
Model-Based Fault Injection for Large-Scale Failure
Effect Analysis with 600-Node Cloud Computers

Yohei Nakata1*, Yasuhiro Ito2, Yusuke Takeuchi1, Yasuo Sugure2, Shigeru Oho2, Hiroshi Kawaguchi1,
 and Masahiko Yoshimoto1, 3

1Graduate School of System Informatics, Kobe University, Kobe, 657-8501 Japan
2Central Research Laboratory, Hitachi, Ltd., Kokubunji, 185-8601 Japan

3 Japan Science and Technology Agency (JST) CREST, Tokyo, 102-0076 Japan
E-mail: *nkt@cs28.cs.kobe-u.ac.jp

Abstract—We propose a large-scale fault injection system that
can execute numerous model-based fault-injection simulations in
a reasonable time using a cloud computing environment. We
have developed a device model and a fault-injection flow of
vulnerable SRAMs in a microprocessor. The fault-injection flow
is applicable to very large scale failure effect analysis with the
proposed fault-injection scheme. We developed a large-scale
simulation environment that has 600 computing nodes in a public
cloud computing environment. Leveraging the 600 computing
nodes in the cloud, 672,000 model-based simulations with the
proposed fault-injection scheme and reliability evaluation were
conducted within 12 hr.

Keywords—failure effect analysis; model-based design;
processor-in-the-loop simulation; fault injection; cloud computing;
SRAM

I. INTRODUCTION
Recently, VLSI is increasingly serving important roles in

various industrial products. Therefore, its reliability is
important. However, transistors are more vulnerable and
sensitive to soft errors and negative bias temperature instability
(NBTI) because the process technology is scaled down. In
addition, increasing variability in the transistor worsens its
reliability and LSI yield. On the LSI, an SRAM is comprised of
the smallest-size transistors, which are therefore the dominant
factor determining the LSI’s reliability. Accordingly, high
reliability is necessary for SRAM on the system LSI [1–2].

A fault injection system that can consider physical
characteristics of the vulnerable SRAM for the system-level
verification has been proposed [3]. The fault injection system
can evaluate SRAM reliability in terms of operating stability
for a system LSI. Large-scale verification considering the
random process variation of each physical LSI can be
performed by the fault injection system. Furthermore, the fault
injection system can evaluate numerous LSI chips using the
concept of a virtual chip that emulates characteristics of an
actual silicon chip.

However, to perform exhaustive failure effect analysis of
numerous system LSIs integrating numerous SRAMs, very
large computational power is needed. In addition, these
numerous failure effect analyses are best completed within a
realistic time to converge the system design. Herein, we
present a model-based fault injection scheme that has large-
scale failure effect analysis capability. To complete numerous
model-based fault-injection simulations within a realistic time,
we developed a large-scale simulation environment in a public
cloud computing environment.

II. FAULT-INJECTION SYSTEM
A processor-in-the-loop simulation (PILS) can provide

information related to hardware features and can perform high-

accuracy simulations in a prototype system. It tests actual
control software running on a dedicated processor with the
virtual prototype of the mechanical plant.

The increase in minimum operation voltage (Vmin) on an
LSI degrades its device reliability because of power supply
noise, IR drops, and/or soft errors. Vmin on the entire micro-
controller, including the logic block and SRAM block, is
determined by the circuit with the highest value of Vmin [1].
SRAM has a larger standard deviation for the threshold voltage
than the logic block because its transistor size is smaller. To
make matters worse, the SRAM capacity on the micro-
controller is huge. Consequently, large SRAM blocks such as
the cache memory or internal local memory determine Vmin on
the micro-controller.

Fig. 1 presents an overall view of the fault-injection system
(FIS). The FIS integrates a system-level verification
environment and the fault-injection scheme.

In this study, we handled an electric control unit (ECU)
system for vehicle engine control that consists of a vehicle
engine with sensors/actuators and the ECU with an SH-2A
processor. It can simulate engine revolution control. The
mechanical system including the engine, sensors, and actuators
is emulated by MATLAB®/Simulink®. The SH-2A processor
is emulated by Synopsys VirtualizerTM.

Fig. 1 shows that the fault-injection scheme can inject
failures based on a precalculated bit error rate (BER) into the
internal. Several failure modes are supported as described in
the next section. The fault-injectable bus bridge (FIB) is
allocated between the SH-2A core and internal SRAM in the
micro-controller; it arbitrates a normal access and false access
(injected failure). The FIB intervenes in the memory
transactions to destroy access data to the internal SRAM and
switches to the failure data pattern when a failure occurs.

