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 
Abstract— To prevent lifestyle diseases, wearable bio-signal 

monitoring systems for daily life monitoring have attracted 
attention. Wearable systems have strict size and weight 
constraints, which impose significant limitations of the battery 
capacity and the signal-to-noise ratio of bio-signals. This report 
describes an electrocardiograph (ECG) processor for use with a 
wearable healthcare system. It comprises an analog front end, a 
12-bit ADC, a robust Instantaneous Heart Rate (IHR) monitor, a 
32-bit Cortex-M0 core, and 64 Kbyte Ferroelectric Random 
Access Memory (FeRAM). The IHR monitor uses a short-term 
autocorrelation (STAC) algorithm to improve the heart-rate 
detection accuracy despite its use in noisy conditions. The ECG 
processor chip consumes 13.7 A for heart rate logging 
application. 
 

Index Terms— Biomedical signal processing, 
Electrocardiography, Heart rate extraction, Microcontrollers, 
Mobile healthcare, Wearable sensors 
 

I. INTRODUCTION 

ECAUSE of the advent of an aging society, mobile health 
plays an ever more prominent role [1]. Daily-life 

monitoring is especially important in preventing lifestyle 
diseases, which have rapidly increased the number of patients 
and elderly people requiring nursing care. Our goal is the 
monitoring and display of vital signals and physical activity in 
daily life to improve users’ quality of life and realize a smart 
society. 

We propose an Instantaneous Heart Rate (IHR) monitoring 
and electrocardiograph (ECG) processor for use in a wearable 
healthcare system. The IHR is an important bio-signal used for 
heart disease detection, heart rate variation analysis [2], and 
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exercise intensity estimation [3]. 
Key factors affecting wearable system usability are 

miniaturization and weight reduction. However, a wearable 
ECG monitor is sensitive to extraneous noise because its 
electrodes are close together. The SNR of ECG signals will be 
especially degraded if a user is not at rest. Consequently, a 
sophisticated and costly analog front end is usually required. 
However, the feature and purpose of our approach is digital 
signal processing to reduce the performance requirements of 
the analog portion and to minimize the overall system power 
consumption. The battery weight is a dominant characteristic of 
the wearable system. Therefore, the battery capacity and power 
consumption must be limited as much as possible. 

II. SYSTEM DESCRIPTION AND ARCHITECTURE 

Fig. 1 presents an overview of the wearable healthcare 
system, comprising the proposed ECG processor, Near Field 
Communication (NFC) tag IC, and accelerometer IC. The NFC 
is used for program loading, individual optimization, and 
logging data transfer from the ECG processor. Compared with 
Bluetooth Low Energy or ZigBee, the standby power of NFC is 
extremely small. The active communication energy is also 
consumed by a reader/writer side when using a passive NFC tag. 
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Fig. 1.  Wearable healthcare system overview. 
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Therefore, the proposed system uses NFC to cooperate with a 
Smartphone (or reader/writer). 

Fig. 2 presents a block diagram showing the proposed ECG 
processor, which consists of an ECG sensing block, 
Ferroelectric Random Access Memory (FeRAM), 32-bit 
Coretex-M0 core, and extra interfaces. Because the frequency 
range of vital signals is low (less than 1 kHz), both the standby 
power reduction and sleep time maximization are important to 
minimize the total power consumption. The 64-Kbyte FeRAM 
is integrated as a data buffer for daily life monitoring because 
the leakage current of the data buffer is dominant in the standby 
state. 

The ECG sensing block has an analog front end (AFE), a 
12-bit SAR ADC, and a robust IHR monitor. Although the IHR 
monitor using high-order eight-bit data of the ADC, 12-bit 
ADC output also directly connected to Cortex M0. The AFE 
includes a 34-dB gain instrumental amplifier and a 20-dB gain 
amplifier as shown in Fig. 3. The ADC sampling rate can be set 
to 1 kSamples/s for ECG processing mode and 128 Samples/s 
for IHR monitoring mode. The robust IHR monitor is the main 
contribution of this study. 

