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SUMMARY  This paper describes an optical-flow processor core for
real-time video recognition. The processor is based on the Pyramidal Lu-
cas and Kanade (PLK) algorithm. It features a smaller chip area, higher
pixel rate, and higher accuracy than conventional optical-flow processors.
Introduction of search range limitation and the Carman filter to the original
PLK algorithm improve the optical-flow accuracy, and reduce the proces-
sor hardware cost. Furthermore, window interleaving and window overlap
methods reduces the necessary clock frequency of the processor by 70%,
allowing low-power characteristics. We first verified the PLK algorithm
and architecture with a proto-typed FPGA implementation. Then, we de-
signed a VLSI processor that can handle a VGA 30-fps image sequence at
a clock frequency of 332 MHz. The core size and power consumption are
estimated at 3.50 x3.00 mm? and 600 mW, respectively, in a 90-nm process
technology.
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1. Introduction

An optical flow is a motion vector of a pixel between two
successive images; that flow is the basis of video recog-
nition. Figure 1 depicts an image sequence, “Table Ten-
nis” and its optical flows detected from the sequence. Us-
ing the optical flows, moving objects in an image sequence
or movement of a camera itself can be extracted. An opti-
cal flow is useful for vehicle safety systems, robot systems,
medical systems, and surveillance systems.

In optical-flow calculations, several equations must be
solved at every pixel. The computational cost reaches a
few tens of GOPS, even in a CIF 30-fps image sequence
(352 x 288 pixels per frame and 30 frames per second).
Consequently, software approaches using generally avail-
able processors have examined only a small part of an im-
age; alternatively, such approaches have neglected accuracy.
In higher-resolution real-time operation, dedicated hardware
is required. Moreover, scalability in the pixel rate and accu-
racy is preferable for an optical flow processor because the
required pixel rate and accuracy differ among application
areas.

Several optical-flow processors have been developed
[1]-[3]. Figure 2 depicts a comparison of our proposed
processor to the conventional ones in terms of accuracy (=
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Fig.1  Optical flows in an image sequence, “Table tennis.”

100M

L= W=TILK

XVGA *‘L_é' Y High Accuracy and
30 fps X4 ver. (PLK processor)\_High Performance
\ Proposed Architecture \

VGA r Scalable }/

30fps =
{2006, SoC)

CIF Seatable—]
30 fps M
K =10

K=
K=150 S0 A [2] Correia
(2002, FPGA)

(PLK processor)
X 1 ver. (PLK processor)

Resolution x Frame Rate

Pixel Rate

mitibiaz
(2004, FPGA)

5 10 15 20
MAE [degree]

Fig.2  Performance comparison.

MAE: mean angle error) and pixel rate. The MAE is ex-
pressed in the following equation:

1 Ve - U,
MAE = — E E arccos ————— |, @))
N & ( lloll - IIveII)

where N is the total number of pixels in a sequence. v, is
a calculated optical flow and v, is a correct optical flow at
each pixel. The MAE is adopted in the references as the
error index.

The conventional processors have several problems to
handle a VGA 30-fps image. For instance, [1] is com-
prised of an FPGA, and can not process a CIF 30-fps im-
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age because of insufficient memory resource. The MAE
is 18.30 degree, and it is still large for many applications.
[2] achieves higher accuracy, but it can not process a CIF
30-fps because its max frequency of the FPGA is 20 MHz.
[3] is a full-custom SoC and deals with a CIF 30-fps image
sequence. However, the algorithm is based on the hierar-
chical optical-flow estimation (HOE) algorithm, which re-
quires about 1.2-M Bytes inside the chip. This is because
the HOE algorithm assumes that optical flows are smoothly
varied over a frame, and calculation has to be carried out
on a frame-by-frame basis. The calculated luminance gradi-
ents and optical flows in a frame need to be preserved. The
HOE algorithm can refine its accuracy by iterating asymp-
totic equations, although it results in larger workload and
higher memory bandwidth for a higher resolution image se-
quence.

