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Abstract—We have developed a low-power VLSI chip for
60-kWord real-time continuous speech recognition based on a
context-dependent hidden Markov model (HMM). Our imple-
mentation includes a cache architecture using locality of speech
recognition, beam pruning using a dynamic threshold, two-stage
languagemodel searching, highly parallel Gaussianmixture model
(GMM) computation based on the mixture level, a variable-frame
look-ahead scheme, and elastic pipeline operation between the
Viterbi transition and GMM processing. The accuracy degrada-
tion of the important parameters in Viterbi computation is strictly
discussed. Results show that our implementation achieves 95%
bandwidth reduction (70.86 MB/s) and 78% required frequency
reduction (126.5 MHz) comparing to the referential Julius [1]
system. The test chip, fabricated using 40 nm CMOS technology,
contains 1.9 M transistors for logic and 7.8 Mbit on-chip memory.
It dissipates 144 mW at 126.5 MHz and 1.1 V for 60-kWord
real-time continuous speech recognition.

Index Terms—40 nm VLSI, hidden Markov model (HMM),
large vocabulary continuous speech recognition (LVCSR),
memory bandwidth reduction.

I. INTRODUCTION

S PEECH recognition based on a hidden Markov model
(HMM) can provide high recognition accuracy, thus

has been used in various applications such as automatic
transcripting, audio indexing, navigation, mobile devices,
ubiquitous systems, and robotics. Large vocabulary real-time
continuous speech recognition (LVRCSR) with acoustic and
language models is too resource-hungry and power-sensitive
for software applications [1]. Hardware implementation by
VLSI or FPGA is demanded especially for use in mobile
equipment [2] and intelligent robots because of advantageous
high processing speed and low power consumption.
Lin et al. investigated FPGA implementations for 5-kWord

speech recognition [3], [4]. They increase the data-pin to im-
prove the data-transmission ability of IO, but their architecture
is not extendable for a larger vocabulary because it consumes
too much power and is not cost-effective: it requires multiple
FPGAs and SDRAMs. Yoshizawa et al. proposed a scalable
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Fig. 1. Comparison of power consumption.

architecture for speech recognition [5], but their chip uses 136
mW, even with a limited vocabulary of 800 words. Choi et
al. investigated FPGA and VLSI implementations [6]–[9] for
5-kWord and 20-kWord speech recognition. They implemented
a special memory interface for several parts of the recognition
engine to apply optimized DRAM access, which improves the
data transfer efficiency. However, the large amount of external
DRAM access cause high IO frequency, which requires a
high supply voltage and high power consumption in both chip
side and DRAM side. Ma et al. reported memory-bandwidth
reduction of Gaussian mixture model (GMM) processing for
real-time 20-kWord speech recognition [10], but that method
did not accommodate Viterbi processing. Comparison of power
consumption among recently announced hardware-based
speech recognizers is presented in Fig. 1. To date, the hard-
ware approach has never achieved real-time operation with a
60-kWord language model because, with the size of vocabulary
increasing, the external memory bandwidth and computation
workload grows exponentially. For low-power and real-time
60-kWord processing, both the memory bandwidth and the
operating clock frequency must be reduced.
As described herein, we proposed a VLSI implementation

for 60-k Word real-time continuous speech recognition. It em-
ploys algorithm optimization such as two-stage language model
search to reduce cross-word transitions for the Viterbi search
[11], beam pruning using a dynamic threshold to avoid sort pro-
cessing. A variable-frame look-ahead scheme [12] is used to re-
duce the memory bandwidth for GMM computation. We intro-
duced part of the External DRAM data into the internal cache
memory using the locality of speech recognition and proposed
a specialized cache architecture to improve the cache hit rate.
Elastic pipeline operation between the Viterbi search and GMM
processing is applied.We analyzed the trade-off between the ac-
curacy and the important parameters in Viterbi computation to
choose the most appropriate parameter combination. Finally, we
designed and fabricated a VLSI test chip using 40-nm CMOS
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Fig. 2. Speech recognition flow with HMM algorithm.

technology and measured its performance. Measurement results
show that our test chip can achieve 60-kWord continuous real-
time speech recognition with 144 mW power consumption and
only slight accuracy degradation.
The remainder of this paper is organized as follows. The

speech recognition algorithm is described in Section II.
Section III explains the proposed schemes and accuracy
trade-off. Section IV presents the proposed architecture.
Section V presents the VLSI implementation and its measure-
ment results. Finally, conclusions are explained in Section VI.

