
IEICE TRANS. COMMUN., VOL.E89–B, NO.10 OCTOBER 2006
2741

PAPER Special Section on Mobile Multimedia Communications

Aggregation Efficiency-Aware Greedy Incremental Tree Routing for
Wireless Sensor Networks

Shinji MIKAMI†, Student Member, Takafumi AONISHI††, Hironori YOSHINO††∗, Nonmembers,
Chikara OHTA†††a), Member, Hiroshi KAWAGUCHI†††, Nonmember, and Masahiko YOSHIMOTO†††, Member

SUMMARY In most research work for sensor network routings, per-
fect aggregation has been assumed. Such an assumption might limit the
application of the wireless sensor networks. We address the impact of ag-
gregation efficiency on energy consumption in the context of GIT routing.
Our questions are how the most efficient aggregation point changes accord-
ing to aggregation efficiency and the extent to which energy consumption
can decrease compared to the original GIT routing and opportunistic rout-
ing. To answer these questions, we analyze a two-source model, which
yields results that lend insight into the impact of aggregation efficiency.
Based on analytical results, we propose an improved GIT: “aggregation
efficiency-aware GIT,” or AGIT. We also consider a suppression scheme
for exploratory messages: “hop exploratory.” Our simulation results show
that the AGIT routing saves the energy consumption of the data transmis-
sion compared to the original GIT routing and opportunistic routing.
key words: sensor networks, aggregation efficiency, greedy incremental
tree routing

1. Introduction

Recent advances in micro-sensors, integrated circuit tech-
nology and low-power wireless communications will enable
the deployment of extremely small, low-cost sensor nodes
with remarkable computation capability. Applications of
sensor networks comprising numerous such sensor nodes in-
clude remote environmental monitoring, smart spaces, mili-
tary surveillance, precision agriculture, and so on [2].

Sensor networks are expected to operate under severe
energy constraints because it is not practical to replace their
batteries because of the large number of sensor nodes. A
salient issue is reduction of the amount of transmitted data
because wireless communications at sensor nodes consume
more power than any other activity [12]–[16].

Data centric routing is a promising paradigm for sen-
sor network routing [14]. With data centric routing, rout-
ing decisions are based on the contents of the payloads of
packets rather than their destination addresses. A sensor
node might aggregate receiving packets that are temporally
buffered, generate a new packet, and then send it to the next

Manuscript received December 21, 2005.
Manuscript revised April 8, 2006.
†The author is with the Graduate School of Natural Science

and Technology, Kanazawa University, Kanazawa-shi, 920-1192
Japan.
††The authors are with the Graduate School of Science and

Technology, Kobe University, Kobe-shi, 657-8501 Japan.
†††The authors are with the Faculty of Engineering, Kobe Uni-

versity, Kobe-shi, 657-8501 Japan.
∗Presently, with the Ehime Prefectural Government.

a) E-mail: c-ohta@cs.kobe-u.ac.jp
DOI: 10.1093/ietcom/e89–b.10.2741

hop. Such a means of operation is expected to reduce the
amount of transmitted data, engendering remarkable power
savings. An example of data centric routing is directed dif-
fusion (DD) [11].

An aggregation scheme should be chosen carefully ac-
cording to applications. Data aggregation can be categorized
into two classes: lossy and lossless [1]. Perfect aggregation
[12] and beam-forming [17] are lossy aggregations. With
perfect aggregation, a sensor node aggregates received data
into one unit of data and then sends it to the next hop, where
average, maximum, and count operations are examples of
perfect aggregation functions [18]. Such an operation can
remarkably reduce the amount of transmitted data. Perfect
aggregation is quite efficient in this sense, whereas available
applications are limited. Examples of lossless aggregations
are linear aggregation [12] and coding by order [16]. Linear
aggregation performs a simple operation: header elimina-
tion. A sensor node concatenates the payloads of buffered
packets whose next-hops are equal and then puts it into one
packet. The efficiency of the linear aggregation is lower than
that of perfect aggregation, whereas lossless aggregation is
versatile for all applications. The linear aggregation leads
to maximum energy consumption in the class of lossless ag-
gregation. More complicate aggregation like coding by or-
der to achieve higher compression may require more power
consumption in processor. Consideration about this aspect
is left as a future issue.

