

Fig. 9. HOG feature extraction architecture.

Our architecture adopts a cell-based pipeline flow, as

presented in Fig. 10. Figure 10 above shows a relation
between cells, blocks, windows, and a frame. One cell
contains 8 × 8 pixels. One block is composed of 2 × 2 cells.
One window is made up of 7 × 15 blocks. Each block
overlaps with neighboring blocks. Cell-based pipeline
processing is conducted as follows:

1. A cell histogram is generated with cell-based
scanning.

2. When the process described above reaches the block
level, a block-level cell histogram is normalized;
then the block-level HOG feature is extracted.

3. Block-level HOG features and SVM coefficients
corresponding to each window are multiplied and
accumulated.

4. An accumulation result of window level is compared
with the SVM threshold. Then the detection result is
obtained.

The cell-based pipeline architecture greatly reduces the
memory bandwidth because it prevents reloading of input
pixels in different detection windows.

Block 0

Cell
0

Cell
1

Cell
2

Cell
7

. . .
Cell
240

Cell
241

Cell
242

Cell
480

Cell
481

Cell
482

Cell
247
Cell
487

Cell
3600

Cell
3601

Cell
3602

Cell
3607

Window 0Block 1

Cell
239

Cell
32160

Cell
32399

Frame (1920 × 1080 pixels)

1920 pixels

10
80

 p
ix

el
s

Window 232Block
238

.
.

.

. . .

.

Block 0

Cell Cell Cell

Cell Cell of
interest Cell

Cell Cell Cell

Block 1

Block 2 Block 3

Cell
3609
Block
3353
Block
3352

Cell histogram generation

Histogram normalization

SVM classification

Result output

Time

Cell
0

Cell
1

Cell
241

Cell
242

Block
0

Cell
243

Cell
244

Block
1

Block
2

Block
0

Block
1

Block
3351

Cell
3608

Cell
3610

Cell
3611

Block
3352

Block
3354

Block
3355

Block
3351

Block
3353

Block
3354

Window
0

Window
1

Cell
3607

.

. . .

. . .
. . .

Fig. 10. Cell-based pipeline flow.

Figure 11 portrays the memory bandwidth analysis of

HOG-based object detection. The window-based approach

for HDTV resolution requires memory bandwidth of 55
Gbps. In general, the mobile system under limited battery
conditions adopts a lower operating frequency. Therefore,
the memory bandwidth must be reduced as low as possible
for low-power and real-time operation. Our approach
adopts a cell-based algorithm and architecture to reduce the
memory bandwidth to 0.499 Gbps.

0

55

10

20

30

40

50

60

M
em

or
y

ba
nd

w
id

th
 [G

bp
s]

6.5

Detection window-based
approach

Our
approach

HDTV
(1920x1080)

HDTV
(1920x1080)

VGA
(640x480)

0.499 Buffer size × # of lines (Image height) × Color depth × fps
= ((1920+2) × (1080+2))× 8 × 30
= 0.499 [Gbps]

Our approach

of Windows/frame × Window size × Color depth × fps
= 27960 × (64 × 128) × 8 ×30
= 55 [Gbps]

Detection window-based approach

Fig. 11. Memory bandwidth analysis.

3.2. Cell Histogram Generation

In cell histogram generation, a magnitude and an
orientation of a pixel gradient are calculated; then a
weighted magnitude is voted into a bin corresponding to its
orientation. Figure 12 presents the architecture for cell
histogram generation. Four-way architecture is adopted
because one cell is commonly used for four blocks
maximally. One processing element (PE) executes weighted
voting and binning to generate a histogram of one cell.
Spatial anti-aliasing is conducted in four processing
elements corresponding to one block.

REG

ADD

SHIFTER

Magnitude

REG

ADD

REG

ADD

Bin 0 Bin 1 Bin 8

Cell histogram
Concatenate

Weighted magnitude
Weighted voting

. . .

PE
PE

PE
PE

2-way orientation anti-aliasing

2-way gradient calculation

2-way CORDIC

Four cell histogram
 generation

(B
lock 0)

Controller

PE
PE

PE
PE

Four cell histogram
 generation

(B
lock 1)

Initial value = 0

Initial loadDataflow

Cell line buffer

PE
PE

PE
PE
Four cell histogram

 generation
(B

lock 2)

PE
PE

PE
PE

Four cell histogram
 generation

(B
lock 3)

SRAM for intermediate cell histogram

Fig. 12. Block diagram and processing flow of cell

histogram generation.

3.3. Histogram Normalization

Figure 13 shows the architecture for histogram
normalization. The architecture consists of two stages to

200

implement L2-Hys normalization [12]. The first stage
includes four Cell MAC modules, an approximation
module, a Newton method module, and a threshold module.
The second stage comprises four Cell MAC modules and a
Newton method module.