II. SPEECH RECOGNITION OVERVIEW

Fig. 2 presents the speech recognition flow with the HMM
algorithm [13]. The following items describe concrete stages.
Step 1: Feature vector extraction—The input speech signal
is converted from the time domain to frequency domain to
obtain more unique acoustic characteristics. Feature vectors
are extracted from 30 ms length of speech every 10 ms. Step
2: GMM computation—A phonemic-model GMM is read and
state output probabilities is calculated for all active state nodes.
Step 3: Viterbi search— is calculated for all active state
nodes using state output probabilities, transition probabilities,
and the -gram language model. Step 4: Sort—according
to the beam width, active state nodes having a higher score
(accumulated probability) are selected. The others are dumped.
Step 5: Output sentence—The word list with the maximum
score is output as a speech recognition result after final-frame
calculation and determination of the transition sequence.

A. GMM Computation

Gaussian mixture models (GMMs) are used to represent the
state output probability of HMMs. A fast state-likelihood com-
putation technique [14], [15] using approximate algorithms has
been applied in [6]–[9], but it will cause around 0.49% degrada-
tion in accuracy. Because the computation work-load problem
in GMM processing can be solved by utilizing highly parallel
architecture, we implemented the following conventional algo-
rithm for this chip. The GMM computation obtains acoustic
likelihood from a feature vector and parameters
of a GMM. As expressed in (1),

(1)

(2)

Therein, stands for a GMM probability density func-
tion (PDF), represents a Gaussian distribution PDF, is the
number of dimensions in a feature vector, is the number
of mixtures, signifies a feature vector, and denotes mean
and variance parameter respectively. is a mixture weight co-
efficient and is a constant number. Equation (2) shows that
the computation for one mixture consists of subtractions,
multiplications, summations, and one addition. After that, the
add-log operation is taken between the mixture results, which
can be processed quickly based on an add-log table.

B. Time-Synchronous Viterbi Beam Search

The following formulas show a time-synchronous Viterbi
beam search algorithm [16], which is divisible into two parts:
internal word transition and cross-word transition. Dynamic
programming (DP) recursion for the internal word transition is
shown in (3).

(3)

where is the transition probability from state to , and
stands for the largest accumulated probability of the

state sequence reaching state of word at time . Once an
internal word transition reach a word-end state, cross-word tran-
sition will be treated, a bi-gram (2-gram) model is used in this
chip, where the transition probability of a word depends on the
immediately preceding word. DP recursion for this part is shown
in (4).

(4)

Therein, stands for the bi-gram probability from word
to word , and respectively denote the start state of word
and the last state of word .
In actual speech recognition, the problem is too large to

allow for calculation of all the likelihood values. Therefore,
after all the transitions in one frame are completed, only a
limited number (“beam width”) of nodes with large likelihood
values remains, the other nodes are terminated. This process is
designated as beam pruning. Nodes that are unpruned in this
stage are designated as active state nodes. In the next frame,
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only the likelihood values for the active state nodes will be
computed.

C. Computation Amounts and Memory Bandwidth

We profiled referential hardware of Julius 4.0 [1], a well-
known Japanese speech recognition system software program
using hardware description language (HDL), with 60-kWord
speech recognition models, and beam width of 4000. The re-
quired memory bandwidth and the operation frequency of the
prototype necessary to achieve real-time speech recognition re-
spectively reach 3446 MB/s and 567.46 MHz. This kind of ex-
ternal memory bandwidth causes high IO frequency, which re-
quires a high supply voltage and high power consumption at
the chip side and causes hundreds of microwatts at DRAM side
even with the state of the art lower power mobile DRAM [17].
Consequently, reducing the external memory bandwidth is the
one of the most important things to implement a low-power
speech recognition system.