In most studies, perfect aggregation has been assumed
(e.g. [3], [7], [12], [13]). However, perfect aggregation is
not universal and possibly limits applications of sensor net-
works, as mentioned above. Unfortunately, we do not have
sufficient insight into the influence of the diversity of the
aggregation to sensor network routings.

In the case of perfect aggregation, the most efficient
data path from sources to a sink forms a Steiner tree or a
minimal spanning tree on hop-count basis. This fact en-
courages research of heuristic distributed algorithms such
as Greedy Incremental Tree (GIT) [12] for Steiner tree and
the Nearest Neighbor Tree (NNT) [13] for minimal span-
ning tree. In the former case, some sources are assumed to
send sensing data to a sink. On the other hand, all nodes
are assumed to be sources in the latter case. In this paper,
we focus on the former case, and the latter case is left as a
future issue.

As mentioned in [14], the task to form a data path with
optimal data aggregation in the case where some sources

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers

2742
IEICE TRANS. COMMUN., VOL.E89–B, NO.10 OCTOBER 2006

send sensing data to a sink is NP-hard. This is because the
minimum Steiner problem is NP-complete. The GIT is a
well-known approximation algorithm for this problem, and
the GIT construction runs in polynomial time with respect
to the number of nodes.

Our questions are how the most efficient incremen-
tal aggregation point changes according to aggregation ef-
ficiency in the context of the GIT routing and how much
energy consumption can decrease. In order to answer these
fundamental questions, we analyze a simple two-source
model.

Based on results of our analysis, we improve the GIT
routing algorithm to find a more efficient aggregation point
according to aggregation efficiency. In this paper, we call the
improved GIT “aggregation efficiency-aware GIT (AGIT).”

This paper is organized as follows: Section 2 describes
the original GIT algorithm. In Sect. 3, we analyze a simple
two-source model to investigate the impact of the efficiency
of aggregation on energy consumption. In Sect. 4, we pro-
pose AGIT routing. Section 5 shows some simulation re-
sults. Finally, we present conclusions in Sect. 6.

2. Greedy Incremental Tree

2.1 Directed Diffusion

GIT routing is based on directed diffusion (DD), which is
a typical data-centric routings for sensor networks. Before
describing GIT routing, we briefly explain DD (See Fig. 1).

In DD, a task described as a list of attribute-value pairs
is flooded into a network as an interest. Through the inter-
est diffusion process, a sensor node receives the interest sets
(or updates) a gradient toward the neighbor which sends the
interest, and resends the interest to some subset of its neigh-
bors (or broadcast) if it is different from the previously re-
ceived one. A sensor node to take the task described in the
interest sends an exploratory message to each neighbor to
whom a gradient is set. Intermediate nodes relay the ex-

Fig. 1 A simplified schematic for directed diffusion.

ploratory message toward the sink along gradients of the
interest to match the task of the exploratory message. Be-
cause the sink possibly receives multiple exploratory mes-
sages originating at a source from its neighbors, it reinforces
a preferable path by sending reinforcing messages to partic-
ular ones among the neighbors from which it received an
exploratory message. Intermediate nodes receiving this re-
inforcing message treat it similarly, so that it is relayed in
the reverse direction on the path. As a result, a data path
is established from the source to the sink. Refer to [11] for
more detail on DD.

2.2 Finding of Aggregation Point in GIT Routing

GIT routing is a heuristic distributed algorithm to construct
a Steiner tree on hop-count basis, and assumes perfect ag-
gregation. Each source, one by one, tries to find the shortest
hop from itself to the existing path tree or the sink. Figure 2
shows this process as an example. In this figure, the path
from the source 1 to the sink has already been established,
and the source 2 is following.

