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Abstract As described in this paper, a real-time object detec-
tion system using a Histogram of Oriented Gradients (HOG)
feature extraction accelerator VLSI is presented. The VLSI [1,
2] enables the system to achieve real-time performance and
scalability for multiple object detection under limited power
condition. The VLSI employs three techniques: a VLSI-
oriented HOG algorithm with early classification in Support
Vector Machine (SVM) classification, a dual-core architecture
for parallel feature extraction, and a detection-window-size
scalable architecture with a reconfigurable MAC array for
processing objects of different shapes. The test chip was
fabricated using 65 nm CMOS technology. The measurement
result shows that the VLSI consumes 43mWat 42.9MHz and
1.1 V to process HDTV (1920×1080 pixels) at 30 frames per
second (fps). A multiple object detection system and a multi-
ple scale object detection system are presented to demonstrate
the system flexibility and scalability realized by VLSI and
applicability for versatile application of object detection. On
the multiple object detection system, a real-time object detec-
tion for HDTV resolution video is achieved with 84 mW of
power consumption on a task to detect 2 types of targets while
keeping comparable detection accuracy as software-based

system. On the multiple scale object detection system, a task
to detect 5 scales of a target is accomplished using a single
VLSI. The power consumption of the VLSI is estimated to
102 mWon the task.
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1 Introduction

Object detection is a crucial task for many computer vision
applications such as surveillance, entertainment, automotive
systems, and robotics. Application to automotive systems has
entered the spotlight in recent years. The World Health
Organization (WHO) predicted that traffic accident fatalities
would reach 1.9 million per year worldwide by 2020 as the
automobile ownership rate increases [3]. An attempt to assist
drivers to be aware of dangers with computer vision technol-
ogy is effective for avoiding fatal accidents. Techniques to
detect various types of objects such as pedestrians, bikers,
vehicles, and traffic signs have been investigated.

In any object detection system, feature extraction tech-
niques are crucial to understand the characteristics of input
images effectively. HOG [4], a widely accepted feature for
object detection, is robust against changes of illumination,
attaining high accuracy in the detection of variously textured
objects. HOG is particularly effective and commonly used to
detect humans and objects.

Recent progress in the area of high-performance general-
purpose processors enables them to achieve real-time object
detection. However, those processors require high power con-
sumption, rendering them unsuitable for mobile systems,
which have limited battery capacity and thermal design con-
straints. Moreover the detection performance is significant
issue. One approach to improve system performance is to
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process high-resolution images. High-resolution images such
as HDTVare more informative than lower-resolution images.
For instance, HDTV images can cover a wider angle of view
and examine finer details of objects. Similar to the problem in
power consumption, even high-performance general-purpose
processors can process only small amounts of high-resolution
data such as those of HDTV in real time. Consequently, low-
power and high-performance HOG feature extraction proces-
sors are necessary to expand the range of applications.

One example of the needs of object detection is relatively
simple: to detect a single object or a fixed sized object.
However, some applications require more complicated and
difficult tasks. For example, drive-assist systems must detect
not only pedestrians but also vehicles and bicycles simulta-
neously. Moreover, the relative positions between camera and
detection targets change dynamically on the drive assist sys-
tem. Changes in distance between the camera and the target
produce changes in the appearance of the target object.
Therefore, high flexibility and scalability to adapt to the
changes in sizes, shapes and types of the target are necessary
for object detection systems and object detection processors.

2 Rerated Works

Figure 1 presents the image resolution versus frame rates report-
ed from several related works of HOG hardware. Zhang et al. [5]
proposed object detection with GPGPU. Some FPGA
implementations [6–11] and an FPGA–GPU architecture [12]
have been proposed for real-time applications. A target-
reconfigurable object detector for multiple object detection was
proposed by Yazawa et al. [9]. However, reloading of parameters
for other objects is necessary to detect other objects. Therefore,
multiple objects cannot be detected simultaneously. Our previous
work [13] on FPGA is superior to other works. However, it
particularly targeted pedestrian detection. HOG features are
adaptable to widely versatile applications. Therefore, anticipated

HOG feature extraction processors must provide higher flexibil-
ity. Our goal is the development of design techniques for a real-
time HOG feature extraction processor intended for use in mul-
tiple object detection from HDTV-resolution video.