III. PROPOSED SCHEMES

A. Variable- Frame Look-Ahead Scheme

The GMM calculations must load numerous parameters,
which requires about 576.03 MB/s when processing the
60-kWord speech recognition. The memory bandwidth can be
reduced by sharing the parameter for several frames. Many
studies have explored the use of this look-ahead scheme and
compute the same state for several frames because the state
which must be computed in the present frame might need to be
calculated again in the subsequent frame at high probability.
However, it is apparent that the probability decreases when
the number of look-ahead frames increases. When different
states are required, the results will become useless. The com-
putation for those new states will delay the Viterbi operation.
For 20-kWord and 60-kWord recognition, it is necessary to
maintain sufficient beam width according to the number of
words to achieve highly accurate recognition, which is true for
almost all states of GMM processing. Therefore, in this study,
we compute all 1987 states for the maximum of 50 look-ahead
frames. The number of look-ahead frames is variable to make an
adjustment between the delay and the memory bandwidth. This
scheme requires 5 Mbit internal memory for storing the GMM
probabilities. However, the memory bandwidth for GMM pro-
cessing can be reduced to 13.3 MB/s at most. Because that can
be accomplished for all states of GMM computation, pipeline
operation between GMM and Viterbi is readily applicable.

B. Modified Unigram Language Model

The Viterbi processing comprises word-internal transitions,
cross-word transitions to isolated trees and cross-word transi-
tions to shared trees. A unigram (1-gram) language model was
used for computation of word-internal transitions. Each unigram
value corresponds individually to a state of HMM trees. In the
conventional scheme, when an HMM state transfers, the uni-
gram probability of the previous state is subtracted from the
temporal score before the new unigram probability of the cur-
rent state is added. In terms of a unigram language model, the

Fig. 3. Beam width variation with dynamic threshold-cut scheme.

previous state of every state is individually identifiable. There-
fore, we modified the unigram language model to hold only dif-
ference values between the probability of a new HMM state and
the probability of its previous HMM state. Using our modified
unigram language model, the extra memory access to the pre-
vious state and the memory to save the previous unigram proba-
bility can be reduced. Furthermore, because the unigram update
process can be eliminated, word-internal transitions, cross-word
transitions to the isolated trees, and cross-word transitions to
shared trees can be treated using the same process module.

C. Beam Pruning Using a Dynamic Threshold

In the conventional process, the sort is implemented after
Viterbi processing at every frame before pruning the transitions
with a lower score. This pruning necessitates a large workspace
because all temporal scores generated by the Viterbi transition
must be retained until the Viterbi search of the current frame
is completed, although most scores will eventually be pruned
by the beam-cutting process. Moreover, sort processing requires
computational rates higher than 10 MIPS and demands external
memory bandwidth greater than 400 MB/s for 60-kWord recog-
nition.
A threshold-cut scheme is widely used to reduce the sort pro-

cessing workspace and memory bandwidth. In this scheme, a
threshold is set and all the transitions which have a lower score
than the threshold are pruned immediately while processing the
Viterbi search. Only the selected transitions with a higher score
than the threshold are stored in workspace memory, which can
cut off the superfluous workspace and processing. However,
an improper threshold yields inappropriate cases in which too
many nodes remain or too many nodes are cut off compared to
the beamwidth, which degrades accuracy. Therefore, the means
of deciding the threshold is important for this scheme.
In some other works [3], [4] , the max score of the cur-

rent frame is used as the threshold for next frame, which is
insufficient because we should also consider the number of
active nodes. When there are too few or too many active nodes,
the threshold must be adjusted. As described in this paper,
we proposed beam pruning using a dynamic threshold. An
adaptive threshold is set based on the difference between the
average scores of the previous frame and the current frame
and the number of active nodes between the previous frame
and the current frame. Fig. 3 shows the beam width variation
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Fig. 4. Appearance ratio of three types transitions in Viterbi search.

Fig. 5. Two-stage language model search.

with a dynamic threshold-cut scheme when the target width is
set to 1500. The threshold-cut results fluctuate and the
speech recognition accuracy is unaffected because almost all
transitions that engender the final speech recognition output
word list have higher scores.

