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Abstract—Recently, technology of electronic control units 

(ECUs) mounted on vehicles has progressed. ECUs are now used 
in various applications such as throttle control, brake control, 
and pedestrian recognition. Accordingly, testing to ensure ECU 
dependability has become complicated. We have developed a 
model-based evaluation environment that can readily analyze the 
effects of the device-level SRAM failure on an entire vehicle 
system. Injecting failures that occur in this environment yielded 
data related to fuel injection quantity and vehicle speed. These 
data clearly reflect the effects of the SRAM failures. We have 
also constructed a demonstration system to report the effects of 
SRAM failure intelligibly. 

Keywords—ECU; model-based evaluation environment; 
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I. INTRODUCTION  
With the advent of automobile electronics, electronics 

control units (ECUs) mounted on vehicles have been 
increasing year by year. The ECUs mounted on a typical car 
now number 30−60. A luxury vehicle might have 100 or more 
ECUs mounted. The use of ECUs has extended to higher 
functionality, such as intelligent transport systems (ITS) and 
pursuit of safety and comfort. For an automotive LSI, the most 
important consideration is dependability. The operating voltage 
and temperature must be managed carefully. Nevertheless, tests 
to clarify their function are difficult to conduct. They are costly 
and time consuming. To make matters worse, managing the 
behavior of a whole vehicle system is virtually impossible. An 
efficient evaluation environment to assess vehicle 
dependability is therefore earnestly sought by engineers. 

We propose a model-based environment to evaluate an 
automotive LSI. Particularly in this paper, we specifically 
examine SRAM. On CPUs used today, SRAM occupies a large 
number of the transistors. Therefore, the dependability of the 
LSI operation can be regarded as reliant on the SRAM. We 
injected various failures to the SRAM in an engine control 
ECU and assessed the impacts of the failures on a vehicle. We 
also created a demonstration system for vehicle behavior 
evaluation. 

II.  FAILURE INJECTION SYSTEM 
A. Evaluation System 

Fig. 1 presents an illustration of the concept of the 
evaluation environment. It comprises three models: a vehicle 
model, engine model, and ECU model. It is called a cyber 

physical system (CPS), which is a collaborative system of 
electronic and mechanical subsystems. The kinetic behavior of 
the vehicle (e.g. transmission and tire friction calculation) is 
simulated by CarSim®1. The engine (torque production and 
engine speed calculation) is simulated by Matlab®/Simulink®2, 
based on a 3.8 L V6 gasoline engine. The ECU behavior is 
simulated by VirtualizerTM3. 
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Fig. 1. Proposed evaluation environment. 

Failure injection to the ECU is presented briefly in Fig. 2. 
The fault case generator (FCG) generates time-series failure 
data patterns according to evaluation conditions: supply 
voltage, temperature, NBTI aging (e.g. 10 years), and SRAM 
capacity. The fault-injectable bus bridge (FIB) is inserted 
between CPU and internal SRAM. By injecting a failure data 
pattern to the internal SRAM through the FIB, data destruction 
can be modeled. 
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Fig. 2. Failure injection to ECU. 

                                                           
1 CarSim® is a registered trademark of Mechanical Simulation Corporation. 
2 Matlab®/Simulink® is a registered trademark of The Math Works, Inc. 
3 VirtualizerTM is a trademark of Synopsys, Inc. 



B. SRAM fault case generator 
Fig. 3 shows a block diagram of the FCG. As inputs, the 

FCG uses device conditions of the SRAM (supply voltage, 
temperature, process variation, NBTI aging, soft error rate, 
capacity), SRAM bit error rate (BER) libraries obtained from a 
transistor-level Monte Carlo simulation, and information of a 
virtual chip (described below). The SRAM failure data pattern 
generator refers to the SRAM BER libraries and obtains one 
datum corresponding to the SRAM device conditions. Using 
the BER and virtual chip information, the FCG generates time-
series SRAM failure data patterns as output. The supply 
voltage and temperature can change with time. 

A virtual chip represents one chip considering SRAM 
variability. On an actual LSI, SRAM failures are attributable to 
poor read and write margins derived from transistor random 
variation, or because of soft errors that occur randomly: the 
failure might occur randomly in time and space dimensions. 
Information of the virtual chip is expressed as failure 
occurrence locations and times. Using the virtual chips, we can 
execute large-scale simulations assuming chip variation. 

TABLE I presents a summary of the parameters for our 
simulation. The design rule is 65 nm, and the process is at the 
typical corner. For the NBTI aging in a pMOS, we assume that 
the threshold degradation is −24 mV in 10-year aging. 
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Fig. 3. Fault case generator. 