This paper describes an optical-flow processor core
based on the Pyramidal Lucas and Kanade (PLK) algorithm
[4]. In Fig.2, L, W, and K respectively denote a hierarchi-
cal level, window size, and iteration count in our proposed
processor. The PLK algorithm is released in the OpenCV
library by Intel Corp.; it applies a hierarchical scheme to the
Lucas and Kanade algorithm [5] to handle large movement
of objects. The PLK algorithm assumes that optical flows
are equal in a small area. An optical flow is separately cal-
culated flow by flow in this algorithm. Therefore, the PLK
processer requires only 319-K Byte memory (or possibly
less; we mention this in detail later on) for a VGA image.
In addition, the iteration steps in this algorithm rapidly con-
verge since the considering area is small. Thus, the PLK
algorithm has lower computational cost, less memory size,
and higher accuracy than other optical-flow algorithms [5]—
[8].

First, we implement the PLK algorithm to verify its
function and performance on an FPGA board, as a proto
type. Then, we design the optical-flow processor core, as a
VLSI. Our VLSI processor based on the PLK algorithm can
handle a VGA 30-fps image sequence with far less memory
capacity than the HOE processor [3]. The MAE in our pro-
posed processor is 7.36° for the “Yosemite” image sequence,
which is equal accuracy to that of the HOE processor. Our
PLK processor provides both the highest pixel rate and ac-
curacy, and its architecture has wide scalability in terms of
pixel rate and accuracy: it can handle an XVGA 30-fps im-
age sequence by connecting four processors in parallel. In
addition, it can save its power consumption in low-accuracy
applications by appropriately choosing values of the algo-
rithm parameters.

2. Pyramidal LUCAS and KANADE (PLK) Algorithm

An optical flow u in the PLK algorithm is defined as a vector
to minimize the following residual function E(u):

E@) =) ()= J@r+w), @)

where I and J are luminance values of the first and second
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Fig.3  Flowchart of PLK algorithm.

images of two successive ones, respectively and the sum-
mation is over a region centering at position r. The region
is referred as a window A on the first image and a window
B on the second image. The window B has displacement u
(the optical flow) to the window A. In a linear approxima-
tion, (2) leads to (3):

Gu =b,

b
>0, . >, 3)
Swa, Y [ D]

where the spatial gradient matrix and a mismatch vector are
respectively represented as G and b. The luminance gradi-
ents of x, y, and ¢ coordinates are respectively denoted as I,
I, and I,. Using (3), the optical flow is computed iteratively
with the Newton-Raphson method.

Figure 3 depicts a flowchart of the PLK algorithm,
where L denotes a hierarchical level, and K is the iteration
count. First, hierarchical images are generated in a recur-
sive fashion. Then, I, and I, are computed from pixel data
in the window A and /; from ones in the windows A and
B. Then, G and b are computed to produce an optical flow.
These steps are repeated iteratively at a hierarchical level.
The position of the window B varies at every iteration step
depending on the previous optical flow. Furthermore, this
procedure is repeated from the uppermost level to the first
level (raw image). Finally, the optical flow is obtained.

G =

3. PLK Algorithm Optimization for VLSI Implemen-
tation

In the PLK algorithm, a window B at the L-th level is de-
termined using the (L+1)-th level optical flow. The search
range of an optical flow will become large proportionately if
the computed optical flow will be large. This increases the
size of the memory on a chip. Figure 4 shows the proposed
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Fig.5  Accuracy comparison of the PLK algorithm. This MAE is an
average value of MAEs of four image sequences: “Translating Tree,” “Di-
verging Tree,” “Yosemite” and an original composite sequence.

search range limitation method, which configures the upper
limit value of an optical-flow. The search range limitation
reduces an internal memory size from a capacity of more
than picture frame (319-k Byte) to that of a search range
(18-k Byte).