The operating frequency of the Cortex M0 core, which is 
used for an on-node vital signal processing, is 24 MHz, whereas 

the operating frequency of other digital blocks is 32 kHz. The 
slow signals in the 32-kHz domain are synchronized at the 
low-speed bus to the 24-MHz domain as shown in Fig. 4. To 
minimize the power consumption of registers in the low-speed 
bus, the 24-MHz clock is gated using bus control signals. When 
the Cortex M0 core is in a deep sleep state, the on-chip 24-MHz 
oscillator is also stopped. 

Fig. 5 shows the sequence diagram of the proposed system 
for the data logging application. When the system starts, only 
the 32-kHz real time clock and NFC interface circuits for RF 
signal detection are activated. If the NFC reader/writer starts 
communication in the transmission range, then the NFC 
interface and sequencer of the ECG processor are kicked by the 
NFC tag IC. 

First, a program binary for the Cortex M0 is transferred from 
the reader/writer side. Then the program is stored directly in 
FeRAM. When the ECG processor receives the "bootloading" 
packet, the program is transferred from FeRAM to instruction 
SRAM. The program will be running. Before starting a data 
logging service or any other service, the NFC reader/writer 
communicates with Cortex M0 core for parameter 

Fig. 2.  Block diagram of ECG processor. 
  

Bias circuit Instrumental Amplifier (34-dB gain) 2nd buffer (20-dB gain)

Fig. 3.  Analog front-end circuits of ECG sensing block. 

 

Fig. 4.  Low speed bus and clock gating scheme for asynchronous clocks. 
 

Fig. 5.  Operation sequences of proposed sensor. 
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configuration, time synchronization, and checking results of the 
self-test. When a packet to Cortex M0 core is received, the core 
is awakened by an interrupt request (IRQ) because it is 
normally in a deep sleep state. The payload of the received 
packet is accessible through the data bus. A "logging start" 
packet and a "logging stop" packet use the same procedure. 

During the data logging operation, a timer circuit 
periodically wakes up the Cortex M0 core using the IRQ. Then 
the measured or calculated data are stored to FeRAM through 
the data bus. Therefore, the FeRAM is used both as a program 
ROM and a data buffer. The logging data in the FeRAM can be 
read out directly by the NFC interface circuit without the 
Cortex M0 core. 

All application layer functions are defined using the payload 
in the transport protocol frame of NFC. 

III. ROBUST INSTANTANEOUS HEART RATE MONITOR 

Ultra-low-power ADCs, which have sub-W power 
consumption and a limited sample rate, have been developed 
for biomedical applications [4]. Furthermore, according to 
Moore's law, the power of digital components increases with 
the progress of process technology. However, the power 
consumption of analog circuits will not decrease similarly. 
Therefore, the features and purposes of our approach are the use 
of digital signal processing to reduce the performance 
requirements of analog components including electrode and to 
minimize the system's overall power consumption. In this work, 
a noise tolerant algorithm is implemented in dedicated 

hardware to achieve both noise tolerance and low-power 
consumption. 

A. Heart rate extraction algorithms 

Extracting R-waves (see Fig. 6(a)) with threshold 
determination is a general approach. Recently, various 
statistical approaches have been proposed for noise-tolerant 
threshold calculation. 

