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Abstract—We propose a large-scale fault injection system that 
can execute numerous model-based fault-injection simulations in 
a reasonable time using a cloud computing environment. We 
have developed a device model and a fault-injection flow of 
vulnerable SRAMs in a microprocessor. The fault-injection flow 
is applicable to very large scale failure effect analysis with the 
proposed fault-injection scheme. We developed a large-scale 
simulation environment that has 600 computing nodes in a public 
cloud computing environment. Leveraging the 600 computing 
nodes in the cloud, 672,000 model-based simulations with the 
proposed fault-injection scheme and reliability evaluation were 
conducted within 12 hr. 

Keywords—failure effect analysis; model-based design; 
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I. INTRODUCTION 
Recently, VLSI is increasingly serving important roles in 

various industrial products. Therefore, its reliability is 
important. However, transistors are more vulnerable and 
sensitive to soft errors and negative bias temperature instability 
(NBTI) because the process technology is scaled down. In 
addition, increasing variability in the transistor worsens its 
reliability and LSI yield. On the LSI, an SRAM is comprised of 
the smallest-size transistors, which are therefore the dominant 
factor determining the LSI’s reliability. Accordingly, high 
reliability is necessary for SRAM on the system LSI [1–2]. 

A fault injection system that can consider physical 
characteristics of the vulnerable SRAM for the system-level 
verification has been proposed [3]. The fault injection system 
can evaluate SRAM reliability in terms of operating stability 
for a system LSI. Large-scale verification considering the 
random process variation of each physical LSI can be 
performed by the fault injection system. Furthermore, the fault 
injection system can evaluate numerous LSI chips using the 
concept of a virtual chip that emulates characteristics of an 
actual silicon chip. 

However, to perform exhaustive failure effect analysis of 
numerous system LSIs integrating numerous SRAMs, very 
large computational power is needed. In addition, these 
numerous failure effect analyses are best completed within a 
realistic time to converge the system design. Herein, we 
present a model-based fault injection scheme that has large-
scale failure effect analysis capability. To complete numerous 
model-based fault-injection simulations within a realistic time, 
we developed a large-scale simulation environment in a public 
cloud computing environment. 

II. FAULT-INJECTION SYSTEM 
A processor-in-the-loop simulation (PILS) can provide 

information related to hardware features and can perform high-

accuracy simulations in a prototype system. It tests actual 
control software running on a dedicated processor with the 
virtual prototype of the mechanical plant. 

The increase in minimum operation voltage (Vmin) on an 
LSI degrades its device reliability because of power supply 
noise, IR drops, and/or soft errors. Vmin on the entire micro-
controller, including the logic block and SRAM block, is 
determined by the circuit with the highest value of Vmin [1]. 
SRAM has a larger standard deviation for the threshold voltage 
than the logic block because its transistor size is smaller. To 
make matters worse, the SRAM capacity on the micro-
controller is huge. Consequently, large SRAM blocks such as 
the cache memory or internal local memory determine Vmin on 
the micro-controller. 

Fig. 1 presents an overall view of the fault-injection system 
(FIS). The FIS integrates a system-level verification 
environment and the fault-injection scheme. 

In this study, we handled an electric control unit (ECU) 
system for vehicle engine control that consists of a vehicle 
engine with sensors/actuators and the ECU with an SH-2A 
processor. It can simulate engine revolution control. The 
mechanical system including the engine, sensors, and actuators 
is emulated by MATLAB®/Simulink®. The SH-2A processor 
is emulated by Synopsys VirtualizerTM. 

Fig. 1 shows that the fault-injection scheme can inject 
failures based on a precalculated bit error rate (BER) into the 
internal. Several failure modes are supported as described in 
the next section. The fault-injectable bus bridge (FIB) is 
allocated between the SH-2A core and internal SRAM in the 
micro-controller; it arbitrates a normal access and false access 
(injected failure). The FIB intervenes in the memory 
transactions to destroy access data to the internal SRAM and 
switches to the failure data pattern when a failure occurs. 

The fault case generator (FCG) uses various device 
parameters such as a supply voltage, temperature, and aging. It 
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Fig. 1. System-level verification environment has a vehicle engine model and 

controller (ECU) model in which a micro-controller model is included. 



generates time-series failure data patterns according to the 
parameters. The time-series failure data patterns are stored 
once in the FIB, which then injects the failure data into the 
memory transactions when accessing the failure address. 