To realize this process, each exploratory message in
GIT routing involves an additional attribute E, which de-
notes the additional cost (hop-count) from the source orig-
inating itself to the current node. The value of E is set to
zero initially. Whenever resending an exploratory message,
the nodes increment the value of E by one. The exploratory
message is distributed through the network according to the
gradient of the corresponding interest; it will arrive at nodes
on the existing path tree. Consequently, the nodes on the ex-
isting path tree can know the hop-count from the source that
initiated the exploratory message. In Fig. 2(a), E denotes
hop-count from the source 2.

Each source involved in the existing path tree initiates
an incremental cost message whenever it receives a previ-
ously unseen exploratory message that was initiated by other
sources. The incremental cost message conveys two addi-

Fig. 2 An example of path establishment in GIT routing.

MIKAMI et al.: AGGREGATION EFFICIENCY-AWARE GREEDY INCREMENTAL TREE ROUTING FOR WIRELESS SENSOR NETWORKS
2743

tional attributes: the random identifier of its corresponding
exploratory message and the cost (hop-count) from the ad-
ditional source (which initiated the exploratory message) to
the existing path. The incremental cost message is relayed
on the existing path from its originating source to the sink.
The intermediate nodes update if the value of C in the incre-
mental cost message is greater than or equal to the cached
value of E. Thus C indicates the minimum value of E on
the existing path. In Fig. 2(a), the source 1 initiates incre-
mental cost message after receiving the exploratory mes-
sage, and initially sets C to its E = 3. While traveling from
the source 1 to the sink, the incremental message updates its
value of C to the minimum value of E on the existing path.

The sink waits directly and late-arriving exploratory
messages and other incremental cost messages for the pre-
defined interval immediately after the arrival of the first in-
cremental cost message. Then, the sink reinforces a neigh-
bor, which sends an exploratory message or an incremental
cost message with a lower additional energy cost C or E,
respectively. In the case where an incremental cost mes-
sage has the lowest additional energy cost C, the reinforc-
ing message containing the value of C travels toward to the
initiator of the incremental cost message on the existing es-
tablished path until it encounters an intermediate node with
E = C(min(E)). This intermediate node becomes the ag-
gregation point for the additional source that initiated the
exploratory message. Then, the reinforcing message is di-
verted to the additional source. In Fig. 2(b), a reinforcement
message travels on the existing path in the opposite direction
of the incremental message, and is redirected to the source 2
at the aggregation point where E is minimal on the exist-
ing path. Thus the additional path from the source 2 to the
existing path is established.

As a result of the procedure described above, the low-
est cost (minimal hop-count) branch is added to the existing
path tree. Refer to [12] for more details regarding GIT rout-
ing.

2.3 Discussion

In the case of perfect aggregation, the energy consumption
for data transmission on the newly added branch can be re-
garded as the net increase of that on the entire data path.
This fact, however, is not always true in different aggrega-
tion schemes.

Let us consider the case where a packet has size
Lpacket = Lheader + Lpayload, where Lheader is the header length
and Lpayload is the payload length in bytes and N packets
are incoming and one packet is outgoing at an aggregation
point. In the case of the perfect aggregation, the outgoing
packet after aggregation has the same size Lheader + Lpayload

as an incoming packet. On the other hand, in the case
of linear aggregation, the outgoing packet has larger size
Lheader+N×Lpayload (N > 1) than that of perfect aggregation.
Both aggregations are simple enough for power consump-
tion of processing to be neglected. Therefore, we assume
that the energy consumption for packet transmission and re-

ception is dominant. Generally speaking, a longer packet
consumes more energy to transmit and receive it. As with
[5], [6], [13], in this paper, it is assumed that the energy con-
sumption for transmission and reception of a packet is pro-
portional to length of the packet.