The fault case generator (FCG) uses various device
parameters such as a supply voltage, temperature, and aging. It

Controller
model

Vehicle
engine model

Collaborative sim.

Control softwareControl software

ECU
Micro-controller

CPU Peripheral

SH-2A CPU

Bridge

INTC CMT

DMAC

A/D ATU

Fault-
Injectable
bus bridge

Micro-
controller
model

Internal
SRAM
model

SRAM failure
data pattern

Matlab®/Simulink®
simulator

VirtualizerTM

simulator
Verification
conditions
for system

Fault-
injection
scheme

Fault-
injection
scheme

Fault Case
Generator

System-level verification
environment (PILS)

System-level verification
environment (PILS)

Fig. 1. System-level verification environment has a vehicle engine model and

controller (ECU) model in which a micro-controller model is included.

generates time-series failure data patterns according to the
parameters. The time-series failure data patterns are stored
once in the FIB, which then injects the failure data into the
memory transactions when accessing the failure address.

III. MODELING OF FAILURES IN SRAM
In this section, details of the methods for modeling the

SRAM failure are described. By injecting SRAM’s physical
behavior from the device level to the system level, the
proposed model can reflect the SRAM well as an actual silicon
chip.
A. Behavior of SRAM failures on a device level

To inject the SRAM failure and to estimate the system-
level verification, modeling the SRAM failures is necessary.
Fig. 2 shows the failure pattern examples of the read/write
margin failure and soft error. The models in the figure are
derived from physical SRAM behaviors.

The read margin failure emerges as a destructive readout.
The stored datum in a memory cell flips when the datum with
no read margin is read out. The failure (flipped datum) lasts
until it is rewritten. The write margin failure occurs when an
attempt exists to write a memory cell with no write margin. In
the write operation, the memory cell with no write margin cell
does not flip to the write datum. This failure lasts until the
flipped memory cell is normally written, similar to the read
margin failure.

The read/write margin failure is mainly caused by process
variations including random and systematic variations, aging of
the transistor device, and fluctuations in the supply voltage and
temperature. In addition, the read/write margin failure has
datum dependence: either a “0” failure or a “1” failure for each
memory cell. It is determined by the random variation of
transistors in every SRAM memory cell.

The soft error is modeled as a temporary failure: a datum
stored in a memory cell suddenly flips. This failure also lasts
until it is rewritten.

Access time violation was not considered in this study
because the read/write margin failure and soft error are
dominant at low operating frequencies.
B. Fault-Injection Flow for System-Level Verification

Fig. 3 presents an illustration of the proposed fault-injection
flow for system-level verification, which starts at the device
level and ends at the system level. First, on the device level,
SPICE Monte Carlo simulations using a transistor-level SRAM
netlist are conducted considering various device parameters. In
the following subsection, we explain the device parameter. As

a result of the Monte Carlo simulations, an SRAM BER library
including BERs on various device conditions is obtained. Next,
the generated SRAM BER library, the verification condition
under which a system LSI designer wants to verify, and
information of the virtual chip are used as inputs to the FCG.
The virtual chip [3] has information about failure addresses, as
described in detail in the next subsection. Eventually, the FCG
calculates and outputs SRAM failure data patterns, which are
fed to the PILS as system-level verification.

In this way, the device-level behavior of the SRAM is
injected into the system-level verification environment. If
SRAM of another kind must be evaluated on a system level, it
can be achieved by creating a new SRAM BER library. The
same fault injection flow is then conducted.
C. Modeling Failures for System-Level Fault Injection

In an actual silicon chip, read/write margin failures and soft
errors are distributed randomly across the chip as a result of the
random variation derived from transistor physics. The datum-
dependence of the read/write margin failure is also determined
randomly by the random variation.

The virtual chip can reproduce these features of failure on
an actual silicon chip. Therefore, it has repeatability. The
failure addresses are determined to be random spatially. The
datum-dependences of the read/write margin failure are
determined randomly as “0” or “1”. The greatest benefit of
using the virtual chip is its large-scale verification capability.
Each virtual chip has different addresses of failures and
therefore has different reliabilities. The failure addresses might
make the virtual chip fail or might not. The FIS with the virtual
chip concept can readily perform large-scale verification using
numerous virtual chips without numerous actual chip samples.