The Pan–Tompkins (PT) algorithm [5] is most commonly 
used for beat detection. This algorithm uses band-pass filtering, 
differentiation, squaring, and moving window integration. The 
SQRS [6] and WQRS [7] algorithms can respectively detect 
QRS based on ECG slope and length transform. The SQRS uses 
band pass filtering for noise reduction, which uses only the 
integer coefficient. The WQRS also uses a low-pass filter to 
remove baseline wander. The Discrete Wavelet Transform 
(DWT) [8–10] uses a wavelet transform with quadratic spline 
wavelet (QSWT). The threshold is calculated using the root 
mean square value of the wavelet transform. This algorithm has 
been used in robust ECG monitoring LSIs [10–12]. The Quad 
Level Vector (QLV) algorithm [13] is implemented in 
dedicated hardware for ECG monitoring LSI [14, 15]. The 
QLV is generated using DWT and the adaptive threshold. Then, 
the threshold is determined by the maximum mean deviation 
(MD) of the previous heartbeats. The Continuous Wavelet 
Transform (CWT) algorithm [16–18] employs a Mexican hat 
wavelet in the frequency interval of 15–18 Hz. The R-peak can 
be extracted using the adaptive threshold, which is calculated 
using the modulus maxima of the CWT. This algorithm is also 
implemented in [15]. 

However, as depicted in Fig. 6, both misdetection and false 
detection are increased in the wearable healthcare system by 
noise from various sources such as myoelectric signals from 
muscle and electrode movement because the power 
consumption and electrode distance of the wearable sensor are 
strictly limited to reduce its size and weight. 

Autocorrelation [19, 20] and template matching [21] are 
more robust approaches to prevent incorrect detection because 
these algorithms use the similarity of QRS complex waveforms 
and have no threshold calculation process. Autocorrelation has 
been used in a non-invasive monitoring system [20]. However, 
the method necessitates numerous computations because it 
calculates the average heart-rate over a long duration (30 s). In 
our previous work, a short-term autocorrelation (STAC) 
technique was proposed for IHR detection [22]. 

Fig. 7 portrays IHR extraction using STAC. As depicted in 
Fig. 7 and (1–5), the IHR at time tn (IHRn) is obtained as a 
window shift length (Tshift) that maximizes the correlation 
coefficient between the template window and the search 
window (CCn). 

 

      





1

0
shiftnwnw1n

win

shift
    

L

i

iTtQitQwTCC  (1) 

  
shift

sshifts

shift n
5.125.0

n maxarg TCCRR
FTF

T


  (2) 

swin 5.1 FL   (3) 

(c) Various noises

(a) ECG waveform example

(b) Noise problem of threshold approach
 
Fig. 6.  Threshold based R-wave detection and its noise problems in wearable
healthcare systems. 
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In the equations presented above, Fs, Lwin, and w1 respectively 
denote the sampling rate (samples/s), the window length, and 
the weight coefficient. The value of Tshift is set as 0.25 s to 1.5 s 
because the heart rate of a healthy subject is 40 bpm to 240 bpm. 
The Lwin is updated according to the estimated IHR to reduce 
the computational amount and to improve the IHR estimation 
accuracy. Then, the range of Lwin and w1 is determined by the 
maximum rate of the beat-to-beat variation, which is generally 
20% in a healthy subject [23]. 

 

B. Hardware implementation of the heart rate monitor 

In this work, we introduce a robust IHR monitor, which 
employs two-step noise reduction technique. In the first stage, 

the QSWT filter is used to mitigate the baseline wander and 
hum noise. Fig. 8 presents a block diagram and frequency 
characteristics of the QSWT with 128-Hz sampling rate. The 
QSWT requires few calculations and low hardware cost 
because it can be implemented using only adders and shift 
operators. The base-line wander and hum noise can be removed 
easily using QSWT. Unfortunately, it is difficult to remove the 
myoelectric noise and electrode motion artifacts only using 
QSWT because these frequency ranges are similar to the 
desired ECG signal. 

Therefore, in the second stage, the IHR is extracted using the 
STAC method. The STAC is also implemented as dedicated 
hardware to minimize the power overhead. Fig. 9 presents the 
block diagram of the IHR monitor and STAC processing core. 
Each STAC core has CC buffer to store the intermediate value 
of CCn[Tshift] in (1). The CC buffer is updated in 
synchronization with ADC output (see Fig. 10). Since the Lwin 
is 1.5 s and because IHR is updated every second, two STAC 
cores alternately calculate IHR with 0.5 s overlap. 