Consequently, the linear aggregation consumes more
energy on the path from the aggregation point to the sink
than the perfect aggregation, since total transmission data
size increases. Thereby implying that a node near to the sink
on the path tree might be more efficient as the aggregation
point. But, how much energy can be saved if we choose
the aggregation point more carefully? We analyze a simple
two-source model in the next section to estimate the possible
improvement.

3. Analysis of a Two-Source Model

This section shows the analysis for the simple two-source
model. We also have the result for the three-source model,
but we omit it because of space limitations. The analy-
ses shown in this section are limited to GIT-like routing in
which each source, one by one, tries to find the path to the
existing path tree or the sink.

3.1 Model Description

Figure 3 shows the two-source model that we analyze. In
this model, we assume that a lot of nodes exist densely. In
this figure, however, we show only two source nodes, sink
and aggregation node and do not depict another nodes for
simplicity. The aggregation point is denoted as “p” in the
figure. We also assume that transmission radius is constant.
From the above assumptions, the hop-count between two
nodes can be proportional to Euclidean distance between
them. In this model, we assume that the distance between a
source and the sink is equal to one unit length for simplicity.
We also assume that the energy consumption to transfer a
data packet per hop is proportional to the packet size. Fur-
thermore, we assume that the path between the first source
and the sink is an existing path and that the second source
is going to establish the path. Note that, in the case of the
original GIT routing, the second source will have a perpen-
dicular line as the additional path to the existing path.

Here we introduce the following notations: Let x and
y respectively denote the distances between the aggregation
point and the sink and the distance between source 2 to the
aggregation point, (0 ≤ x ≤ 1). We denote by θ the angle

Fig. 3 Two-source model.

2744
IEICE TRANS. COMMUN., VOL.E89–B, NO.10 OCTOBER 2006

between source 1 to source 2, as seen from the sink (0◦ ≤
θ ≤ 90◦). Let r denote the aggregation ratio of the size of
the aggregated packet to the total size of the original packets
(1

2 ≤ r ≤ 1). In the case of the perfect aggregation, the
value r of the aggregation ratio is equal to 1

2 . Let E denote
the energy consumed to transfer the data packets from the
sources to the sink on the path tree.

3.2 Optimal Aggregation Point and Energy Consumption

The above assumptions suggest the following relationship:

E ∝ 2rx + (1 − x) + y, (1)

where

y =
√

x2 − 2x cos θ + 1. (2)

By performing some algebra for dE
dx = 0, we obtain the

optimal value xoptimum to minimize the energy consumption
for data packet transmission on the path tree:

xoptimum

=

⎧⎪⎪⎨⎪⎪⎩
0, cos θ+1

2 ≤ r < 1,

cos θ − sin θ
√

1
4r(1−r) − 1, 1

2 ≤ r < cos θ+1
2 .

(3)

By substituting x = xoptimum in (1), we have the scaled
value Eoptimum of the energy consumption for data packet
transmission on the path tree in the case of the optimal ag-
gregation point. We have the value EGIT expected for GIT
routing, as

EGIT ∝ 2r cos θ + (1 − cos θ) + sin θ. (4)

Since the aggregation point becomes nearer to the sink,
the path tree will become similar to that of “opportunistic
routing” [12], where data from different sources can be op-
portunistically aggregated at intermediate nodes along the
established paths. In the case of x = 0, y = 1, we have the
value Eopp expected for opportunistic routing, as

Eopp ∝ 2. (5)

To evaluate how much the optimal aggregation point
saves energy compared to the original GIT routing and
opportunistic routing, we introduce the following metric,
“gain,” G:

G(r, θ) =
min(EGIT, Eopp) − Eoptimum

min(EGIT, Eopp)
× 100. (6)

3.3 Numerical Results

Figure 4 shows how the aggregation point changes accord-
ing to the values of the aggregation ratio and the angle be-
tween the first and second sources. Figure 5 shows how
much gain can be achieved.