The most common approach used in conventional proces-
sors is a window-based approach, for which the number of
computations of 447.7 GOPS and memory bandwidth of
55 Gbps are necessary for HDTV resolution because of repet-
itive computations. Our previous work demonstrated that the
computations and memory bandwidth are reduced consider-
ably by the reuse of calculated data and the adoption of
efficient computation methods [13]. However, power con-
sumption remains high for mobile applications. Figure 2 por-
trays simulated power consumptions of the single/multiple
object detection system using our previous processor [13].
The horizontal axis shows the number of the types of the
target object. For example, 1 means human detection and 2
means human + vehicle detection simultaneously. The single-
object detection using the previous FPGA-based processor
consumes 196.99 mWon SVGA (800×600 pixels) resolution
at 72 fps. The most dominant and second-most dominant
activities are, respectively, cell histogram generation and
SVM classification. The previous FPGA-based processor ar-
chitecture does not support multiple object detection.
Therefore multiple processors are necessary to detect multiple
objects, consuming 200 mW times the number of objects.
Extracting HOG features in every processor is redundant
because the extracted features from a single image are the
same. If the processors share the extracted feature, then the
power consumption of the multiple object detection system is
reduced as presented in Fig. 2. However, the power consump-
tion in the classifier modules, the second most dominant part,
increases linearly. Therefore, the power reduction technique
should be applied to the classifier. The histogram generation
module, the most dominant part, constantly consumes more
than 100 mW. The module also requires a power reduction
technique. Achieving low-power object detection demands
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improvement of the power efficiency of these two dominant
processes.

3 Algorithm for the VLSI Processor

3.1 A Simplified HOG Algorithm

The VLSI we have developed [1] employs a simplified HOG
algorithm for hardware implementation, as presented in Fig. 3.
This algorithm is modified from the original algorithm [6].
The flow in Fig. 3 is based on our previous work [13]. We
have confirmed that the simplified HOG algorithm reduces
the implementation cost, maintaining the same detection ac-
curacy as the original one on a Detection Error tradeoff
simulation, as shown in Section 3.2. The simplified HOG
algorithm employs the following seven techniques.

3.1.1 Cell-Based Scanning

Object detection systems with HOG feature commonly employ
the sliding-window-based approach. The features are extracted
within and classified by a detection window, while shifting the
region of interest. The step size of 1 cell (8×8), which is a unit of
HOG calculation, is used to scan input images densely [6].

When a processor scans and reloads the image and com-
pute the feature based on the detection window, memory
bandwidth and computational workload become high. These
costs are the obstacles to implement the processor. However,
most of the computations on the sliding-window-based ap-
proach are redundant, because most of the window areas
overlap to the succeeding window. Once the calculations,
which are described in following subsection 2–6, are executed
within one window, the results are stored and re-used for the
latter windows to reduce redundant workload. Moreover,
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memory bandwidth is greatly reduced by avoiding the reload
of the entire data of the new window. Nevertheless, window-
based reusing of the data requires large amounts of memory
for buffering the input image and storing the calculation result.
The memory capacity also depends on the window size.
Therefore the window-based reusing is unsuitable for VLSI
processor.

Our approach focuses on the cells. Scanning of the
input image is based on cells. HOG features are extract-
ed from cell-based calculations as in Fig. 3. The calcu-
lation results for one cell are stored and reused on the
latter calculation stage. After scanning the data of each
pixels within one cell, an adjacent cell is newly scanned
in row-wise manner. No cell overlaps with other cells
and it doesn’t depend on the target window size.
Sharing and reusing the results of the cell-based calcu-
lation greatly reduce the memory bandwidth. Moreover
the cell-based approach requires 75 % less memory
capacity than that of window-based-approach.