The dual STAC core architecture also contributes to 
reduction of the operating frequency. Fig. 11 shows the 
required operating frequency to realize the real-time STAC 
calculation. Because the sampling rate target is set to 128 
Samples/s in this study, the required frequency is lower than 32 
kHz when applying dual core architecture. Therefore, this 
STAC hardware can operate only using 32.768-kHz real-time 
clocks. Note that the real-time clock, which has low power 
consumption, is a necessary component of a wearable 
monitoring system. 

The gate level simulation result shows the IHR monitor 
block, which contains QSWT, two STAC cores, and SRAMs, 
consumes 1.21 A in 130-nm CMOS process. The digital logic 
and SRAMs respectively consume 0.26 A and 0.95 A, which 
include 0.4-A leakage current. 

C. Performance evaluation of heart rate extraction 

To evaluate the heart rate extraction algorithms, we 
implemented the conventional and our proposed algorithms, 
which combined STAC with QSWT filter, using MATLAB. 
First, we investigated the successful rate of heart rate extraction 
using 23 records from the MIT-BIH arrhythmia database [24]. 
Table I shows that no significant difference was found among 
the successful rates in clean waveforms, although they include 
arrhythmia.  

(a) Block diagram (b) Frequency characteristics
Fig. 8.  Block diagram and frequency characteristics of QSWT. 

 

(a) IHR monitor (b) STAC core

Fig. 9.  Block diagram of robust IHR monitor. 
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Next, we evaluated the noise tolerance using the MIT-BIH 
noise stress test database [25]. Fig. 12 shows the relation 
between the intensity of noise and the success rate of IHR 
detection. The MIT-BIH record #100 is used to evaluate the 
effect of noise contamination and to eliminate the effect of 
arrhythmia because this record contains a small number of 
arrhythmia beats. A muscle artifact and motion artifact records 
are used because these noises have critical frequency 
characteristics, as presented in Fig. 6. Then, the signal-to-noise 
ratio (SNR) is defined as shown below. 

2
log10

aN

S
SNR


  (6) 

 
Here, S, N, and a respectively denote the signal power, 
frequency-weighted noise power, and scale factor. Simulation 
results show that the proposed algorithm has better noise 
tolerance in each condition. As shown in Fig. 13, the proposed 
IHR monitor has higher noise tolerance and minimum current 
consumption compared with previous studies of hardware 
implemented heart rate extractor. 

Finally, we evaluated the heart rate extraction success rate 
using the measured ADC output data of proposed SoC. To 
evaluate the noise tolerance, the ADC output data with the rest, 
walking, and running condition are used (see Fig. 14). The 
duration of each condition is 30s. Table II shows the 
performance comparison of heart rate extraction success rate 
with healthy five subjects, from 22 to 29 year-old man. As 
shown in Table II, the proposed method still has better 
performance in real data. 

IV. IMPLEMENTATION RESULT 

The test chip is fabricated using 130-nm CMOS technology. 
Fig. 15 presents a chip photograph and a performance summary. 
The operating voltage is 1.2 V for AFE, ADC, SRAM, 24-MHz 
oscillator, and digital blocks. The FeRAM, 32-KHz oscillator, 
and IO circuits are operated with 3.0 V supply voltage. 
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Fig. 14.  Extracted IHR comparison example of subject #1 in rest, walking, and
running condition using measured ADC output of proposed SoC. 
 

TABLE II 
PERFORMANCE COMPARISON OF IHR EXTRACTION SUCCESS RATE

[%] WITH MEASURED DATA 
DWT QLV CWT Prop.