From Fig. 4, we can see that the optimal aggregation
point changes widely according to the value of r as the an-
gle becomes narrower. Furthermore, the aggregation point

Fig. 4 Optimal aggregation point in two-source model.

Fig. 5 Gain by optimal aggregation point in a two-source model.

becomes nearer to the sink compared to the foot of perpen-
dicular from the additional source to the existing path in the
case of 1

2 < r.
Figure 5 shows that the value of gain has a peak in the

middle region of r, and the larger the peak value is (up to
4.5% for 15◦), the smaller the angle is. The value r to give
the peak gain increases as the angle decreases. That is, the
AGIT routing is more effective in the case where sources
exist near and the aggregation efficiency is not so high. The
value of gain converges to zero toward to the both ends. This
is because the path tree becomes similar to that of the GIT
routing for r = 0.5 and that of the opportunistic routing for
r = 1.

Although we do not show the results of the three-source
model, more gain is obtained compared to the two-source
model.

4. Aggregation Efficiency-Aware GIT

In this section, we propose “aggregation efficiency-aware
GIT (AGIT)” routing in order to find a more efficient ag-
gregation point to reduce the energy consumption inherent
in transmitting data packets.

4.1 Suppression of Exploratory Messages

In the DD, which is the basis of GIT routing, exploratory
messages are distributed widely according to the nodes’

MIKAMI et al.: AGGREGATION EFFICIENCY-AWARE GREEDY INCREMENTAL TREE ROUTING FOR WIRELESS SENSOR NETWORKS
2745

gradients because interests do not contain any information
about a sink. As a result, the gradients are set in many di-
rections. (See Sect. 2.2.2 in [11].)

To some extent, GIT-like routing necessarily distributes
exploratory messages in order to determine the aggregation
point for the existing path tree. Results of our analysis
showed, however, that the aggregation point becomes nearer
to the sink than the foot of the perpendicular from the addi-
tional source to the existing path in the case of 1

2 < r.
In the AGIT routing, we consider the following scheme

to suppress the excessive exploratory messages: “hop ex-
ploratory.” In the following, we assume that each node
can know the hop-count from the sink through interest dis-
semination. Each node caches the hop-count from the sink
for each interest as “own hop.” To do so, we also assume
that each interest has a random identifier to be distinguished
from the others.

4.1.1 Hop Exploratory

Each exploratory message contains the additional field
‘previous hop” to store the value own hop of its sender’s.
In addition, each exploratory message also contains the field
“hop” to store the hop count from the source that initiated
the exploratory message. Whenever a source initiates the
exploratory message with both previous hop and hop set to
own hop.

When the node receives the exploratory message with
previous hop, it rebroadcasts the exploratory messages with
previous hop set to own hop and with hop decremented by
one if

own hop ≤ previous hop and hop > 0. (7)

Figure 7 shows the phenomenon of dissemination of
the exploratory messages, where an arrow denotes the di-
rection in which an exploratory message is sent. From this
figure, we can see that this scheme prevents network-wide
diffusion compared to traditional scheme in Fig. 6, which
indicates the dissemination of exploratory messages using
original scheme described in [11].

4.2 Adjustment of the Incremental Cost Message Phase

The above suppression scheme involves some adjustments
of the incremental cost message phase because the source
nodes on the existing path tree might not receive the ex-
ploratory messages. Consequently, the incremental cost
message is issued in such a case.

We take the following approach to overcome this prob-
lem. The intermediate nodes aside from the sources on the
existing path tree can initiate the incremental cost message.
In order to suppress the multiple incremental cost message,
the more distant intermediate node from the sink issues the
incremental cost message earlier. To do so, each intermedi-
ate node sets up an incremental cost message timer as

ti = (max hop − own hop) × δ, (8)

Fig. 6 Phenomenon of dissemination of exploratory messages in the tra-
ditional approach.