3.1.2 Gradient Calculation Using CORDIC

The CORDIC algorithm [14] is a well-known hardware-
friendly method used to calculate trigonometric function be-
cause it merely requires addition, subtraction, bit shift, and
table lookup. Illumination gradient orientation and magnitude
is calculated using CORDIC.

3.1.3 Approximation of Weighted Voting for Histogram
Generation

After calculating the illumination gradient within one cell, a
weighted histogram of gradient orientation is generated. Each
pixel within the cell votes a weighted gradient magnitude for a
bin corresponding to its orientation. The weight for voting is
calculated using the pixel’s relative position in the cell, rela-
tive position among adjacent cells, and orientation. Weighted
voting is necessary to avoid aliasing caused by the orientation
binning. We approximated the weighting into bit shift
operation.

3.1.4 Newton Method with Approximated Initial Values

Generated cell histograms are collected and normalized
by much larger local regions called blocks (2×2 cells).
To normalize the histogram, a reciprocal of L2-norm of
the histogram is calculated using Newton’s method. An
initial value for Newton’s method is obtained by ap-
proximation using bit shift operation. The approximation
of the initial value reduces the necessary iteration count
to reach convergence.

3.1.5 Simultaneous SVM Calculation

Figure 3 presents simultaneous SVM calculations for cell-
based processing. Partial HOG features, which belong to
105 windows maximally, are located at different positions in
each window. Partial HOG features are multiplied by the
SVM coefficients of each window and are accumulated. The
accumulation result is stored and reused in subsequent SVM
calculations. Simultaneous SVM calculation is suitable for
parallel computing in hardware.

3.1.6 Early Classification with the Accumulation Results

Before finishing all SVMcalculations, data can be treated as they
are already classified if the intermediate classification result is
sufficiently low (or high), as portrayed in Fig. 4. Thereby, sub-
sequent calculations can be skipped. Classifications on early
stages are evaluated 14 times per detection window.

Pairs of preliminarily learned thresholds are used for the
comparison. These represent possible misclassification inter-
vals. The intervals are expressed as [μtar-4σtar, μnon+
4σnon]. The means μtar, μnon and the standard deviations
σtar, σnon are estimated, presuming that the intermediate
classification results of a target class and a non-target class
are normally distributed. Data within the two thresholds on an
early stage are sent to the later stage and calculations are
continued. Early classification reduces the number of compu-
tations by 22.3 % from 6.34 GOPS to 4.92 GOPS with no
degradation of classification accuracy, on an Area Under the
Curve simulation on the INRIA dataset [15].

3.1.7 Parameter Optimization

The precision of the approximations presented above and
fixed-point operations depend on the bit width of the param-
eters. Optimizing the parameters reduces the required com-
puting unit size and memory capacity.

Figure 4 Distribution of intermediate classification result.
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3.2 Detection Performance Evaluation

We have evaluated the detection performance of the simplified
algorithm for VLSI. INRIA Person Dataset [15] is used to
benchmark the algorithm. It contains non-human images and
normalized 64×128 pixel human images. Figure 5 depicts

tradeoff between False Positive per Window and Miss Rate.
The simplified algorithm, which employs fixed point calcula-
tion, approximation methods, parameter optimization, and
early classification, is comparable to the reference software
implementation of the original HOG algorithm.

4 The VLSI Architecture

4.1 Dual Core Architecture with Cell-Based Pipeline

Figure 6 depicts a block diagram of the dual core architecture.
The VLSI architecture consists of two HOG feature extraction
cores, a CPU interface, and a memory interface. The HOG
feature extraction core comprises a controller, address gener-
ators, cell histogram generation module, histogram normali-
zation module, SVM classification module, and working
SRAMs. An external CPU controls the HOG processor. The
input grayscale image is loaded from external SRAM to
internal SRAM via a memory interface.