TABLE I.  CO-SIMULATION PARAMETERS 

Engine spec. 3.8 l V6 gasoline engine 

Vehicle spec. Full-size sedan 

Initial velocity of vehicle 80 km/h 

SRAM capacity 128 kB 

#of virtual chips 1000 

Execution time 3 s 

Range of supply voltage 0.4 V – 0.8 V 

Range of temperature -50 °C – 150 °C 

σVth of PMOS, NMOS 40 mV, 30 mV 

Delta Vth of PMOS -24 mV 

 
 

III. EVALUATION 
A. Evaluation Methodology 

Using the proposed evaluation environment, we inject the 
SRAM failures and evaluate the vehicle dependability. As the 
internal SRAM in the ECU, we use the conventional 6T 
SRAM. By injecting the SRAM failures to the co-simulation 
environment with the vehicle, engine, and EUC models, we 
can obtain run-time behavior of the software and vehicle. The 
software in the co-simulation is sometimes terminated 
abnormally because of the failure injection. In abnormal 
termination, the simulation presents two cases: a watchdog 
timer interruption (runaway of the software) or an access 
violation to an illegal address (bus error). 

First, to obtain baseline data, we once run the co-simulation 
without failure injection, which produces normally ended trace 
data. The runtime of the co-simulation is 3 s on each virtual 
chip. The accelerator throttle input is presented in Fig. 5(a). 
Without injecting failures, the fuel injection quantity 
corresponding to the accelerator throttle input should be Fig. 
5(b). The vehicle velocity results in Fig. 5(c). 

We inject failures to 1000 virtual chips. Even in a failure 
injection case, sometimes neither the runaway nor bus error 
occurs. It appears to be a normal termination, but the vehicle 
speed might not be the value we expect. We define such an 
outcome as abnormal vehicle behavior. If a vehicle velocity at 
the end of the co-simulation (Time = 3 s) is in error by 0.5 
km/h or more in comparison with Fig. 5. It is handled as an 
abnormality. TABLE II shows a summary of the abnormalities. 

TABLE II.  SUMMARY OF ABNORMALITIES 

Name of  
abnormality 

Description 

Runaway 
of software 

Watchdog timer interrupts the software 
and stops the simulation. 

Bus error  
Error occurs when accessing illegal address 

of SRAM and stops the simulation. 
Abnormal 

vehicle behavior 
Vehicle velocity at 3 s is in error by more than 

0.5 km/h in comparison with baseline waveform. 
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Fig. 4. (a) Accelerator angle input. (b) Normal fuel injection quantity. 

(c) Vehicle velocity without failure. 

(b) (c)

(a) 



B. Evaluation Result 
Fig. 5 shows the failure-injected waveforms of the fuel 

injection quantities and the corresponding velocity data 
obtained from the co-simulation when an operating voltage in 
the SRAM is varied. The temperature is set to 0 °C. Among 
these waveforms, 11 waveforms (i.e. 11 virtual chips) are 
judged as having abnormal behavior at 0.6 V, 387 at 0.5 V, and 
all at 0.4 V because the operation voltage drop worsens the 
SRAM BER, which in turn negatively affects vehicle reliability. 

As Fig. 5 shows, the fuel injection quantity and vehicle 
velocity are closely related. At the operation voltage of 0.5 V, 
three patterns of abnormality are apparent in the waveforms: 

 Pattern 1: Fuel is somehow injected and the vehicle 
speed increases between during 1–2 s; their 
waveforms are out of alignment for the normal 
waveforms. This phenomenon is explicable when 
failures are injected to some of the 32 bits in the fuel 
injection quantity variable. The difference from the 
normal waveform becomes greater as the failure is 
injected to a more-significant bit. 

 Pattern 2: The fuel injection quantity is fixed to a 
certain small value. The vehicle speed decreases 
slightly. In this case, the engine control software runs 
away because of SRAM failures, although the 
watchdog timer is not triggered. The fuel injection 
quantity variable cannot be updated and is therefore 
fixed. In this pattern, the value of the injection 
quantity is constant, whereas the vehicle speed 
changes slope at the time of 1 s and 2 s. This is related 
to the air–fuel ratio. The inflow of air varies along 
with the throttle angle variation. Therefore, the air–
fuel ratio changes, thereby changing the engine speed 
and the produced torque.  

 Pattern 3: Fuel is not injected to the engine at all. An 
output enable variable in SRAM domain is tampered. 

Fig. 6 presents the number of abnormal virtual chips when 
the temperature is varied. The range in red shows the number 
of abnormal terminations (runaway of software and bus error). 
Another in blue represents the number of abnormal vehicle 
behaviors. At high temperatures, the number of abnormal 
virtual chips becomes greater because the read margin of the 
SRAM degrades. At 0.7 V or higher voltage, abnormal 
termination is not observed. 