In the search range limitation, an optical flow that has a
value larger than the upper limit is rounded to the upper limit
value. This is because the PLK algorithm assumes small
movement of the flow in a small area, so a large value of the
flow is likely to be false caused by a local noise. The method
described here reduces false detections and enhances the
flow accuracy.

In addition, the Carman filter [9] is adopted to further
boost the accuracy. The Carman filter improves the quality
of the first image / by using both I and the second image J;
it is a simple two-frame weighted average.

3 1

Lear(r) = —I(r) + —J(r + u), 4)
4 4

where I, is the Carman-filtered first image. By the way, I;
is expressed as follows:

I, =I(r)— J(r +u), (@)
which is rewritten by introducing the Carman filter (I.,, —
I):

3
I = Z(I(r) - J(r +u)). (6)

MAE is improved by 0.1° with the Carman filter. In-
troduction of these methods to the original PLK algorithm
both improves accuracy and reduces the memory size.

Figure 5 shows an accuracy comparison of the PLK al-
gorithm according to parameters. The parameter set of L

(d)

Fig.6  Four image sequences: (a) “Translating Tree,” (b) “Diverging
Tree,” (c) “Yosemite,” and (d) an original composite sequence.

(hierarchical level) = 3, W (window size) = 11, K (iteration
count) = 1 is adopted for our VLSI implementation. The al-
gorithm optimization with the above parameter set improves
MAE by 0.59° and reduces the memory size by 96% com-
pared to the original PLK algorithm [4]. Here four test im-
age sequences were employed for the accuracy evaluation
(Fig. 6).

4. VLSI Architecture
4.1 PLK Optical-Flow Processor

Figure 7(a) shows a block diagram of the PLK optical-
flow processor, which comprises a pyramidal image creation
(PIC), a spatial gradient matrix (SGM), a mismatch vector
(MMYV), an optical flow (OPF), and so on. Each block is a
pipeline stage and operates in parallel.

Because the window B at the L-th level is determined
using the (L + 1)-th level optical flow, the MMV can not
start computing the L-th level optical flow until the (L + 1)-
th level optical flow is obtained. It causes pipeline stall, as
shown in Fig. 8(a). The window interleaving method is pro-
posed as shown in Fig. 8(b). Since an optical-flow calcula-
tion corresponding to a pixel is independent of a calculation
corresponding to another pixel, the optical-flow calculation
of the other pixel can be inserted into idle cycles in Fig. 8(a).
Thanks to this method, pipeline stall does not occur and the
clock frequency is reduced by 65%.

4.2  Pyramidal Image Creation (PIC)

Figure 7(b) shows a block diagram of the PIC that gener-
ates a hierarchical image by sub-sampling and 5 X 5 Gaus-
sian filter. The filtering is made, according to the following
equation:
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where 1,,4miqqr 1 @ luminance values on the (L+1)-th level
generated with I’s on the L-th level. Note that the PIC gen-
erates integer pixels.

4.3 Spatial Gradient Matrix (SGM)

Figure 7(c) shows a block diagram of the SGM, which com-
prises interpolation A (IPAs), spatial gradient (SPGs), gra-
dient matrix elements (GMEs), and a summation (SUM).
First, pixel data of a window A are acquired from the Py.Img
A memory (a first hierarchical image corresponding to the
window A), as shown in Fig. 7(a). Next, the I[PAs interpolate
luminance values of integer pixels into decimal ones using
bi-linear interpolation. The SPGs calculate I, and I,. The
GMEs calculate elements of a spatial gradient matrix; they
are added for each row at the SUM. By repeating these steps
for iterations equal to the number of window rows, G is de-
rived; it is the total of spatial gradient matrices.

Most pixels in the window corresponding to a calcu-
lating pixel and in the next window corresponding to a next
pixel are identical. Most pixel data can be used in com-
mon in computing the optical flow at neighboring pixels.
We name this reuse of the common pixels “window over-
lap method,” which shortens clock cycles in reading pixels.
The Window overlap method reduces the clock frequency by
15% from that using the window interleaving method alone.