In the first stage, Cell MAC modules first calculate the
sum of squares of input cell histogram. Secondly, an initial
value for Newton method is approximated to bit shift
operation. Thirdly, Newton method calculates an inverse
number of square roots. Furthermore, then Cell MAC
modules normalize a cell histogram. Finally, a normalized
cell histogram is compared with a threshold and outputted
to the second stage.

In the second stage, the sum of squares and an inverse
number of square roots is calculated as in the first stage.
Furthermore, then Cell MAC modules normalize a cell
histogram and extract 36-dimension HOG features.

LI
N

E_
B

U
FF

ER

MUX

REG

REG

MUX

Normalize
coefficient

ADD

MUL

REG

Cell
histogram

Cell MAC

Cell histogram
generation

36-dimension cell histogram

Cell MAC Cell MAC Cell MAC Cell MAC

Approximation to
shift operationThreshold (0.2)

Newton method
(Three times iterations)

Cell MAC Cell MAC Cell MAC Cell MAC

Newton method
(Four times iterations)

SVM
classification

First stage

Second stage

36-dimension HOG feature

Concatenate

Normalize coefficient

12
 c

yc
le

s
4

cy
cl

es

Normalize coefficient

17
 c

yc
le

s

Fig. 13. Block diagram of histogram normalization.

3.4. SVM Classification

In SVM classification, extracted features and SVM
coefficients are multiplied and accumulated until the
operations reach window level. Then the accumulation
result is compared with an SVM threshold to judge whether
the window includes a target object. Figure 14 shows a
block diagram for simultaneous SVM classification. This
architecture includes 15 classification cores. One
classification core manages MAC operations of 7 blocks.
Consequently, the architecture is able to handle 105 blocks
corresponding to one detection window. Sufficient
parallelism reduces the required cycle count to manage the
workload of 10.6 GOPS.

COMPARATOR

Classification result

Controller

C
la

ss
ifi

ca
tio

n
co

re
 0

C
la

ss
ifi

ca
tio

n
co

re
 1

C
la

ss
ifi

ca
tio

n
co

re
 1

3

C
la

ss
ifi

ca
tio

n
co

re
 1

4

In
iti

al
 v

al
ue

 =
 0

HOG feature MAC (98th SVM
coefficients)

MAC (99th SVM
coefficients)

Intermediate result

98th coefficients

Intermediate result
from neighbor MAC

HOG feature
99th coefficients

MAC (104th
SVM coefficients)

Intermediate result
from neighbor MAC

HOG feature
104th coefficients

MAC result corresponding
to one detection window

Classification core

SRAM for SVM
coefficients

SRAM for intermediate results

.

HOG feature

Fig. 14. Block diagram of SVM classification module.

3.5. Performance Evaluation

The number of cycle counts was estimated using a Verilog-
HDL simulator. The proposed architecture was compared
with architecture without parallelization and without a
pipeline. Estimation results are presented in Fig. 15, which
demonstrates the superiority of the proposed architecture
for HDTV resolution. The parallelization in the cell
histogram generation and histogram normalization
contributes to reduction of the cycle counts. Introduction of
the proposed simultaneous SVM calculation architecture
enables the reuse of intermediate results, allowing the cycle
count reduction. Results show that the number of cycle
counts in cell histogram generation, histogram
normalization, and SVM classification are reduced by 85%,
65%, and 99%, respectively, compared with the number of
cycle counts of architecture without parallelization and
without pipeline. In the proposed architecture, the overall
process requires 2.54 × 106 cycles per frame. Therefore, it
is inferred that the proposed architecture can accommodate
HDTV resolution video at 30 fps with 76.2 MHz.

1055 10

Architecture
w/o parallelization
and w/o pipeline

Proposed
architecture

8.8
7.1

107

1.30
2.47

1.02

Cell histogram generation
Histogram normalization
SVM classification

of cycle counts / frame [106 cycles / frame]

Overall process

120

122.9

110

2.54

Image resolution : HDTV

Fig. 15. Reduction of cycle count.

4. FPGA IMPLEMENTATION

To evaluate the effectiveness of our approach, we
implemented the proposed architecture onto a prototyping
board (tPad Multimedia Development Kit; Terasic
Technologies Inc.). The board has DE2-115 with Cyclone
IV EP4CE115 (Altera Corp.), a 5-megapixel digital image
sensor module, and an 8-inch LCD touch screen module.
Figure 16 portrays a demonstration system of real-time
object detection to verify the proposed technique.