D. Two-Stage Language Model Search

Fig. 4 presents the appearance ratio of the three types of tran-
sitions in Viterbi search: the cross-word transitions to isolated
trees are dominant. Consequently, we proposed a two-stage lan-
guage model search scheme in this part to reduce the compu-
tational workload and memory bandwidth for cross-word tran-
sitions to isolated trees. This scheme is derived from the tran-
sition frequency difference between phonemic HMM and lan-
guage HMM. The cross-word transition search is divided into
two stages. The first stage is a simplified language model search
for the top important transitions of two-gram probability. The
second stage is a detailed language model search for all cross-
word transitions. As depicted in Fig. 5, in the traditional lan-
guagemodel search, only our second search treated every frame.
However, in our proposed language model search, the second
stage is treated at every frames. By applying this proposed
search, the computational amount and memory bandwidth can
be reduced to .
With the increase of the detailed language model search

cycle, we can achieve greater reduction of cross-word tran-
sitions, which is the main processing undertaken in Viterbi
computation. However, the risk of losing the cross-word tran-
sition to the correct candidate word might increase, thereby
affecting the recognition accuracy. Moreover, the beam width
and the number of cross-word transitions during the detailed
search and the simplified search strongly influence the recog-
nition accuracy. Therefore, the trade-off of these parameters
described above must be discussed carefully.

Fig. 6. Cycle of detailed language model search versus the number of cross-
word transitions.

Fig. 7. Cycle of detailed language model search versus recognition accuracy.

E. Accuracy Trade-off

Wemeasured the accuracy using a referential software proto-
type profiling with Julius 4.0 [1]. The test speech data consists of
48 test patterns, which totally include 172 sentences of Japanese
speech spoken by different speakers. The average values of all
the patterns for each parameter set are shown in the following
graphs.
1) Detailed Search Cycle, the Number of Cross-Word Tran-

sitions (in Simplified Search): First, the trade-off of the detailed
language model search cycle and the number of cross-word
transitions during the simplified language model search are dis-
cussed. The beam width is set to 4000. The cross-word transi-
tions during the detailed language model search are set to 2000
to maintain high recognition accuracy.
Fig. 6 presents the relation between the detailed search cycle

and the number of cross-word transitions. Top 10, Top 100, and
Top 300 respectively signify the numbers of cross-word tran-
sitions during the simplified language model search. As por-
trayed in Fig. 7, more cross-word transitions during a simpli-
fied search can suppress the decrease in recognition accuracy.
However, when the detailed search cycles became greater than
7, all curves became steeper and the recognition accuracy falls
below 90%. Moreover, the accuracy of “Top 10” is greater than
“Top 100,” with a detailed search cycle of 5 and is lower than
“Top 100” with a detailed search cycle of 7. Some words that
can be recognized correctly with “Top 10,” but will not become
the best results with “Top 100.” This is because for these words,
even if the correct candidates are served, they will be defeated
by some other cross-word transitions served by “Top 100.”
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Fig. 8. Relation between accuracy and the # of cross-word transitions.

Fig. 9. External memory bandwidth versus beam width.

Fig. 8 portrays the relation between the number of cross-word
transitions and recognition accuracy. A detailed search cycle of
7 with “Top 100” is chosen for the examinations described in
this paper, causing 0.27% accuracy degradation. These param-
eters are alterable in the chip. Therefore, we can select them
according to the request processing speed and recognition ac-
curacy, but higher accuracy will cost more power because large
amounts of extra cross-word transitions must be treated.
2) Beam Width, the Number of Cross-Word Transitions (in

Detailed Search): In this section, the trade-off of the beam
width and the number of cross-word transitions during the de-
tailed language model search are discussed. The detailed search
cycle is set to 7 and the number of cross-word transitions during
simplified searching is set to 100, in light of the previous discus-
sion.
Fig. 9 presents the external memory bandwidth for Viterbi

computation according to the beam width. The numbers of
cross-word transitions during detailed searching were set to
1000, 1500, 2000, 2500, and 3000. Fig. 10 presents the accu-
racy degradation. It is apparent that 1500 for the cross-word
transition during detailed search is a good choice since it de-
mands relatively smaller external memory bandwidth and less
degradation in recognition accuracy with 3000 of beam width.
3) Default Parameters: The final choice of the parameter

combination is presented in Fig. 11. Total accuracy degradation
by the proposed schemes is 0.82%, thereby achieving almost
80% reduction ) of both
memory access and arithmetic operations in Viterbi processing.
From these test results, we also found that larger beam width

can absolutely offer higher recognition accuracy while treating
more cross-transitions might not. Therefore the parameters for

Fig. 10. Accuracy versus beam width.