4.4 Mismatch Vector (MMYV)

Figure 7(d) shows a block diagram of the MMV, which
comprises interpolation B (IPBs), mismatch vector (MVs)
and a summation (SUM). First, pixel data of window B
are acquired from the Py.Img B (a second-frame hierarchi-
cal image corresponding to the search range), as shown in
Fig. 7(a). Next, IPBs interpolate luminance values at deci-
mal pixels estimated using an upper level optical flow. The
MVs calculate I, from pixel data of both window A and win-
dow B with the Carman filter in (3). Mismatch vectors of
each pixel are calculated from /,, I, and /,. Finally, as with
the SGM, by adding mismatch vectors, b is derived, which
is the total of mismatch vectors.

4.5 Optical Flow (OPF)

Figure 7(e) shows a block diagram of the OPF. This com-
prises a calculation of the denominator and numerator
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Fig.7  (a) Block diagram of PLK optical-flow processor. Block diagrams
of (b) pyramidal image creation (PIC), (c) spatial gradient matrix (SGM),
(d) mismatch vector (MMV), and (e) optical flow (OPF).

(CDN), divider (DIVs), and an update (UPDATE). First, the
CDN executes a 32-bit multiplication with four 16-bit mul-
tipliers in a four-stage pipelined multiplication. Next, DIVs
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execute 32-bit division using a subtraction shift recovery al-
gorithm. The DIV can calculate a 1-bit quotient per clock
cycle. Because the bit-length of an optical flow is 24, divi-
sion with the DIV requires 24 clock cycles per optical flow.
The DIV must finish calculation at every six clock cycles
when W =5 (the smallest window size in the proposed pro-
cessor) because an optical flow is produced per six clock
cycles. Four DIVs are placed in parallel to handle this occa-
sion. Finally, at the UPDATE, an optical flow is updated by
adding an upper level optical flow and this optical flow.

4.6 Scalability

We can scale the pixel rate if we increase/decrease the num-
ber of processors operating in parallel. One PLK processor
just handles a VGA 30-fps images. However, if we utilize
four processors in parallel, they can process an XVGA 30-
fps image sequence. Figure 9 shows the parallel operation of
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Fig.8 Timing charts of (a) the conventional method and (b) the window
interleaving method.
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Fig.9 (a) Parallel architecture of four PLK processors. (b) Optical flows
calculation with four processors.
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four PLK processors and optical flow calculation with them.
Optical flows of four pixels are processed at a time. Each
processor is independent except for input from a memory
bus. Each processor receives pixel data of the same region
and calculates optical flows at different places. Therefore,
optical flows can be computed with reduced clock frequency
and without increasing the bus-bandwidth.

In addition, the processor operates at lower clock fre-
quency in less accuracy applications by setting the values of
the algorithm parameters to be smaller than those of the op-
timized ones; as a result, power consumption can be saved.

5. A Proto-Typed FPGA Implementation

To evaluate the PLK algorithm and our proposed architec-
ture, we first implemented them on an FPGA. In this FPGA
implementation, we downsized the pixel resolution to QCIF
30 fps, since the target FPGA board is limited to 20 MHz
operation.

5.1 Target FPGA Board and Evaluation System

The target FPGA board is Celoxica RC2000. The FPGA
board has a Xilinx Virtex-II XC2 V6000. As frame buffers,
six external synchronous SRAMs (SSRAMs) are available.
A camera (Silicon Video SV642M) and an image capture
board (PIXCI SI Digital Frame Grabber) feed images to the
FPGA board through a PC. The FPGA board calculates op-
tical flow, and the optical flow is overlaid with its original
image on the PC’s display. The software framework oper-
ates on the PC to handle the image data and the optical flows.
The FPGA board and the image capture board are controlled
by APIs and drivers through Windows XP on the PC.