Figure 5 Detection error tradeoff evaluation on INRIA dataset.
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Four-way architecture is adopted to the cell histogram
generation module architecture so that one cell is shared for
four blocks. The cells have to be voted using different weights
corresponding to their positions in the block. The cell histo-
grams are generated in cell-based scanning manner. The in-
termediate histogram are stored in and loaded from a working
SRAM.

The cell histogram normalization module adopts two-stage
architecture to implement L2-Hys normalization [16]. Sub
modules to obtain normalization coefficients adopt four-
stage architecture to improve the precision using the
Newton’s method iteratively.

The SVM classification module adopts detection-win-
dow-size scalable architecture as described in Section 4.3.
Furthermore, each core can share HOG features and in-
termediate classification results with another. The SVM
classification module normally receives extracted feature
from the cell histogram normalization module in the same
core. The controller switches the multiplexer’s inputs
according to the flag in a configuration control register.
The controller also enables the classification module to
access the other classification module’s output. This struc-
ture enables the processor to operate in several modes, as
described in Section 4.2.

The HOG processor architecture has a cell-based pipeline
flow. Cell-based pipeline processing is conducted along these
five stages described below.

1. A cell histogram is generated with cell-based scanning.
The generated cell histograms are stored into the working
SRAM until 2×2 cell histograms are acquired.

2. When that process reaches the block level (2×2 cells) and
four cell histograms are collected, a block-level cell
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histogram is normalized. Then the block-level HOG fea-
ture is extracted.

3. Block-level HOG features and its paired SVM coeffi-
cients corresponding to each window are multiplied and
accumulated.

4. A partial sum of products is compared with early classi-
fication thresholds. A window is classified in the early
stage if the comparison condition is true.

5. An accumulation result of the entire window level is
compared with the SVM threshold. All remaining win-
dows are classified based on this comparison. Then the
final detection result is obtained.

The window-based approach requires memory band-width
of 55 Gbps for HDTV images. The cell-based pipeline archi-
tecture reduces it markedly to 0.499 Gbps, thereby preventing

Figure 9 Pedestrian detection
result with the VLSI [1].

Figure 10 Multiple object
detection system using the VLSI.
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reloading of input pixels in different detection windows.
However, the cell-based architecture requires circuit area
overhead for extra SRAMs to store intermediate cell histo-
grams and classification results.

4.2 Parallel Processing and Operating Modes

In the VLSI architecture, the required cycle count for object
detection is reduced, sharing theworkloads between the cores by
dividing an image into two half-images for each core. Thereby, it
achieves high-speed processing. In contrast, low-power process-
ing is achieved by minimizing the operation frequency.

Detection for a single target object is insufficient for recent
advanced applications. For example, on-vehicle applications
must detect pedestrians, cars, and traffic signs. FPGA-based
previous architecture [10] requires another processor to detect
another target. Furthermore, it wastes power for extraction of
the same HOG feature, although feature extraction is the
dominant part of the object detection task.

The SVM classification module in the processor core con-
tains an independent SRAM dedicated for SVM coefficients.

Each core stores different SVM coefficients for different ob-
jects. Sharing HOG features to another core, feature extraction
processes in one core can be turned off completely to reduce
power consumption.

4.3 Detection-Window-Size Scalable Architecture

The classification module is comprised of 8×15 MAC arrays
(a last column is only used to detect square shaped object) as
illustrated in Fig. 7. These MACs are connected row-wise to
classify vertically-long rectangular object in default configu-
ration. Firstly the module receives a partial HOG feature and
multiplies to correspond SVM coefficient. Then the data is
shifted to neighboring MAC as the cell-based scan goes on in
row-wise manner. The intermediate classification data is
stored in a SRAM after passing the last MAC in a row. Then
the data is loaded from SRAM to the MAC when the process
comes to the next row. The partial HOG features are sent one
after another due to the pipeline processing, every MAC
excepting the last column are active. Therefore, 105
detection-windows are classified at once.

Figure 11 Multi-scale object
detection using the VLSI.
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The architecture also provides object detection for different
shapes: square objects and vertically/horizontally long rectan-
gular objects. The controller module automatically changes
the direction of the dataflow in the classification module
according to the flag in configuration register. For
horizontally-long object, the MACs are reconfigured by
connecting MACs in column-wise.

