
SRAM Failure Injection to a Vehicle ECU and
Its Behavior Evaluation

Yusuke Takeuchi1, Yohei Nakata1, Yasuhiro Ito2, Yasuo Sugure2,
Shigeru Oho3, Hiroshi Kawaguchi1, and Masahiko Yoshimoto1, 4

1Graduate School of System Informatics, Kobe University, Kobe, 657-8501 Japan

2Central Research Laboratory, Hitachi, Ltd., Kokubunji, 185-8601 Japan
3Department of Electrical and Electronics Engineering, Nippon Institute of Technology, Minamisaitama, 345-8501 Japan

4 Japan Science and Technology Agency (JST) CREST, Tokyo, 102-0076 Japan
E-mail: takeuchi_u@cs28.cs.kobe-u.ac.jp

Abstract—Recently, technology of electronic control units

(ECUs) mounted on vehicles has progressed. ECUs are now used
in various applications such as throttle control, brake control,
and pedestrian recognition. Accordingly, testing to ensure ECU
dependability has become complicated. We have developed a
model-based evaluation environment that can readily analyze the
effects of the device-level SRAM failure on an entire vehicle
system. Injecting failures that occur in this environment yielded
data related to fuel injection quantity and vehicle speed. These
data clearly reflect the effects of the SRAM failures. We have
also constructed a demonstration system to report the effects of
SRAM failure intelligibly.

Keywords—ECU; model-based evaluation environment;
SRAM; demonstration system

I. INTRODUCTION
With the advent of automobile electronics, electronics

control units (ECUs) mounted on vehicles have been
increasing year by year. The ECUs mounted on a typical car
now number 30−60. A luxury vehicle might have 100 or more
ECUs mounted. The use of ECUs has extended to higher
functionality, such as intelligent transport systems (ITS) and
pursuit of safety and comfort. For an automotive LSI, the most
important consideration is dependability. The operating voltage
and temperature must be managed carefully. Nevertheless, tests
to clarify their function are difficult to conduct. They are costly
and time consuming. To make matters worse, managing the
behavior of a whole vehicle system is virtually impossible. An
efficient evaluation environment to assess vehicle
dependability is therefore earnestly sought by engineers.

We propose a model-based environment to evaluate an
automotive LSI. Particularly in this paper, we specifically
examine SRAM. On CPUs used today, SRAM occupies a large
number of the transistors. Therefore, the dependability of the
LSI operation can be regarded as reliant on the SRAM. We
injected various failures to the SRAM in an engine control
ECU and assessed the impacts of the failures on a vehicle. We
also created a demonstration system for vehicle behavior
evaluation.

II. FAILURE INJECTION SYSTEM
A. Evaluation System

Fig. 1 presents an illustration of the concept of the
evaluation environment. It comprises three models: a vehicle
model, engine model, and ECU model. It is called a cyber

physical system (CPS), which is a collaborative system of
electronic and mechanical subsystems. The kinetic behavior of
the vehicle (e.g. transmission and tire friction calculation) is
simulated by CarSim®1. The engine (torque production and
engine speed calculation) is simulated by Matlab®/Simulink®2,
based on a 3.8 L V6 gasoline engine. The ECU behavior is
simulated by VirtualizerTM3.

Collaborative Simulation

Control Software

ECU
Micro-controller

CPU

VirtualizerTM

Simulator
CarSim®

Simulator

Mechanical
system

Electronic
system

Peri.
SRAM

Vehicle Model
(w/o Engine)

Engine
model

ECU
model

Matlab®/Simulink®
Simulator

Fig. 1. Proposed evaluation environment.

Failure injection to the ECU is presented briefly in Fig. 2.
The fault case generator (FCG) generates time-series failure
data patterns according to evaluation conditions: supply
voltage, temperature, NBTI aging (e.g. 10 years), and SRAM
capacity. The fault-injectable bus bridge (FIB) is inserted
between CPU and internal SRAM. By injecting a failure data
pattern to the internal SRAM through the FIB, data destruction
can be modeled.

Micro-controller

CPU
Peri.

SRAM

SH-2A CPU

Bridge

INTC CMT

DMAC

A/D ATU

ECU
Model

128kB
SRAM

Control Software

ECU

VirtualizerTM

Simulator

ECU
model

Engine
model

Matlab®/Simulink®
Simulator

Fault-
Injectable
BusBridge
(FIB)

Evaluation
Conditions

Fault Case
Generator

(FCG)

SRAM failure
data patterns

Fig. 2. Failure injection to ECU.

1 CarSim® is a registered trademark of Mechanical Simulation Corporation.
2 Matlab®/Simulink® is a registered trademark of The Math Works, Inc.
3 VirtualizerTM is a trademark of Synopsys, Inc.