IV. EXTENSION TO A CLOUD COMPUTING ENVIRONMENT
To perform large-scale verification using numerous virtual

chips, great amounts of computing resources are needed.
Preparing numerous computers is too costly; it is difficult to
utilize so many computers efficiently at all times. Moreover,
performing large-scale verifications with small-scale
computers is too time-consuming. To obtain numerous
computers when the need arises, we introduce a cloud
computing environment as a computing resource. Using the
cloud computing environment, we can reduce the cost of large-
scale verification in accordance with the usage of computing
resources in the cloud.
A. Building Large-Scale Fault-Injection Environment in

Cloud Computing Environment
Fig. 4 shows an overview of large-scale fault-injection

environment in the public cloud computing environment. 600

Soft errorSoft error
(temporarily failure)(temporarily failure)

Process variation
Aging of transistor

Environmental fluctuation (Vdd, temp.)

Neutron collision
Alpha collision

tim
e

Write

Read

1 0

0

Write

Read

0

0

Normal
write

Write failureWrite failure

Flip

Write

Read

0

10

Write

Read

1

1

…

F
ailu

re p
erio

d

Read failureRead failure Soft errorSoft error

Write

Hit

0

10

Write

Read

0

0

…
… Data retention

period

Read/write margin failure
is datum-dependent

(“0” failure or “1” failure)

Data retention
period

F
ailu

re p
erio

d

F
ailu

re p
erio

d

Read/writeRead/write
margin failuremargin failure

Flip

Flip

Normal
read

Destructive
read

Read/writeRead/write
margin failuremargin failure

Fig. 2. Failure pattern examples in SRAM memory cell: read margin failure,

write margin failure, and soft error.

SystemSystem--level verification (PILS)level verification (PILS)

Transistor-level
SRAM netlist

Device conditions
(Supply volt., temp., aging etc.)

Device
level

Device
level

SRAM BER library
at each device condition

Fault Case Generator (FCG)Fault Case Generator (FCG)

SRAM failure data pattern
(test case)

System
level

System
level

Information
of virtual chip

Verification conditions
of system LSI

(Supply volt., temp., aging, SER etc.)

SPICE Monte Carlo simulationSPICE Monte Carlo simulation

Fig. 3. Proposed fault injection scheme flowing from a device level to a

system level.

computational nodes are launched for the evaluation of this
paper. Each computational node has the equivalent CPU
capacity of a 1.0–1.2 GHz 2007 Xeon processor (Intel Corp.).
Each computational node can access a test case database that
contains 672,000 test cases (SRAM failure data patterns). The
672,000 test cases consist of 56 test cases of 6,000 virtual chips
in two-memory mode. The details of test cases are described in
Section VI.A. To prevent data access congestion, a copy of the
test case database is assigned to each 20 computational nodes.
A control node in the cloud distributes jobs to the
computational nodes and manages the progress of the entire
simulation. Each job includes locations of input test case and
output log file, along with parameters of simulation. The
control node is operated by a client PC in the local
environment via remote access. Software licenses of the
VirtualizerTM on each computational node are provided using a
licensing server in the local environment via secure VPN
connections. By such means, we can use an existing license in
the cloud while maintaining its security and the site of the
license server. Output fault-injection logs are once output to
each computational node; then they are compressed and
transferred to a fault-injection log database in the local
environment. By compressing the output logs, the log size is
reduced to less than 5%. Then we can transfer 600
computational nodes’ logs that output in parallel with the
secure VPN connections. These fault-injection logs, which can
contain any state of a running processor and software, are
useful for failure effect analyses.

We obtained 600 computational nodes in this paper by the
limit of the amount of the cloud computing environment’s
resources. This evaluation environment in this paper, however,
can augment its scale and throughput as long as computing
resources in the cloud are obtainable.

V. 7T/14T DEPENDABLE SRAM

A. 7T/14T SRAM
Fig. 5(b) depicts the 7T/14T SRAM memory cell (14T for

two memory cells) [9]. Fig. 5(a) shows that two PMOSs are
added to internal nodes (“N00 and N10”, “N01 and N11”) in a
pair of conventional 6T SRAM memory cells. The area
overhead of the 7T memory cell is 11% greater than that of the
conventional 6T memory cell.

Table I shows that the 7T/14T memory cells have two
modes.

• Normal mode (7T): The additional transistors are turned off
(CL = “H”); the 7T cell acts as a conventional 6T cell.
• Dependable mode (14T): The additional transistors are

turned on (CL = “L”); the internal nodes are shared by the
bitcell pair. In write operation, both WL0 and WL1 are driven,
but in read operation, either WL0 or WL1 is asserted, which
ensures stable operation.