0 0.5 1 1.5 2 2.5 30.5 1 1.5 2 2.5 3

75

78

80

82
83

0
Time (second)

Ve
hi

cl
e 

ve
lo

ci
ty

 (k
m

/h
)

74

76
77

79

81

74

75

76

77

78

79

80

81

82

83

0 0.5 1 1.5 2 2.5 30.5 1 1.5 2 2.5 3

75

78

80

82
83

0
Time (second)

Ve
hi

cl
e 

ve
lo

ci
ty

 (k
m

/h
)

74

76
77

79

81

74

75

76

77

78

79

80

81

82

83

0 0.5 1 1.5 2 2.5 30.5 1 1.5 2 2.5 3

75

78

80

82
83

0
Time (second)

Ve
hi

cl
e 

ve
lo

ci
ty

 (k
m

/h
)

74

76
77

79

81

10.50 1.5 2 2.5 3

0.001

0.004

0.006

Time (second)

Fu
el

 in
je

ct
io

n 
qu

an
ti

ty
 (k

g/
s)

0

0.002

0.003

0.005

0.5 1 1.5 2 2.5 3

0.001

0.004

0.006

Time (second)

Fu
el

 in
je

ct
io

n 
qu

an
ti

ty
 (k

g/
s)

0

0.002

0.003

0.005

0 3

0.5 1 1.5 2 2.5 3

0.001

0.004

0.006

Time (second)

Fu
el

 in
je

ct
io

n 
qu

an
ti

ty
 (k

g/
s)

0

0.002

0.003

0.005

0

0.5V

0.4V

0.6V

0.4V

0.5V

0.6V

Pattern1

Pattern2

Pattern3

Pattern1

Pattern2Pattern3

All “0”

 
Fig. 5. Fuel injection quantity variation (a) and vehicle velocity variation (b) 

with the voltage drop. 

0
200
400
600
800

1000

-50 -25 0 40 80 120 150

0
200
400
600
800

1000

-50 -25 0 40 80 120 150

0
200
400
600
800

1000

-50 -25 0 40 80 120 150
Temperature (℃)

Temperature (℃)

Temperature (℃)

# 
of

 a
bn

or
m

al
vi

rt
ua

l c
hi

ps
# 

of
 a

bn
or

m
al

 
vi

rt
ua

l c
hi

ps
# 

of
 a

bn
or

m
al

vi
rt

ua
lc

hi
ps

0.5V

0.4V

0.6V

abnormal vehicle behavior
abnormal termination
(Runaway of software and bus error)  

Fig. 6. Variation of the number of abnormal chips by the voltage drop. 

(a) (b) 



IV. DEMONSTRATION SYSTEM 
To elucidate the effect of failure injection on vehicle 

behavior, we created a demonstration system. This system 
consists of the engine model (Matlab®/Simulink®) and vehicle 
model (CarSim®); moreover, we added software that reflects 
vehicle graphics (VehicleSim Visualizer). At this time, we did 
not use VirtualizerTM to simulate the ECU because it is 
unsuitable for real-time simulation. Therefore, we prepared 
another ECU model and failure model, which modified the 
output signals from the ECU to Matlab®/Simulink®. The 
failure model can not simulate strictly in the same way as 
VirtualizerTM. We selected and modified important variables 
only. Figure 7 shows the demonstration system data flow: 

1. A wheel and an accelerator are connected to a PC in 
the demonstration system. They obtain a wheel angle 
and an accelerator angle and communicate them to the 
engine model.  

2. The engine model transfers its states to the ECU. 

3. The ECU model dispatches the subsequent command 
signals. For example, if the engine is at low speed and 
the accelerator angle is large, the ECU model injects 
more fuel to the engine. 

4. The failure model modifies important variables. The 
modification is made based on the failure data pattern 
that has been prepared in advance. The important 
engine control variables, comprising 32 bits, are 
merely modified. 

5. Using the fuel injection variables, the engine model 
calculates an engine speed and torque, which are 
forwarded to the vehicle model (CarSim®). It 
simulates the vehicle behavior. 

6. The vehicle behavior appears on the display with 
VehicleSim Visualizer, and the reaction force in 
steering is propagated to the wheel. 
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Fig. 7. Data flow of the demonstration system. 

In the demonstration system, we prepared a scenario related 
to a railroad crossing. We prepared a driving course that has a 
railroad across it. The railroad crossing is well known to emit 
an electromagnetic noise [4]. When the vehicle approaches the 
railroad crossing, the ECU gets large noise and its supply 
voltage decreases. The BER increases because of the operation 
voltage drop, which causes SRAM failures. 

Fig. 9 shows an actual image displayed on the monitors in 
the demonstration system. The left side in Monitor 1 shows 
parameters: a supply voltage, accelerator angle, fuel injection 

quantity, and engine speed. The right side in Monitor 1 shows 
an SRAM failure map on which red dots represent failure bits. 
Monitor 2 shows actual vehicle graphics displayed on the 
VehicleSim Visualizer. A person can drive it by grabbing the 
wheel. This monitor indicates that the vehicle does not move 
even if stepping on the accelerator, and it collides with the train. 
The accelerator failure occurs when the crossing was 
approached, the noise goes into Engine control ECU, causing 
SRAM failure. 
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Fig. 8. Image displayed on the monitors. 

V. CONCLUSION 
We have developed a model-based vehicle dependability 

evaluation environment that can inject device-level SRAM 
failure. After using this environment and injecting SRAM 
failure, we observed the vehicle velocity and confirmed that 
the failure effects of important variables appeared clearly. 
Therefore, vehicle ECU evaluation can be performed easily. 
We have also created a demonstration system that readily 
portrays the effects of SRAM failure on the vehicle behavior. 
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