201

Resource utilization and comparison to conventional
FPGA implementations are presented in Table 2. Our
FPGA implementation can generate HOG features and
detect objects with 40 MHz for SVGA resolution video at
72 fps. The FPGA resource utilizations are as follows:
34,403 LEs, 68 embedded multipliers, and 0.34 Mbit block
RAMs. Our implementation shows the best performance
with minimum memory usage and minimum operating
frequency. If a high-resolution camera, 0.63 Mbit block
RAMs, and the operating frequency of 76.2 MHz are
available, then the proposed schemes are readily
expandable to HDTV resolution video at 30 fps.

5-megapixel camera
8-inch LCD touch screen

Detection window

Fig. 16. Architecture verification by FPGA implementation.

Table 2. Resource utilization
[3] [5] [6] [7] [8] [9]

FPGA Spartan 3 Virtex-5 Stratix II Virtex-4 Cyclone III Virtex-5
of LUTs 42,435 28,495 37,940 8,921 34,838 17,383
of registers N/A 5,980 66,990 4,221 22,612 2,181
of DSP blocks 18 2 120 3 N/A N/A
Working memory (Mbits) 1.08 2.196 N/A 1.584 2.094 1.296 0.34 0.63
Resolution 800×600 320×240 640×480 752×480 640×480 640×480 800×600 1920×1080
Frame rate (fps) 20 38 30 60 20 62.5 72 30
Operating frequency (MHz) 63 167 127.49 N/A 70 44.85 40 76.2
Image scanning method
in HOG feature extraction

Cell-based

Image scanning method
in classification

Window-based
Cell-based

Window-based

Ours

34,403
Cyclone IV

23,247
68

5. CONCLUSION

This paper presents a proposal of a novel architecture of
real-time HOG feature extraction for HDTV resolution
video. The proposed scheme has a simplified HOG
algorithm with cell-based scanning, simultaneous SVM
calculation, cell-based pipeline architecture, and
parallelized modules. The simplified algorithm contributes
to reduction of the workload from 447.7 GOPS to 10.6
GOPS with 3% accuracy degradation. The cell-based
algorithm and pipeline architecture provide memory
bandwidth of 0.499 Gbps at HDTV resolution. The memory
bandwidth of 0.499 Gbps can be handled by a 32-bit
memory bus with reasonably low operating frequency.
Parallelized modules greatly accelerate HOG feature
extraction and object detection. The proposed architecture
on FPGA prototyping board shows the best performance
with minimum memory usage and minimum operating
frequency, compared with the performance of conventional
processors. The proposed schemes provide expandability to
HDTV resolution video (1920 × 1080 pixels) at 30 fps at
76.2 MHz.

6. ACKNOWLEDGMENTS

This work was supported by the VLSI Design and
Education Center (VDEC), The University of Tokyo, in
collaboration with Cadence Design Systems Inc. and
Synopsys Inc.

7. REFERENCES

[1] N. Dalal, et al., “Histograms of Oriented Gradients for
Human Detection,” in Proceedings of the 2005
International Conference on Computer Vision and Pattern
Recognition, vol. 2. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 886–893.

[2] Li Zhang, et al., “Efficient Scan-Window Based Object
Detection using GPGPU,” IEEE, CVPRW, 2008.

[3] S. Bauer, et al., “FPGA Implementation of a HOG-
based Pedestrian Recognition System,” MPC-Workshop,
July, 2009.

[4] S. Bauer, et al., “FPGA-GPU Architecture for Kernel
SVM Pedestrian Detection,” IEEE CVPRW 2010.

[5] M. Hiromoto, et al., “Hardware Architecture for High-
Accuracy Real-Time Pedestrian Detection with CoHOG
Features,” IEEE ICCVW 2009.

[6] R. Kadota, et al., “Hardware Architecture for HOG
Feature Extraction,” in Proceedings of the 2009
International Conference on Intelligent Information Hiding
and Multimedia Signal Processing. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 1330–1333.

[7] T. P. Cao, et al., “Real-Time Vision-Based Stop Sign
Detection System on FPGA,” in Proceedings of Digital
Image Computing: Techniques and Applications. Los
Alamitos, CA, USA: IEEE Computer Society, 2008, pp.
465–471.

[8] Y. Yazawa, et al., “FPGA Hardware with Target-
Reconfigurable Object Detector by Joint-HOG,” in
Proceeding of SSII. Yokohama, Japan, 2011.

[9] K. Negi, et al., “Deep pipelined one-chip FPGA
implementation of a real-time image-based human
detection algorithm,” IEEE FPT 2011.

[10] J. E. Volder, “The CORDIC Trigonometric Computing
Technique,” IRE Trans. Electron. Comput. EC-8:330-334,
1959.

[11] INRIA Person Dataset.
http://pascal.inrialpes.fr/data/human/

[12] D. G. Lowe, “Distinctive image features from scale
invariant keypoints,” International Journal of Computer
Vision, Vol.60, No.2, pp.91-110, 2004.

202