In the normal mode, a one-bit datum is stored in one
memory cell, which means that it is more area-efficient. In the
dependable mode, a one-bit datum is stored in two memory
cells, although the reliability of the information differs from
that of the normal mode. The “more dependable with less
failure rate” information is obtainable by combining two
memory cells [4]. In addition, the 14T dependable mode has
better soft-error tolerance than the 7T normal mode because its
internal node has more capacitance.
B. Bit Error Rate (BER)

Fig. 6(a) shows a bit error rate in the read operation. The
static noise margin is used as a metric to evaluate read BERs.
The dependable mode functions well below 0.56 V with a BER
of 10–8 kept in the typical-case condition (TT corner, 40°C).
The minimum operating voltage and BER are improved by
0.16 V and 1.9 × 10–5 in comparison with the normal mode.

Fig. 6(b) is a BER in the write operation. The write trip
point is used as a metric to evaluate write BERs. The
dependable mode functions at 0.63 V with a BER of 10–8
maintained. The minimum operating voltage and BER are
improved by 0.12 V and 1.1 × 10–3 over the normal mode.

.

Secure VPN
connnections

via internet

Licensing
server

Test case
database

(672,000 cases)

Internet

Client
PC

Remote login

Control node

Distributions of job

Fault-
injection log

Computational nodes
(600 nodes)

Public cloud computing
environment

Public cloud computing
environment

Local
environment

Local
environment

Fig. 4. Overview of large-scale fault-injection environment in a cloud

computing environment.

WL0

WL1

BL /BL

/CL

CL : Control line

WL0

WL1

BL /BL

(a) (b)
Fig. 5. (a) Conventional 6T memory cell (b) 7T/14T memory cell pair.

TABLE I. TWO MODES IN 7T/14T MEMORY CELL

of memory cells
comprising 1 bit

of WL
drives CL

Normal 1 (7T/bit) 1 Off (“H”)

Dependable(read) 2 (14T/bit) 1 On (“L”)

Dependable(write) 2 (14T/bit) 2 On (“L”)

65-nm process, TT corner, Temp. = 40 C, 10-year aging, # of Monte Carlo: 20000

Supply voltage (V)

B
it

 E
rr

o
r

R
at

e
(B

E
R

)

Read
Operation

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.3 0.4 0.5 0.6 0.7 0.8

0.56V
0.72V

0.16V

1.
9

 x
 1

0
5

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.3 0.4 0.5 0.6 0.7 0.8

1.0E+00

Supply voltage (V)

Write
Operation

0.75V

0.63V 0.12V1.
1

 x
 1

0
3

Normal (6T = 7T)
Dependable (14T)

(a) (b)

Normal (6T = 7T)
Dependable (14T)

Fig. 6. Bit error rates (BERs): (a) read operation and (b) write operation.

VI. SYSTEM-LEVEL EVALUATION
To evaluate the proposed FIS integrated with the fault-

injection scheme and system-level verification environment,
we used the vehicle engine control ECU system presented in
Fig. 1. In this evaluation, we used the 6T SRAM and 7T/14T
dependable SRAM as internal SRAM of ECU. Vehicle engine
control software first ran on the ECU. Faults were injected to
the internal SRAM in the ECU running the vehicle engine
control software.
A. Evaluation Methodology

Abnormal termination of the vehicle engine control
software is judged in two ways: a watchdog timer interruption
triggered by a runaway of the software and an access violation
to an illegal address. A normal termination is judged as
occurring when no abnormal termination occurs within the
predefined execution time. Abnormal behavior of the
mechanical system was not considered in this study, only the
behavior of the electrical system. The BERs of the SRAMes
are shown in Fig. 6. For the degree of aging of the transistor,
we assumed degradation of the PMOS threshold voltage as –24
mV, assuming 10-year aging by negative bias temperature
instability (NBTI).

Table II presents a summary of the parameters used for the
system-level evaluation of the FIS. In the actual silicon chip,
mapping of SRAM failure points differed for each chip. As a
result, the impact of SRAM failures in each chip to the
operating stability of each system was unique. Consequently,
to evaluate the functional safety of the system, exhaustive
system-level failure analysis for numerous chips is needed. For
this evaluation, we generated and evaluated 6,000 virtual chips.

The large-scale fault-injection environment integrated with
the 600 computational nodes in the cloud presented in Fig. 4 is
used as a computing resource in this evaluation. Throughput of
this simulation environment was obtained from this evaluation.

In this evaluation, inputs of supply voltages and operating
temperatures did not change in time. We evaluated the static
supply voltage (DC) and operating temperature characteristics
for the abnormal termination of system. 672,000 test cases
were evaluated in all. Results of the evaluation show that
knowledge of the operating range for evaluating the functional
safety of the system is obtainable.