Rest 100.0 100.0 100.0 100.0
Walking 90.0 96.7 100.0 100.0
Running 83.3 80.0 96.7 100.0
Total 91.1 92.2 98.9 100.0
Rest 100.0 100.0 100.0 100.0
Walking 93.3 100.0 100.0 100.0
Running 93.3 90.0 100.0 96.7
Total 95.6 96.7 100.0 98.9
Rest 100.0 100.0 96.7 100.0
Walking 96.7 96.7 96.7 100.0
Running 96.7 93.3 96.7 100.0
Total 97.8 96.7 96.7 100.0
Rest 100.0 100.0 100.0 100.0
Walking 100.0 100.0 100.0 100.0
Running 93.3 96.7 100.0 100.0
Total 97.8 98.9 100.0 100.0
Rest 96.7 93.3 96.7 100.0
Walking 100.0 93.3 96.7 96.7
Running 96.7 90.0 96.7 96.7
Total 97.8 92.2 96.7 97.8
Rest 99.3 98.7 98.7 100.0
Walking 96.0 97.3 98.7 99.3
Running 92.7 90.0 98.0 98.7
Total 96.0 95.3 98.4 99.3

Average

Subject
#1

Subject
#2

Subject
#3

Subject
#4

Subject
#5

 TABLE I 
PERFORMANCE COMPARISON OF IHR EXTRACTION SUCCESS 

RATE [%] WITH MIT-BIH ARRYTHMIA DATABASE [24] 
Record # PT SQRS WQRS DWT QLV CWT Prop.

100 99.9 99.8 99.8 99.9 99.9 99.8 99.9
101 99.8 99.7 99.3 99.7 99.4 99.6 99.7
102 99.9 99.9 99.9 99.8 98.2 99.7 99.8
103 100.0 99.9 99.9 100.0 99.9 100.0 99.8
104 95.6 96.5 95.5 97.0 95.3 92.2 99.5
105 70.7 94.1 92.8 95.2 93.5 98.0 97.7
106 84.6 89.7 96.4 95.2 87.9 93.4 96.7
107 96.8 99.3 94.8 99.6 94.6 99.1 97.8
108 86.9 80.9 84.7 74.1 70.5 99.1 98.5
109 99.6 98.1 99.4 99.6 99.6 99.6 99.0
111 99.3 99.4 99.8 97.4 17.0 99.8 99.7
112 99.9 99.7 99.8 99.4 99.9 100.0 99.2
113 99.8 99.4 97.2 99.8 99.6 99.6 99.9
114 99.8 99.7 99.3 99.9 99.6 99.8 98.4
115 99.9 99.5 99.1 99.7 99.7 99.8 99.9
116 95.4 98.6 98.1 99.6 98.3 99.2 95.6
117 100.0 99.9 99.9 99.7 99.1 100.0 99.9
118 99.9 97.9 99.1 99.7 96.2 99.4 99.2
119 99.8 98.5 96.1 95.9 99.1 97.4 96.8
121 99.9 99.4 99.7 99.2 91.1 99.9 99.8
122 100.0 99.9 99.9 99.9 97.2 100.0 99.8
123 100.0 99.2 98.6 99.7 99.4 99.4 99.6

124 98.4 99.4 99.3 99.5 96.7 98.2 99.7

average 96.8 97.8 97.8 97.8 92.7 98.8 99.0  
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Fig. 12.  Performance comparison of noise stress test using record #100 with
muscle and motion artifact noises. 
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To demonstrate the test chip performance, we implemented a 
heart rate logging application. In this experiment, an AndroidTM 
smartphone is used for program loading and logging data 
retrieval. As portrayed in Fig. 16, the IHR is extracted correctly 
in a noisy condition. 

Fig. 17 portrays the current consumption with a heart rate 
logging application. In this experiment, the ADC sampling rate 
and the logging interval of IHR are set respectively to 128 
Samples/s and 1 Sample/s. Then the AFE, 32-kHz OSC, and 
Timer block are always activated. The measurement results 
show that the test chip consumes 13.7 A on average for the 
heart rate logging application. The peak current, which is 
consumed when the Cortex and FeRAM are activated to store 
the logging IHR data every second, is less than 1 mA. 