B. SRAM fault case generator
Fig. 3 shows a block diagram of the FCG. As inputs, the

FCG uses device conditions of the SRAM (supply voltage,
temperature, process variation, NBTI aging, soft error rate,
capacity), SRAM bit error rate (BER) libraries obtained from a
transistor-level Monte Carlo simulation, and information of a
virtual chip (described below). The SRAM failure data pattern
generator refers to the SRAM BER libraries and obtains one
datum corresponding to the SRAM device conditions. Using
the BER and virtual chip information, the FCG generates time-
series SRAM failure data patterns as output. The supply
voltage and temperature can change with time.

A virtual chip represents one chip considering SRAM
variability. On an actual LSI, SRAM failures are attributable to
poor read and write margins derived from transistor random
variation, or because of soft errors that occur randomly: the
failure might occur randomly in time and space dimensions.
Information of the virtual chip is expressed as failure
occurrence locations and times. Using the virtual chips, we can
execute large-scale simulations assuming chip variation.

TABLE I presents a summary of the parameters for our
simulation. The design rule is 65 nm, and the process is at the
typical corner. For the NBTI aging in a pMOS, we assume that
the threshold degradation is −24 mV in 10-year aging.

Supply voltage (V)

Output

Temperature (°C)
Process variation (σVth)

Input

Aging (ΔVth)
Soft error rates (FIT)

Fault Case Generator

SRAM failure data
pattern generator

BER table
SRAM BER library

SRAM failure
data pattern

BER
Inputs for BER table

(Supply volt., temp., ...)

SRAM capacity (KB)
Information of virtual chip

Fig. 3. Fault case generator.

TABLE I. CO-SIMULATION PARAMETERS

Engine spec. 3.8 l V6 gasoline engine

Vehicle spec. Full-size sedan

Initial velocity of vehicle 80 km/h

SRAM capacity 128 kB

#of virtual chips 1000

Execution time 3 s

Range of supply voltage 0.4 V – 0.8 V

Range of temperature -50 °C – 150 °C

σVth of PMOS, NMOS 40 mV, 30 mV

Delta Vth of PMOS -24 mV

III. EVALUATION
A. Evaluation Methodology

Using the proposed evaluation environment, we inject the
SRAM failures and evaluate the vehicle dependability. As the
internal SRAM in the ECU, we use the conventional 6T
SRAM. By injecting the SRAM failures to the co-simulation
environment with the vehicle, engine, and EUC models, we
can obtain run-time behavior of the software and vehicle. The
software in the co-simulation is sometimes terminated
abnormally because of the failure injection. In abnormal
termination, the simulation presents two cases: a watchdog
timer interruption (runaway of the software) or an access
violation to an illegal address (bus error).

First, to obtain baseline data, we once run the co-simulation
without failure injection, which produces normally ended trace
data. The runtime of the co-simulation is 3 s on each virtual
chip. The accelerator throttle input is presented in Fig. 5(a).
Without injecting failures, the fuel injection quantity
corresponding to the accelerator throttle input should be Fig.
5(b). The vehicle velocity results in Fig. 5(c).

We inject failures to 1000 virtual chips. Even in a failure
injection case, sometimes neither the runaway nor bus error
occurs. It appears to be a normal termination, but the vehicle
speed might not be the value we expect. We define such an
outcome as abnormal vehicle behavior. If a vehicle velocity at
the end of the co-simulation (Time = 3 s) is in error by 0.5
km/h or more in comparison with Fig. 5. It is handled as an
abnormality. TABLE II shows a summary of the abnormalities.

TABLE II. SUMMARY OF ABNORMALITIES

Name of
abnormality

Description

Runaway
of software

Watchdog timer interrupts the software
and stops the simulation.

Bus error
Error occurs when accessing illegal address

of SRAM and stops the simulation.
Abnormal

vehicle behavior
Vehicle velocity at 3 s is in error by more than

0.5 km/h in comparison with baseline waveform.

0.5 1 1.5 2 2.5 3

0

5

10

15

20

25

0
Time (second)

A
cc

el
er

at
or

 a
ng

le
 (d

eg
re

e)

10.50 1.5 2 2.5 3

0.001

0.004

0.006

Time (second)

Fu
el

 in
je

ct
io

n
qu

an
ti

ty
 (k

g/
s)

0

0.002

0.003

0.005

0.5 1 1.5 2 2.5 3

75

78

80

82
83

0
Time (second)

Ve
hi

cl
e

ve
lo

ci
ty

 (k
m

/h
)

74

76
77

79

81

Fig. 4. (a) Accelerator angle input. (b) Normal fuel injection quantity.

(c) Vehicle velocity without failure.