In order to detect square object, the MAC array modules in
each core process the data of each rectangular region. An
intermediate result of core0 is loaded into core1 as an initial
value. This module structure allows a greater flexibility for
multiple object detection.

4.4 Performance Evaluation of the Architecture

The number of cycle counts for each calculation in HOG-
based object detection was estimated using a Verilog-HDL
simulator. A comparison among the VLSI architecture [1], the
previous FPGA-based architecture [13] and architecture with-
out parallelization is presented in Fig. 8.

The VLSI architecture is superior to others on HDTV
resolution. Results show that the processing with two cores
reduces the number of cycle counts compared with previous
FPGA-based architecture. The reduction rates of histogram
generation, histogram normalization, and SVM classification
are, respectively, 48.5 %, 42.5 %, and 50 %. In the dual core
VLSI architecture, the overall process requires 1.43×10^6

cycles per frame. Therefore, the VLSI can process HDTV
resolution video at 30 fps with 42.9 MHz.

5 Scalable System Architecture

As an example of the applications of the HOG processor
VLSI, we developed a pedestrian detection demonstration
system [1]. Figure 9 presents a sample image of the detection.

Following Sections 5.1 and 5.2 describes how to achieve
more practical object detection system using the VLSI.
Section 5.1 focuses on detection of multiple type objects.
Section 5.2 focuses on multiple scale object detection. Both
systems employ the same baseline architecture. The number
of target type and the searching scale are easily scaled up in
the system. The system can perform multiple object detection
and multiple scale object detection at the same time. The
system configurations and the role of the each core in the
VLSIs are described in 5.1 and 5.2.

5.1 The Application to Multiple Object Detection

The previous FPGA processor [13] supports only single-
object detection. If we use two or more processors to detect
multiple objects simultaneously, then a system can process
only one specific shaped object (64×128 pixel). The capabil-
ity and flexibility of the system are limited. However, as
presented in Fig. 10, an object detection system using the
VLSI can assign different shaped objects to each core, such
as humans and cars, across in front of the camera.

The system consists of the HOG VLSIs and a FPGA board
that a chip controller and other peripheral modules are imple-
mented in. The VLSIs are connected to chip controller and
buffer controller via a CPU bus and a memory bus respective-
ly. The data flow of the system is described below. Firstly the
image is captured into the system through the DVI interface
module. Display controller module manages the timing of the
capture of input image. The captured image is converted into

PLL

Datapath &
Controller

Datapath &
Controller

SRAMSRAM

Core 0 Core 1

Datapath &
Controller
Datapath &
Controller

Figure 13 Chip layout [1].

Figure 12 Example of a packed image.
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grayscale image and sent to the Resize and Packing module. It
is not utilized for this application, but for multiple scale detec-
tion. Then the data are sent to the frame buffer controller. It
controls to transfer the image data to the VLSIs. The Chip
Controller module manages the communication between
VLSIs and frame buffer and operating status of the VLSIs.
To detect multiple types of objects, the trained parameter sets
correspond to each target for SVM classification modules are
required. The parameters are obtained by offline training of the
image dataset. The trained parameters are loaded into each core
in the VLSIs through the chip controller. The Chip controller
also set the appropriate values corresponding to the detection
target into the configuration registers in each core. Detection
results are sent back to the controller once any processor
detects the target. The results are collected and merged. Then
the display controller renders the merged detection result.

On the detection system using the HOG VLSI, early clas-
sification architecture and feature sharing architecture reduce
the power consumption as shown in Section 6. The detection
system can easily scales up the number of the target objects by
adding more VLSIs to the system. The power consumption
and detection accuracy are discussed in Section 7.

5.2 Application for Multiple-scaled Object Detection

As described earlier, the FPGA-based architecture that sup-
ports fixed-scale object doesn’t work well on applications for
which the relative position between the camera and detection
target changes dynamically. The changes in distance between
the camera and the target produce changes in the target object
appearance.