Fig. 11. Accuracy vs. External memory bandwidth.

Fig. 12. Proposed speech recognition architecture.

cross-word transition must be decided carefully, the most appro-
priate parameter combination may change when using different
language models.

IV. ARCHITECTURE

A. Elastic Pipeline Architecture

The overall chip architecture is depicted in Fig. 12. The pro-
posed architecture comprises a global Sequencer, GMM-core,
Viterbi-core, and double GMM result buffer to support pipeline
operation. Because of the all-state GMM computation and
variable 50-frame look-ahead scheme, it is easy to apply elastic
pipeline operation between the Viterbi transition and GMM
processing by 1–50 frames. Herein, we will explain why the
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Fig. 13. External memory bandwidth variety of Viterbi transition through
frames after the two-stage language model search.

Fig. 14. Elastic pipeline.

Fig. 15. GMM computation flow.

elastic pipeline architecture can reduce the memory bandwidth
for Viterbi transition. Fig. 13 shows the memory bandwidth va-
riety of Viterbi transition after applying the two-stage language
model search. The frames, when detailed search are used,
have the largest amount of data to be read. For conventional
operation, these data must be read at 0.01 s, which yields the
largest memory bandwidth (549.91 MB/s). By applying this
scheme, we can process several frames together, although the
frames needing the largest memory bandwidth can use the
IDLE time of other frames to load data (Fig. 14), which can
reduce the peak memory bandwidth by 87.2% (70.86 MB/s).
By changing the number of look-ahead frames, we can readily
adjust the delay and the memory bandwidth and maximize the
elastic pipeline operation efficiency.

B. Highly Parallel GMM Architecture

Fig. 15 shows the operation flow of the GMM calculation,
which consists of data loading, mixture computation and
add-log processing. The GMM core has 16 mixture processing
blocks, each of which has a 1.6 Kb register to preserve the
mixture parameter. All blocks are processed simultaneously for
the look-ahead frames, which are saved in the MFCC buffer.

Fig. 16. Viterbi computation flow.

Fig. 17. External memory bandwidth of Viterbi transition.

The parameters will be reused until all look-ahead frames are
processed. The mixture results will soon be calculated using
the add-log processor based on a look-up table. The mixture
computation, add-log calculation, and parameter reading are
processed in the pipeline.

C. Viterbi Cache Architecture

Fig. 16 shows the Viterbi transition flow. The Viterbi transi-
tion in a frame is divided roughly into three steps; word-internal
transition, trellis-save [1], and cross-word transition.
The Viterbi transition is performed for all active state nodes

left in the previous frame. First, fetch an active state node from
an active node queue. 1) Word-internal transition: perform
word-internal transition when the transition source node and
destination node belong in the same word. 2) Trellis save: save
a trellis when the active state node is the end of a word. The
trellis is a dataset, which has a word history and a score of the
word-end node. It is used to determine the recognition result in
the last frame. 3) Cross-word transition: perform cross-word
transition after trellis save. In this step, the transition is per-
formed from a word-end state node, to all word-start state
nodes.
The word-internal transition and cross-word transition can be

expressed with the same flow. 1.1) Calculate score: The transi-
tion probability from the HMM dictionary and the GMM prob-
ability from the result buffer is added to the score of the active
state node. 1.2) Fetch transition destination node data: fetch
the information of a transition destination node from the active
node work space. 1.3) Create active state node: create an active
state node when there is no active state node on the transition
destination. 1.4) Overwrite the active state node: overwrite the
active state node at a destination node when its score is lower.
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Fig. 18. Viterbi Cache Architecture.