(b) (c)

(a)

B. Evaluation Result
Fig. 5 shows the failure-injected waveforms of the fuel

injection quantities and the corresponding velocity data
obtained from the co-simulation when an operating voltage in
the SRAM is varied. The temperature is set to 0 °C. Among
these waveforms, 11 waveforms (i.e. 11 virtual chips) are
judged as having abnormal behavior at 0.6 V, 387 at 0.5 V, and
all at 0.4 V because the operation voltage drop worsens the
SRAM BER, which in turn negatively affects vehicle reliability.

As Fig. 5 shows, the fuel injection quantity and vehicle
velocity are closely related. At the operation voltage of 0.5 V,
three patterns of abnormality are apparent in the waveforms:

 Pattern 1: Fuel is somehow injected and the vehicle
speed increases between during 1–2 s; their
waveforms are out of alignment for the normal
waveforms. This phenomenon is explicable when
failures are injected to some of the 32 bits in the fuel
injection quantity variable. The difference from the
normal waveform becomes greater as the failure is
injected to a more-significant bit.

 Pattern 2: The fuel injection quantity is fixed to a
certain small value. The vehicle speed decreases
slightly. In this case, the engine control software runs
away because of SRAM failures, although the
watchdog timer is not triggered. The fuel injection
quantity variable cannot be updated and is therefore
fixed. In this pattern, the value of the injection
quantity is constant, whereas the vehicle speed
changes slope at the time of 1 s and 2 s. This is related
to the air–fuel ratio. The inflow of air varies along
with the throttle angle variation. Therefore, the air–
fuel ratio changes, thereby changing the engine speed
and the produced torque.

 Pattern 3: Fuel is not injected to the engine at all. An
output enable variable in SRAM domain is tampered.

Fig. 6 presents the number of abnormal virtual chips when
the temperature is varied. The range in red shows the number
of abnormal terminations (runaway of software and bus error).
Another in blue represents the number of abnormal vehicle
behaviors. At high temperatures, the number of abnormal
virtual chips becomes greater because the read margin of the
SRAM degrades. At 0.7 V or higher voltage, abnormal
termination is not observed.

0 0.5 1 1.5 2 2.5 30.5 1 1.5 2 2.5 3

75

78

80

82
83

0
Time (second)

Ve
hi

cl
e

ve
lo

ci
ty

 (k
m

/h
)

74

76
77

79

81

74

75

76

77

78

79

80

81

82

83

0 0.5 1 1.5 2 2.5 30.5 1 1.5 2 2.5 3

75

78

80

82
83

0
Time (second)

Ve
hi

cl
e

ve
lo

ci
ty

 (k
m

/h
)

74

76
77

79

81

74

75

76

77

78

79

80

81

82

83

0 0.5 1 1.5 2 2.5 30.5 1 1.5 2 2.5 3

75

78

80

82
83

0
Time (second)

Ve
hi

cl
e

ve
lo

ci
ty

 (k
m

/h
)

74

76
77

79

81

10.50 1.5 2 2.5 3

0.001

0.004

0.006

Time (second)

Fu
el

 in
je

ct
io

n
qu

an
ti

ty
 (k

g/
s)

0

0.002

0.003

0.005

0.5 1 1.5 2 2.5 3

0.001

0.004

0.006

Time (second)

Fu
el

 in
je

ct
io

n
qu

an
ti

ty
 (k

g/
s)

0

0.002

0.003

0.005

0 3

0.5 1 1.5 2 2.5 3

0.001

0.004

0.006

Time (second)

Fu
el

 in
je

ct
io

n
qu

an
ti

ty
 (k

g/
s)

0

0.002

0.003

0.005

0

0.5V

0.4V

0.6V

0.4V

0.5V

0.6V

Pattern1

Pattern2

Pattern3

Pattern1

Pattern2Pattern3

All “0”

Fig. 5. Fuel injection quantity variation (a) and vehicle velocity variation (b)

with the voltage drop.

0
200
400
600
800

1000

-50 -25 0 40 80 120 150

0
200
400
600
800

1000

-50 -25 0 40 80 120 150

0
200
400
600
800

1000

-50 -25 0 40 80 120 150
Temperature (℃)

Temperature (℃)

Temperature (℃)

of

 a
bn

or
m

al
vi

rt
ua

l c
hi

ps

of
 a

bn
or

m
al

vi

rt
ua

l c
hi

ps

of
 a

bn
or

m
al

vi
rt

ua
lc

hi
ps

0.5V

0.4V

0.6V

abnormal vehicle behavior
abnormal termination
(Runaway of software and bus error)

Fig. 6. Variation of the number of abnormal chips by the voltage drop.