The system which simply assigns one resized image to one
processor consumes wasted processing power. Figure 11 por-
trays a multiple scale object detection system using the VLSI.
On this system, captured input image is sent and resized and
combined into one image.

One core in the VLSI processes the original HDTV resolu-
tion image. This core uses the original image to examine fine
scale objects. The other core processes the resized or subsam-
pled images. Resized images are smaller than the original
HDTV resolution image. And each core in the VLSI is design
to handle the HDTV resolution. Therefore, processing only
one resized image in one core makes a vacancy area in the
internal buffer and the core has surplus processing ability.

Packing themultiple resized images, as presented in Fig. 12,
uses the surplus memory and processing power effectively.
The example presented in Fig. 11 shows images that have been
resized into×0.75, ×0.5, ×0.25, and×0.125 scales are packed
into it as if it were one image. The×0.5 scaled image is packed
into half-sized images. To avoid misdetection, the boundary
region is additionally processed. The system can process these
four scaled images and an original image within a single VLSI.
The Chip Controller receives the detection results from each

core. The detection results include whether the target is detect-
ed or not, detected positions and its likelihood values. The
detection results for any scales and positions are sent to the
Detection Result Merging module. Overlapping detections at
nearby scales and positions are merged to the most reasonable
object by the merging module. The multiple scale object
detection system using the VLSI can scale up its detection
reliability according to the applications’ demand using multi-
ple VLSI processors to examine different scales. The system
using the HOG processor VLSI has high scalability for the
number of the object’s scales, maintaining an advantage in
power consumption.

6 VLSI Measurement Result

A test chip was designed as presented in Fig. 13 [1]. The
design includes the VLSI-oriented algorithm and a dual-core
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Table 1 Chip specifications.

Technology 65 nm CMOS

Chip size 4.2×2.1 mm2

Core size 3.3×1.2 mm2

Power supply 1.1 V (nominal)

Max frequency 110 MHz

Gate count 502 Kgates

Memory size 1.22 Mbit (610 Kbit for one core)

Image resolution HDTV (1920×1080 pixels) @ 30 fps

Measured power 43.0 mW @ 42.9 MHz 1.1 V

Consumption 17.4 mW @ 42.9 MHz 0.7 V (min)
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architecture. This chip, which was fabricated in 65 nm CMOS
technology, occupies 4.2×2.1 mm2 containing 502 Kgates
and 1.22 Mbit on-chip SRAMs. Chip specifications are pre-
sented in Table 1. We analyzed the power consumption of the
VLSI using an LSI test system with a test pattern that simu-
lates a human detection task on HDTV resolution image.
Figure 14 is the power consumption comparison between
our previous FPGA-based processor and the VLSI. The power
consumption of the VLSI is measured at nominal operation
voltage 1.1 V and minimum operation voltage. Our FPGA-
based architecture consumes 196.99mWwhen it processes an
SVGA resolution (800×600 pixels) image at 72 fps. Although
the processor cannot handle the HDTV in real time, its esti-
mated power consumption is expected to reach 354.6 mW to
process HDTV at 30 fps. The measurement result shows that
the power consumption of the VLSI is reduced considerably
from that of the previous FPGA-based device. The value w/o
E.C. and F.S. means that the test chip was operated with
neither the Early Classification function nor Feature Sharing
function. Furthermore, under those circumstances, only one
core in the VLSI is active. To process HDTV at 30 fps with
single core, 84.3 MHz of operating frequency is necessary.
The minimum voltage is 0.9 V at the single core operation.
The measured values of power consumption at nominal volt-
age and minimum voltage were 54.4 mW and 35.6 mW,
respectively. The value with E.C. and F.S. means that the test
chip was operated with Early Classification function and
Feature Sharing function. Under these conditions, both cores
in the VLSI are active. To process HDTVat 30 fps with dual
core processing, 42.9 Mhz of operating frequency is neces-
sary. The operating frequency is not simply halved: each core
must process a half-size image and small overlapped region to
avoid misdetection near the boundary. The minimum voltage
is lowered to 0.7 V at the dual core operation. The measured

values of power consumption at nominal voltage and mini-
mum voltage were 43.0 mW and 17.4 mW, respectively.
Results of comparison show that the VLSI with power reduc-
tion techniques at nominal voltage reduces the power con-
sumption 88 % from FPGA-based processor, with reduction
of 95 % at minimum voltage.