III. MODELING OF FAILURES IN SRAM 
In this section, details of the methods for modeling the 

SRAM failure are described. By injecting SRAM’s physical 
behavior from the device level to the system level, the 
proposed model can reflect the SRAM well as an actual silicon 
chip. 
A. Behavior of SRAM failures on a device level 

To inject the SRAM failure and to estimate the system-
level verification, modeling the SRAM failures is necessary. 
Fig. 2 shows the failure pattern examples of the read/write 
margin failure and soft error. The models in the figure are 
derived from physical SRAM behaviors. 

The read margin failure emerges as a destructive readout. 
The stored datum in a memory cell flips when the datum with 
no read margin is read out. The failure (flipped datum) lasts 
until it is rewritten. The write margin failure occurs when an 
attempt exists to write a memory cell with no write margin. In 
the write operation, the memory cell with no write margin cell 
does not flip to the write datum. This failure lasts until the 
flipped memory cell is normally written, similar to the read 
margin failure. 

The read/write margin failure is mainly caused by process 
variations including random and systematic variations, aging of 
the transistor device, and fluctuations in the supply voltage and 
temperature. In addition, the read/write margin failure has 
datum dependence: either a “0” failure or a “1” failure for each 
memory cell. It is determined by the random variation of 
transistors in every SRAM memory cell. 

The soft error is modeled as a temporary failure: a datum 
stored in a memory cell suddenly flips. This failure also lasts 
until it is rewritten. 

Access time violation was not considered in this study 
because the read/write margin failure and soft error are 
dominant at low operating frequencies. 
B. Fault-Injection Flow for System-Level Verification 

Fig. 3 presents an illustration of the proposed fault-injection 
flow for system-level verification, which starts at the device 
level and ends at the system level. First, on the device level, 
SPICE Monte Carlo simulations using a transistor-level SRAM 
netlist are conducted considering various device parameters. In 
the following subsection, we explain the device parameter. As 

a result of the Monte Carlo simulations, an SRAM BER library 
including BERs on various device conditions is obtained. Next, 
the generated SRAM BER library, the verification condition 
under which a system LSI designer wants to verify, and 
information of the virtual chip are used as inputs to the FCG. 
The virtual chip [3] has information about failure addresses, as 
described in detail in the next subsection. Eventually, the FCG 
calculates and outputs SRAM failure data patterns, which are 
fed to the PILS as system-level verification. 

In this way, the device-level behavior of the SRAM is 
injected into the system-level verification environment. If 
SRAM of another kind must be evaluated on a system level, it 
can be achieved by creating a new SRAM BER library. The 
same fault injection flow is then conducted. 
C. Modeling Failures for System-Level Fault Injection 

In an actual silicon chip, read/write margin failures and soft 
errors are distributed randomly across the chip as a result of the 
random variation derived from transistor physics. The datum-
dependence of the read/write margin failure is also determined 
randomly by the random variation. 

The virtual chip can reproduce these features of failure on 
an actual silicon chip. Therefore, it has repeatability. The 
failure addresses are determined to be random spatially. The 
datum-dependences of the read/write margin failure are 
determined randomly as “0” or “1”. The greatest benefit of 
using the virtual chip is its large-scale verification capability. 
Each virtual chip has different addresses of failures and 
therefore has different reliabilities. The failure addresses might 
make the virtual chip fail or might not. The FIS with the virtual 
chip concept can readily perform large-scale verification using 
numerous virtual chips without numerous actual chip samples. 

IV. EXTENSION TO A CLOUD COMPUTING ENVIRONMENT 
To perform large-scale verification using numerous virtual 

chips, great amounts of computing resources are needed. 
Preparing numerous computers is too costly; it is difficult to 
utilize so many computers efficiently at all times. Moreover, 
performing large-scale verifications with small-scale 
computers is too time-consuming. To obtain numerous 
computers when the need arises, we introduce a cloud 
computing environment as a computing resource. Using the 
cloud computing environment, we can reduce the cost of large-
scale verification in accordance with the usage of computing 
resources in the cloud. 
A. Building Large-Scale Fault-Injection Environment in 

Cloud Computing Environment 
Fig. 4 shows an overview of large-scale fault-injection 

environment in the public cloud computing environment. 600 
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Fig. 2. Failure pattern examples in SRAM memory cell: read margin failure, 

write margin failure, and soft error. 
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Fig. 3. Proposed fault injection scheme flowing from a device level to a 

system level. 