As presented in Fig. 18, the IHR monitor and FeRAM 
respectively contribute to active ratio reduction and sleep 
power reduction. Table III presents a performance comparison 
of the ECG processor. Compared with earlier ECG processors 
[12, 26-28], the proposed processor has lower power and grater 
memory capacity for daily-life monitoring. 

Fig. 19 portrays the application board of the proposed 
wearable sensor system. The board is 39.5 mm  42.0 mm, with 
maximum thickness of 5 mm. The proposed system weighs 5.5 
g including 1.0 g battery. We employed a 35mAh battery in this 
system. The total current consumption is less than 60 A, 
which includes the Accelerometer IC, NFC tag IC, linear 
regulator, 32.768 kHz crystal oscillator, and the proposed ECG 

processor. Consequently, the lifetime of the proposed system is 
about 24 days. 

To evaluate the IHR accuracy, extracted results of the 
proposed sensor are compared with those of the reference 
sensor (CamNtech Actiwave Cardio [29]). The proposed sensor 
and reference sensor simultaneously record the ECG signal and 
IHR as depicted in Fig. 20. The distance between electrodes of 
the reference sensor is 14 cm. 

Fig. 21 shows the measurement results of ECG waveforms 
obtained using the proposed sensor. As described in Section III, 
the limited distance of electrodes and limited performance of 
the analog front end affect the SNR degradation. Measurement 
results show that the gain of QRS complex is diminished 
according to the electrode distance. It is difficult to extract IHR 
using only a threshold approach from the ECG waveform with 
5-cm electrode distance, especially not at rest. 

In Fig. 22, the IHR output of the proposed sensor is 
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Fig. 18.  Contribution of dedicated IHR monitor and FeRAM. 
 

 TABLE III 
PERFORMANCE COMPARISON WITH PREVIOUS STUDIES 

VLSI'11 [26] ISSCC'12 [27] ISSCC'13 [28] VLSI'13 [12] This work

Technology 0.18m 0.13m 0.18m 0.13m 0.13m

Supply voltage 1.2V 0.3-0.7V 1.8/3.2V 0.5-1.0V 1.2V/3.0V

MCU n/a 8b RISC n/a 32b Andes N9 32b Cotex M0

On chip memory 46kB 5.5kB n/a 20.5kB 129.75kB

25.9A 10.41A >16.1A 13.7A>27A

16.1W18.7W31.1W

1.7MHz-2kHz

19W

Total current for
IHR logging

Total power for
IHR logging

18.24W

Frequency
32kHz,
24MHz

8-32kHz,
24/40MHz

20kHz1MHz
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compared with the reference sensor. Then, the electrode 
distance of proposed sensor is set to 5 cm. Then, the root mean 
square error is 1.893. This result demonstrates that the proposed 
system can extract IHR correctly, but the electrode distance and 
the SNR of ECG signal are limited. It is noteworthy that, 
although the output of reference sensor is updated in every 
R-peak detected, the output of the proposed IHR monitor is 
updated every second, as depicted in Fig. 22. 

 Finally, we evaluated long-term data logging with a healthy 
subject, a 24-year-old man, in daily life. The upper part of Fig. 
23 shows the heart rates calculated from the obtained IHR. The 
bottom side shows the obtained acceleration value. Results 
show that the IHR is extracted correctly, although the subject is 
not at rest. Fig. 24 shows the result of heart rate variability 
(HRV) analysis [2, 30] using the extracted IHR of daily life 

monitoring. The HRV analysis result in the sleep state clearly 
indicates the parasympathetic nervous tone. In contrast, the 
sympathetic nervous tone can be observed in the active state. 

V. CONCLUSION 

As described in this paper, we proposed a low-power ECG 
processor with a robust heart rate monitor. The robust heart rate 
monitor can correctly extract a heart rate from noisy 
environments using the STAC algorithm. The measured total 
current consumption is 13.7 A at 1.2V and 3.0V power supply 
for the heart rate logging application. 
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