7 System Evaluation

7.1 Power Consumption

Figure 15 presents a comparison of the power consumption
of the processors in the multiple object detection systems.
One is the estimated power consumption when the FPGA-
based processor detects the object on SVGA resolution.
The other is the estimated power consumption in the
VLSI-based system with HDTV resolution video. If the
system processes target objects of two types, then the
power consumption of the VLSI-based system is 84 mW.
It is 67 % lower than that of the FPGA-based system. The
HOG VLSI employs dual core architecture. Therefore up to
two target objects are assigned and detected per chip. The
system can scale up the number of the target objects using
multiple VLSI chips. The system power consumption in-
creases as the number of target objects increases. However,
the increase rate in the VLSI-based system is 32 % lower
than that of the FPGA-based system.

Figure 16 presents a comparison of the power consumption
of the processors in the multiple scale object detection sys-
tems. In Fig. 16, one is the FPGA-based system on SGVA and
the other is the VLSI-based system. Both systems employ
image packing described in the Section 5.2. The VLSIs can
process 5 scales per chip. The power consumption of the
VLSI-based system is 102 mW. It is 74 % lower than that of
the FPGA-based system.
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7.2 Detection Accuracy

The detection accuracy of the VLSI on pedestrian detection is
shown in Fig. 5 in Section 3.2. The VLSI can perform pedes-
trian detection accurately. However, the capability of detecting
objects other than humans is an important issue. The previous
FPGA-based architecture supported only human detection
application. Therefore, parameter optimization such as bit-
width optimization is specified for human detection.

To verify the effectiveness and adaptability of the VLSI to
other object detection task, we have benchmarked the VLSI with
a vehicle detection dataset. Several datasets are available on the
internet. A GTI’s Vehicle Image Database [17], which contains
4000 vehicles’ rear images and 4000 non-vehicle images. The
images were acquired from video sequences that have been
captured from vehicle mounted camera. The data are normalized
into a 64×64 pixel format. We evaluated the VLSI architecture
by average of five hold-out cross validation. Figure 17 presents
theDetection Error Tradeoff Curve on the vehicle detection using
the VLSI. The result shows that both the miss rate and false
positives are lower than the result of the human detection task.
The classification accuracy using the VLSI was about 95 %,
which is compatible with other software-based detection systems
benchmarked on the same dataset [18].

8 Conclusion

A real-time object detection system using the HOG feature
extraction accelerator VLSI was presented in this report. The
VLSI architecture, fabricated using 65 nmCMOS technology,
employs a simplified HOG algorithmwith early classification,
a dual-core architecture with a cell-based pipeline, and a
detection-window-size scalable architecture. Measurement re-
sults show that the VLSI consumes 43 mWat 42.9 MHz and
1.1 V to process HDTV resolution video at 30 fps. The dual
core architecture and detection-window-size scalable architec-
ture enables the dual cores to operate collaboratively. This

architecture provides high scalability for multiple object de-
tection. The object detection system using the VLSI can be
easily adapted to different size and types of the target objects.
In cases of human detection and vehicle detection,
benchmarked results show that the detection accuracy obtain-
ed by the multiple object detection system using the VLSI is
comparable to that by other software-based systems.

Consequently, a multiple object detection system using
VLSI presents great advantages in real-time performance and
available resolution. It can easily scale up the number of target
objects and searching scales answering the various needs of
applications without any great increase in power consumption.

It satisfies the demands of recent advanced applications
such as on-vehicle applications and intelligent robots.
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