computational nodes are launched for the evaluation of this 
paper. Each computational node has the equivalent CPU 
capacity of a 1.0–1.2 GHz 2007 Xeon processor (Intel Corp.). 
Each computational node can access a test case database that 
contains 672,000 test cases (SRAM failure data patterns). The 
672,000 test cases consist of 56 test cases of 6,000 virtual chips 
in two-memory mode. The details of test cases are described in 
Section VI.A. To prevent data access congestion, a copy of the 
test case database is assigned to each 20 computational nodes. 
A control node in the cloud distributes jobs to the 
computational nodes and manages the progress of the entire 
simulation. Each job includes locations of input test case and 
output log file, along with parameters of simulation. The 
control node is operated by a client PC in the local 
environment via remote access. Software licenses of the 
VirtualizerTM on each computational node are provided using a 
licensing server in the local environment via secure VPN 
connections. By such means, we can use an existing license in 
the cloud while maintaining its security and the site of the 
license server. Output fault-injection logs are once output to 
each computational node; then they are compressed and 
transferred to a fault-injection log database in the local 
environment. By compressing the output logs, the log size is 
reduced to less than 5%. Then we can transfer 600 
computational nodes’ logs that output in parallel with the 
secure VPN connections. These fault-injection logs, which can 
contain any state of a running processor and software, are 
useful for failure effect analyses. 

We obtained 600 computational nodes in this paper by the 
limit of the amount of the cloud computing environment’s 
resources. This evaluation environment in this paper, however, 
can augment its scale and throughput as long as computing 
resources in the cloud are obtainable. 

V. 7T/14T DEPENDABLE SRAM 

A. 7T/14T SRAM 
Fig. 5(b) depicts the 7T/14T SRAM memory cell (14T for 

two memory cells) [9]. Fig. 5(a) shows that two PMOSs are 
added to internal nodes (“N00 and N10”, “N01 and N11”) in a 
pair of conventional 6T SRAM memory cells. The area 
overhead of the 7T memory cell is 11% greater than that of the 
conventional 6T memory cell. 

Table I shows that the 7T/14T memory cells have two 
modes. 

• Normal mode (7T): The additional transistors are turned off 
(CL = “H”); the 7T cell acts as a conventional 6T cell. 
• Dependable mode (14T): The additional transistors are 

turned on (CL = “L”); the internal nodes are shared by the 
bitcell pair. In write operation, both WL0 and WL1 are driven, 
but in read operation, either WL0 or WL1 is asserted, which 
ensures stable operation. 

In the normal mode, a one-bit datum is stored in one 
memory cell, which means that it is more area-efficient. In the 
dependable mode, a one-bit datum is stored in two memory 
cells, although the reliability of the information differs from 
that of the normal mode. The “more dependable with less 
failure rate” information is obtainable by combining two 
memory cells [4]. In addition, the 14T dependable mode has 
better soft-error tolerance than the 7T normal mode because its 
internal node has more capacitance. 
B. Bit Error Rate (BER) 

Fig. 6(a) shows a bit error rate in the read operation. The 
static noise margin is used as a metric to evaluate read BERs. 
The dependable mode functions well below 0.56 V with a BER 
of 10–8 kept in the typical-case condition (TT corner, 40°C). 
The minimum operating voltage and BER are improved by 
0.16 V and 1.9 × 10–5 in comparison with the normal mode. 

Fig. 6(b) is a BER in the write operation. The write trip 
point is used as a metric to evaluate write BERs. The 
dependable mode functions at 0.63 V with a BER of 10–8 
maintained. The minimum operating voltage and BER are 
improved by 0.12 V and 1.1 × 10–3 over the normal mode. 

. . . . . . . . . 
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Fig. 4. Overview of large-scale fault-injection environment in a cloud 

computing environment. 
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TABLE I.  TWO MODES IN 7T/14T MEMORY CELL 

# of memory cells 
comprising 1 bit

# of WL 
drives CL 

Normal 1 (7T/bit) 1 Off (“H”) 

Dependable(read) 2 (14T/bit) 1 On (“L”) 

Dependable(write) 2 (14T/bit) 2 On (“L”) 
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Fig. 6. Bit error rates (BERs): (a) read operation and (b) write operation. 



VI. SYSTEM-LEVEL EVALUATION 
To evaluate the proposed FIS integrated with the fault-

injection scheme and system-level verification environment, 
we used the vehicle engine control ECU system presented in 
Fig. 1. In this evaluation, we used the 6T SRAM and 7T/14T 
dependable SRAM as internal SRAM of ECU. Vehicle engine 
control software first ran on the ECU. Faults were injected to 
the internal SRAM in the ECU running the vehicle engine 
control software. 
A. Evaluation Methodology 

Abnormal termination of the vehicle engine control 
software is judged in two ways: a watchdog timer interruption 
triggered by a runaway of the software and an access violation 
to an illegal address. A normal termination is judged as 
occurring when no abnormal termination occurs within the 
predefined execution time. Abnormal behavior of the 
mechanical system was not considered in this study, only the 
behavior of the electrical system. The BERs of the SRAMes 
are shown in Fig. 6. For the degree of aging of the transistor, 
we assumed degradation of the PMOS threshold voltage as –24 
mV, assuming 10-year aging by negative bias temperature 
instability (NBTI). 