B. Evaluation Result
As a result of the evaluation, the 672,000 test cases are

evaluated by the 600 nodes within 12 hr. 1,146 GB fault-
injection logs are compressed to 47.6 GB (reduced to 4.16%)
and are transferred to the local fault-injection log database.

Fig. 7 shows the evaluation result of the abnormal
termination rates in the vehicle engine control ECU system.
The evaluation results obtained using the 6T SRAM and
7T/14T SRAM as the internal SRAM of ECU are, respectively,
shown in Figs. 7(a) and 7(b). The evaluation result obtained
using the 7T/14T SRAM (in dependable mode) improved Vmin
compared with that using the 6T SRAM. To analyze the
reason for this, a statistical analysis of a large amount of
virtual chips is necessary to determine what kind of SRAM
failure or where it invokes abnormal termination of the system.
This kind of analysis is left to another future work.

Fig. 8 depicts a comparison of the ECU system error rates
(ECU system abnormal termination rates) and SRAM
read/write BERs. Apparently correlation between the
abnormal termination rate and the SRAM read/write BERs.

VII. CONCLUSION
As described herein, we proposed a large-scale fault-

injection environment in the public cloud computing
environment. Large-scale fault-injection integrated with 600
computational nodes has extremely high throughput of
execution of model-based simulation. 672,000 simulations
with the proposed transistor device-aware fault-injection
scheme and reliability evaluation were done within 12 hours.

ACKNOWLEDGMENT
This work was supported by Synopsys Inc. for providing

the licenses of VirtualizerTM in this paper.

REFERENCES
[1] K. Itoh, “Low-voltage scaling limitations for nanoscale CMOS LSIs,”

International Conference onUltimate Integration of Silicon (ULIS), pp.
3-6, Mar. 2008.

[2] L. Chang et al., “A 5.3 GHz 8T-SRAM with Operation Down to 0.41 V
in 65 nm CMOS,” Symposium on VLSI Circuits, pp. 252-253, 2007.

[3] Y. Nakata et al., "Model-Based Fault Injection for Failure Effect
Analysis – Evaluation of Dependable SRAM for Vehicle Control Units
–," Fifth Workshop on Dependable and Secure Nanocomputing (WDSN),
pp. 91-96, Jun. 2011.

[4] H. Fujiwara et al., “Quality of a Bit (QoB): A New Concept in
Dependable SRAM,” Ninth Int. Symposium on Quality Electronic
Design (ISQED), pp. 98-102, 2008.

TABLE II. PARAMETERS OF EVALUATION

600# of computational nodes in cloud

672,000Total # of test cases

112# of test cases / one virtual chip

of virtual chips 6,000

Execution time 10 sec.

Range of supply voltage 0.3 V to 1.0 V

Range of temperature –50 degC to 150 degC

σVth of PMOS, NMOS 40 mV, 30 mV

Delta Vth of PMOS (aging) –24 mV

SRAM capacity 128 Kbytes

Soft error rate 300 FIT@1.0 V

1.E-01–1.E+00 1.E-02–1.E-01 1.E-03–1.E-02 1.E-04–1.E-03

-5
0

0

80

1
50

0
.3

0.
4

0.
5

0.
6

0.
7

0
.8

0
.9

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

40

-2
5

12
0

80

1
50

40

12
0

0
.3

0.
4

0.
5

0.
6

0.
7

0
.8

0.
9

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

80

1
50

40

12
0

0
-2

5

A
b

n
o

rm
al

 t
er

m
in

a
ti

o
n

 r
a

te

Supply voltage (V)Temp. (degC)
A

b
n

o
rm

al
 t

er
m

in
a

ti
o

n
 r

a
te

Supply voltage (V)Temp. (degC)

(a) (b)(a) (b)

-5
0

Fig. 7. Abnormal terminating rates of engine control ECU system:

(a) 6T SRAM, (b) 14T dependable mode of 7T/14T SRAM.

1.0E-04

1.0E-03

1.0E-02

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normal (system) Dependable (system)
Normal (SRAM, read)

1.0E-01

1.0E+00

Dependable (SRAM, read)
Normal (SRAM, write) Dependable (SRAM, write)

Supply Voltage (V)

E
rr

o
r

R
a

te

ECU System
Abnormal Termination Rate

SRAM Read
Bit Error Rate

SRAM Write
Bit Error Rate

Fig. 8. Comparison of ECU system abnormal termination rates (error rate)

and SRAM bit error rates.