(a) (b)

IV. DEMONSTRATION SYSTEM
To elucidate the effect of failure injection on vehicle

behavior, we created a demonstration system. This system
consists of the engine model (Matlab®/Simulink®) and vehicle
model (CarSim®); moreover, we added software that reflects
vehicle graphics (VehicleSim Visualizer). At this time, we did
not use VirtualizerTM to simulate the ECU because it is
unsuitable for real-time simulation. Therefore, we prepared
another ECU model and failure model, which modified the
output signals from the ECU to Matlab®/Simulink®. The
failure model can not simulate strictly in the same way as
VirtualizerTM. We selected and modified important variables
only. Figure 7 shows the demonstration system data flow:

1. A wheel and an accelerator are connected to a PC in
the demonstration system. They obtain a wheel angle
and an accelerator angle and communicate them to the
engine model.

2. The engine model transfers its states to the ECU.

3. The ECU model dispatches the subsequent command
signals. For example, if the engine is at low speed and
the accelerator angle is large, the ECU model injects
more fuel to the engine.

4. The failure model modifies important variables. The
modification is made based on the failure data pattern
that has been prepared in advance. The important
engine control variables, comprising 32 bits, are
merely modified.

5. Using the fuel injection variables, the engine model
calculates an engine speed and torque, which are
forwarded to the vehicle model (CarSim®). It
simulates the vehicle behavior.

6. The vehicle behavior appears on the display with
VehicleSim Visualizer, and the reaction force in
steering is propagated to the wheel.

Matlab®/Simulink®
Simulator

CarSim®
Simulator

ECU

Failure model

Engine model

Vehicle
model wheel

accelerator

VehicleSim
Visualizer

1

2

3

4

5

6

6

Failure Data
Pattern

Fig. 7. Data flow of the demonstration system.

In the demonstration system, we prepared a scenario related
to a railroad crossing. We prepared a driving course that has a
railroad across it. The railroad crossing is well known to emit
an electromagnetic noise [4]. When the vehicle approaches the
railroad crossing, the ECU gets large noise and its supply
voltage decreases. The BER increases because of the operation
voltage drop, which causes SRAM failures.

Fig. 9 shows an actual image displayed on the monitors in
the demonstration system. The left side in Monitor 1 shows
parameters: a supply voltage, accelerator angle, fuel injection

quantity, and engine speed. The right side in Monitor 1 shows
an SRAM failure map on which red dots represent failure bits.
Monitor 2 shows actual vehicle graphics displayed on the
VehicleSim Visualizer. A person can drive it by grabbing the
wheel. This monitor indicates that the vehicle does not move
even if stepping on the accelerator, and it collides with the train.
The accelerator failure occurs when the crossing was
approached, the noise goes into Engine control ECU, causing
SRAM failure.

Supply Voltage of Controller

Accelerator Angle

Fuel Injection Quantity

Engine Speed
SRAM Failure Map

Using Conv. 6T SRAM

Dangerous Condition!

Accelerator Angle

Displacement

EGR Command 1

EGR Command 2

EGR Command 3

IAC Valve Command

Ignition Timing

Fuel Injection Quantity

S E M

S : Sign bit, E : Exponent bit, M : Mantissa bit

Monitor 1

Monitor 2

Fig. 8. Image displayed on the monitors.

V. CONCLUSION
We have developed a model-based vehicle dependability

evaluation environment that can inject device-level SRAM
failure. After using this environment and injecting SRAM
failure, we observed the vehicle velocity and confirmed that
the failure effects of important variables appeared clearly.
Therefore, vehicle ECU evaluation can be performed easily.
We have also created a demonstration system that readily
portrays the effects of SRAM failure on the vehicle behavior.

ACKNOWLEDGMENT
This work was supported by Synopsys Inc. for providing

the licenses of VirtualizerTM in this paper.

REFERENCES
[1] Y. Nakata, Y. Ito, Y. Sugure, S. Oho, Y. Takeuchi, S. Okumura, H.

Kawaguchi and M. Yoshimoto, "Model-Based Fault Injection for Failure
Effect Analysis – Evaluation of Dependable SRAM for Vehicle Control
Units –," Workshop on Dependable and Secure Nanocomputing (WDSN),
in conjunction with International Conference on Dependable Systems
and Networks (DSN), pp. 91-96, June, 2011.

[2] E. Seevinck, F.J. List, and J. Lohstroh, “Static-noise margin analysis of
MOS SRAM cells,” IEEE Journal of Solid-State Circuits, vol. 22, no. 5,
pp. 748-754, 1987.

[3] R. Heald, and P. Wang, “Variability in sub-100 nm SRAM designs,”
IEEE/ACM International Conference on Computer Aided Design
(ICCAD), pp. 347-352, 2004.

[4] S. Niska, “Electromagnetic Interface: A major Source of Faults in
Swedish Railway,” International Journal of Performability Engineering
(IJPE),vol. 5, no. 2, pp. 187-196, 2009.