5.2 Verification

Considering the hardware resource of the FPGA, we set
the parameters as L = 2, W = 5, and K = 2 in this im-
plementation. Table 1 compares the average MAEs be-
tween the original OpenCV PLK algorithm (ANSI C: float-
ing point) and the results from the FPGA implementation
(fixed point). The four image sequences used in Fig. 6 are
evaluated. The respective errors between them are about
0.3°, which demonstrates that our architecture is as accurate
as the floating-point operation.

Figure 10 is an image taken by the camera, and its opti-
cal flows calculated with the FPGA board. A man is walking
from the left side to the right side, bringing up his arm. We

Table1 MAE comparison between floating-point operation and our
proposed architecture.
MAE (degree)
Translating Diverging Yosemite Original Composite
Tree Tree sequence
ANSIC | 2.537163 | 6.565456 | 13.702810 | 5.358324
FPGA | 2.706657 | 6.844909 | 14.016331 | 5.600715




IEICE TRANS. ELECTRON., VOL.E91-C, NO.4 APRIL 2008
462

3500 pm

A
v

wrl 000

Fig.11  Layout of PLK processor core.

Table 2  Comparison of performance.

PLK Processor HOE Processor
Prameter L=3,W=11,K=1 K =150

Resolution |VGA 30 fps | CIF 30 fps |  CIF 30 fps
Frequency | 332MHz | 110 MHz 189 MHz
Power 600 mW | 198 mW 500 mW

Logic 590 kGate 311 kGate
Size |Memory 18 kByte 1200 kByte
Area 10.5 mm? 30 mm?
®) Trapstating 0.47° 0.65
Diverging o o
Fig.10  (a) Input image and (b) its optical flows. MAE| "Tree 281 275
Yosemite 7.36° 7.44°
verified that the PLK algorithm and our proposed architec-
ture properly work in a real system. 35 700
. ——MAE
6. VLSI Implementation _sr —B-power 1 600
)
Figure 11 shows a PLK processor core layout, which is de- £ 25 1 500
signed in a 90-nm process technology. Then, the respec- = =
tive area sizes of the SGM, the MMV, and the OPF are s20 1400 g
1.50 x 0.84mm?, 1.50 X 0.70 mm?, and 0.50 x 0.84 mm?. - .
The core size, which includes all blocks, is estimated within Eo 15 r 1 300 =
3.50 x 3.00mm?. Table 2 shows a performance compari- < e
son of the PLK and the HOE processors. The PLK pro- = 10 200
cessor achieves real-time processing of a VGA30-fps image = s | |
sequence with smaller chip size than that of the HOE pro-
Cessor. 0 e
Total power consumption of the SGM, the MMV, and 5 7 9115 7 6 11 5 7 9 11
the OPF is estimated at 600 mW when the parameters are L L= o L=2 L=3
=3, W =11, and K = 1. The accuracy of the PLK algorithm window size
is equivalent to that of the HOE algorithm. The trade-off Fig.12  Trade off between MAE and power.

between MAE and power dissipation is indicated in Fig. 12.
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A parameter set of L and W can be chosen, on condition of
the accuracy or power.

7. Conclusion

We described an optical-flow processor core for real-time
video recognition based on the PLK algorithm. For VLSI
implementation, introducing the search range limitation and
the Carman filter as computing the temporal luminance gra-
dient optimizes the PLK algorithm. The optimized PLK al-
gorithm provides accuracy which is equivalent to that of the
HOE algorithm, with improved MAE by 0.59°, and mem-
ory size reduced by 96% for parameters of L = 3, W = 11
and K = 1 (see Table 2). Moreover, introduction of window
overlap and window interleaving methods reduces the PLK
processor clock frequency by 70%. The core size is esti-
mated as 3.50 X 3.00 mm? in a 90-nm process technology; it
can handle a VGA 30-fps image sequence at 332 MHz clock
frequency and 600 mW power consumption. Therefore, the
proposed optical-flow processor is applicable to several ap-
plication fields of real-time video recognition tasks such as
those for vehicle safety, robotics, medical care, and surveil-
lance.
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