Fig. 19. Proposed two-way bi-gram cache.

Fig. 18 shows the Viterbi cache architecture. Since it is ap-
parent that the Active Node, Active NodeMap, and the Bi-gram
account for 96% of thememory bandwidth for Viterbi transition,
as portrayed in Fig. 17, we introduce all the active node work
space and part of the bi-gram and active node map data into
the cache memory using the locality of speech recognition that
some data which have been used for this frame might be reused
in the following frames. We employ some novel schemes for
these caches to achieve a higher hit rate.
1) Bi-Gram Cache: We try to retain the bi-gram data with

higher scores in the cache because they have higher probability
to be reused in the subsequent frame. We set the timing of
writing new data to the cache as a previous node is overwritten
whereas a higher score appears in the cross-word transition.
In doing so, a bi-gram probability with a higher score in one
frame tends to remain in the cache. However, one index of the
bi-gram cache stands for many bi-gram IDs. Therefore when a
new bi-gram score is written to cache, a high-score bi-gram for
other nodes might be overwritten, which affects the hit-rate.
Therefore, we proposed a specialized cache architecture as

shown in Fig. 19, the cache adopts a two-way set associative
scheme for both tags and data. The lower bit of bi-gram ID is
used to create the index, and the whole bi-gram ID is used as the
tag. The data part has 20 bit for the destination node ID and 8 bit
for bi-gram score. The two-way cache has “two places” for each

Fig. 20. Memory accesses of active node.

Fig. 21. Active node map cache.

Fig. 22. Cache hit rate.

index. Therefore, when a miss-hit occurs, a new bi-gram proba-
bility is written to the first way, whereas the previous score can
be stored to the second way. The hit rate is improved by 14.5%
because two-way cache can retain more high-score bi-gram data
than a one-way cache.
2) Active Node Map Cache: The active node map is also

called a “Token list,” which is used to check if an active node
exists in the transition destination. It must be checked every time
a transition occurs, thereby causing many memory accesses. We
adopt a direct mapping cache for it.
As presented in Fig. 20, more than 60% of the node infor-

mation accesses are attributable to the start-state node because
cross-word transitions must read them frequently, however, one
index of the cache stands for start-state node, word internal
node, terminal node and other nodes. The start node may be
overwritten by other nodes if they stay in the same cache. There-
fore we divided the active node map cache into two parts: one
for the start-state node only, and the other nodes use the other
part (Fig. 21), thereby improving the hit rate by almost 20%.
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TABLE I
IMPLEMENTATION FLOW

Fig. 23. Chip microphotograph.

3) Hit Rate: Wemaximize the cache memory size of bi-gram
and active node map to 0.73Mbit, as portrayed in Fig. 22, which
can produce a hit rate of 75%.

V. IMPLEMENTATION

As described in the previous sections, we used software pro-
totype profiling with Julius 4.0 and Microsoft Visual C++ to an-
alyze the accuracy trade-off of the parameters and the proposed
schemes. We implement the referential hardware using hard-
ware description language (HDL) to check the required memory
bandwidth and frequency for real-time operation. After that, a
VLSI chip was designed and fabricated. Its performance was
evaluated using a SoC logic tester. Table I shows the implemen-
tation flow and the CAD tools.

A. Chip Layout

Fig. 23 shows a chip for the proposed SoC fabricated using
40 nm CMOS technology. A summary of the chip statistics is
shown in Table II. It occupies 2.2 2.5 containing 1.9
M transistors for the Logic and 7.8 Mbit on-chip SRAM. The
logic transistors are mainly used by the GMM core because of
the highly parallel architecture. The breakdown of the internal
memory is shown in Table III. The power was measured when
performing real-time 60-kWord continuous speech recognition.

TABLE II
SUMMARY OF CHIP IMPLEMENTATION

TABLE III
BREAKDOWN OF INTERNAL MEMORY

Fig. 24. Bandwidth reduction by the proposed schemes.

The clock gating is implemented in the GMM result RAM and
GMM Core.