Table II presents a summary of the parameters used for the 
system-level evaluation of the FIS. In the actual silicon chip, 
mapping of SRAM failure points differed for each chip. As a 
result, the impact of SRAM failures in each chip to the 
operating stability of each system was unique. Consequently, 
to evaluate the functional safety of the system, exhaustive 
system-level failure analysis for numerous chips is needed. For 
this evaluation, we generated and evaluated 6,000 virtual chips. 

The large-scale fault-injection environment integrated with 
the 600 computational nodes in the cloud presented in Fig. 4 is 
used as a computing resource in this evaluation. Throughput of 
this simulation environment was obtained from this evaluation. 

In this evaluation, inputs of supply voltages and operating 
temperatures did not change in time. We evaluated the static 
supply voltage (DC) and operating temperature characteristics 
for the abnormal termination of system. 672,000 test cases 
were evaluated in all. Results of the evaluation show that 
knowledge of the operating range for evaluating the functional 
safety of the system is obtainable. 

B. Evaluation Result 
As a result of the evaluation, the 672,000 test cases are 

evaluated by the 600 nodes within 12 hr. 1,146 GB fault-
injection logs are compressed to 47.6 GB (reduced to 4.16%) 
and are transferred to the local fault-injection log database. 

Fig. 7 shows the evaluation result of the abnormal 
termination rates in the vehicle engine control ECU system. 
The evaluation results obtained using the 6T SRAM and 
7T/14T SRAM as the internal SRAM of ECU are, respectively, 
shown in Figs. 7(a) and 7(b). The evaluation result obtained 
using the 7T/14T SRAM (in dependable mode) improved Vmin 
compared with that using the 6T SRAM. To analyze the 
reason for this, a statistical analysis of a large amount of 
virtual chips is necessary to determine what kind of SRAM 
failure or where it invokes abnormal termination of the system. 
This kind of analysis is left to another future work. 

Fig. 8 depicts a comparison of the ECU system error rates 
(ECU system abnormal termination rates) and SRAM 
read/write BERs. Apparently correlation between the 
abnormal termination rate and the SRAM read/write BERs. 

VII. CONCLUSION 
As described herein, we proposed a large-scale fault-

injection environment in the public cloud computing 
environment. Large-scale fault-injection integrated with 600 
computational nodes has extremely high throughput of 
execution of model-based simulation. 672,000 simulations 
with the proposed transistor device-aware fault-injection 
scheme and reliability evaluation were done within 12 hours. 

ACKNOWLEDGMENT 
This work was supported by Synopsys Inc. for providing 

the licenses of VirtualizerTM in this paper. 

REFERENCES 
[1] K. Itoh, “Low-voltage scaling limitations for nanoscale CMOS LSIs,” 

International Conference onUltimate Integration of Silicon (ULIS), pp. 
3-6, Mar. 2008. 

[2] L. Chang et al., “A 5.3 GHz 8T-SRAM with Operation Down to 0.41 V 
in 65 nm CMOS,” Symposium on VLSI Circuits, pp. 252-253, 2007. 

[3] Y. Nakata et al., "Model-Based Fault Injection for Failure Effect 
Analysis – Evaluation of Dependable SRAM for Vehicle Control Units 
–," Fifth Workshop on Dependable and Secure Nanocomputing (WDSN), 
pp. 91-96, Jun. 2011. 

[4] H. Fujiwara et al., “Quality of a Bit (QoB): A New Concept in 
Dependable SRAM,” Ninth Int. Symposium on Quality Electronic 
Design (ISQED), pp. 98-102, 2008. 

TABLE II.  PARAMETERS OF EVALUATION

600# of computational nodes in cloud

672,000Total # of test cases

112# of test cases / one virtual chip

# of virtual chips 6,000

Execution time 10 sec.

Range of supply voltage 0.3 V to 1.0 V

Range of temperature –50 degC to 150 degC

σVth of PMOS, NMOS 40 mV, 30 mV

Delta Vth of PMOS (aging) –24 mV

SRAM capacity 128 Kbytes

Soft error rate 300 FIT@1.0 V
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Fig. 7. Abnormal terminating rates of engine control ECU system:  

(a) 6T SRAM, (b) 14T dependable mode of 7T/14T SRAM. 
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Fig. 8. Comparison of ECU system abnormal termination rates (error rate) 

and SRAM bit error rates. 