B. Required Frequency and Memory Bandwidth

Fig. 24 presents the total memory bandwidth reduction when
using all the proposed schemes. The dynamic threshold-cut
scheme reduces the memory bandwidth for sort processing.
The variable-frame look-ahead scheme can reduce memory
bandwidth by 16.3% at most, whereas the two-stage language
model search and the Viterbi cache can provide reduction of
66.4%, with the default parameters and cache memory size of
0.73 Mbit. The total cycle time is reduced by 78%. This chip
can process real-time 60-kWord continuous speech recognition
at the frequency of 126.5 MHz.
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Fig. 25. versus Period Shmoo plot generated by SOC logic tester.

Fig. 26. Power consumption with the lowest operation voltage.

Fig. 27. Measurement results of frequency vs. power consumption vs. beam-
width.

C. Power Consumption

Using the shmoo plot [18] presented in Fig. 25, we mea-
sured the power consumption with the lowest operation voltage.
Figs. 26 and 27 show measured data of power consumption
versus operating frequencies versus beam-width. As described
in Section III, the larger beam-width can yield higher accuracy,
but it will also increase the computational workload. This chip
can function at 126.5MHz for a beam-width of 3000. The power
consumption is 144 mW with accuracy of 91.94%. It can func-
tion at 140 MHz for a beam-width of 3800: the power consump-
tion is 204.8 mW with accuracy of 91.89%.
We also measured power consumption for I/O and PLL

as shown in Table IV, The chip IO consumes 58.2 mW at
31.625-MHz and it grows proportionally with the increase
of I/O frequency, it grows much faster than the core power
because it works at higher voltage . The IO power consumption
was reduced greatly by our proposed schemes because it is
mainly caused by external DRAM access.

D. Comparison With Other Works

We compared the performance of our chip with those of other
recently reported works (Table V) in terms of the vocabulary

TABLE IV
SUMMARY OF POWER CONSUMPTION

Fig. 28. Demonstration system photograph.

size, GMM model, language model, real-time factor, operation
frequency, memory bandwidth and the logic element. The real-
time factor represents the system speed; for example, a real-time
factor of “0.5” corresponds to “ 2” faster than real-time oper-
ation, which means that the recognizer takes half the time of the
input speech length to process it. The comparison reveals that
our chip achieves the lowest external memory bandwidth, even
with the largest vocabulary size of 60-kWord. Few reports of
other studies presented the power consumption because most of
them are FPGA-based systems. However, the comparison still
proved that our chip is not only the first hardware-based recog-
nizer able to process 60-kWord continuous speech recognition
in real time; but also achieves the lowest power consumption
due to the great reduction of power for IO.

E. Demonstration System

We implement a demo system using a “PowerMedusa”
custom test board [19], as presented in Fig. 28. The test board
has two external DRAMs, two DUT interfaces for test chips,
and an on-board FPGA. The clock block and power supply
for the chip use the peripheral equipment. The mel frequency
cepstral coefficient (MFCC) feature extraction is implemented
by PC, the input speech data can either be recorded as an audio
stream or with real-time speaking. First, the DB data are set
up to the external DRAM and the speech feature vectors are
sent to a buffer in the FPGA. The chip reads the parameters
and feature vectors throw the FPGA and start processing. The
vectors of look-ahead frames are sent to the chip every time the
previous frames are finished.

VI. CONCLUSION

We developed a low-power VLSI chip for 60-kWord
real-time continuous speech recognition. We proposed several
schemes to reduce the memory bandwidth and the operating
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TABLE V
COMPARISON WITH RECENTLY REPORTED WORKS.

clock frequency. The accuracy degradation of the important pa-
rameters in Viterbi computation is discussed. Results show that
our implementation achieves 95% bandwidth reduction (70.86
MB/s) and 78% of the required frequency reduction (126.5
MHz) for 60-kWord real-time continuous speech recognition.
We fabricated a VLSI test chip in 40 nm CMOS technology and
assessed its performance. Results show that the chip described
in this paper can perform 60-kWord continuous real-time
speech recognition at 126.5 MHz with power consumption of
144 mW and with little accuracy degradation. Future works
will specifically examine processing speed improvement and
optimization of the latency.
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