Fig. 7 Phenomenon of dissemination of exploratory messages in the hop
approach.

where max hop and δ respectively denote the predefined
network diameter and the timer granularity. The intermedi-
ate node issues the exploratory message if its timer expires
before receiving another exploratory message; otherwise it
suspends the issue.

4.3 Finding of Optimal Aggregation Point

In the following, we assume that linear aggregation is em-
ployed, whereby a packet has size Lpacket = Lheader + Lpayload

where Lheader is the header length and Lpayload is the payload
length in bytes. Furthermore, we assume that all sources
send the data packet at the same rate. The procedure shown
here can be extended easily to function in different cases.

In the AGIT routing, the incremental cost message con-
tains an additional field to store the hop-count H from an
interim aggregation point. Whenever the source and/or the
intermediate nodes issue a new incremental cost message,
they set H = 1.

2746
IEICE TRANS. COMMUN., VOL.E89–B, NO.10 OCTOBER 2006

Fig. 8 An example of path establishment in AGIT.

The intermediate nodes receiving the incremental cost
message execute the following:

if (E ≤ C + H · d) C = E, H = 1,
else H = H + 1,

(9)

where d = Lpayload/Lpacket. Recall that E denotes the addi-
tional cost (hop-count) from the source joining to the exist-
ing path tree to the current node.

In (9), C+H·d represents the net increase of power con-
sumption from the source nodes to the current node when
using the current interim aggregation point. If this value is
greater than or equal to the value of E, the current node is
more optimal than the interim aggregation point. In such a
case, the current node substitutes for the interim aggregation
point, so that it sets C = E and H = 1. Otherwise, it just
increments the value of H by one. This manner is repeated
until the incremental cost message arrives at the sink.

Figure 8 shows the search procedure of the optimal
aggregation point. Here we assume that the packet length
is one and the payload length is 0.6. The first source re-
ceives the exploratory message from the second source, sets
C = E = 3 and H = 1 in a newly generated incremental cost
message, and then forwards it the neighbor node on the path
from the first source and the sink. The neighbor receiving it
compares its value of E and the value of C + H · d, where
E = 2, C = 2, H = 1 and d = 0.6. The receiving node sets
C = E (like the original GIT routing) and H = 1 since its
E ≤ C + H · d, and then forwards the incremental cost mes-
sage to the next neighbor node on the existing path to the
sink. The next simply increments H, i.e. H = 1 + 1, since
its E > C + H · d, where E = 3, C = 2 and d = 0.6, and
forwards it to its next one on the existing path. Further, the

next receiver sets C = E and H = 1 since its E ≤ C + H · d,
where E = 3, C = 2, H = 2 and d = 0.6. Finally, the
sink receives the incremental cost message with C = 3 and
H = 1. The sink finds that aggregation point is far from it by
H = 1 hop since its E > C + H · d. After that, the reinforc-
ing message containing C = 3 is injected by the sink toward
to the initiator of the incremental cost message on the exist-
ing established path until it encounters an intermediate node
with E = C. The reinforcing message is redirected to the
source 2 at the intermediate node. This manner is similar to
the original GIT routing.

The overhead of AGIT routing compared to the original
GIT routing merely comprises the hop-count field to store
H; it can be negligible. Its procedure to find aggregation
point is similar to that of the original GIT routing. There-
fore, latency of the AGIT routing is expected to be almost
same as that of GIT routing. We verified this expectation by
simulation, but omit the results due to space limitation.

5. Simulation

In this section, we briefly explain our simulation conditions;
then we show some simulation results. The aim of the sim-
ulation experiments is to confirm the effectiveness of the
AGIT routing in more complicated situations.

5.1 Model and Assumption

We implemented the original GIT routing, opportunistic
routing and the AGIT routing on a self-developed event-
driven simulator engine.

In this simulator, 500 sensor nodes are deployed uni-
formly in a 50 × 50 m2 field. The transmission range is 5 m.
One sink is located at (45, 45) of the two-dimensional coor-
dinate. The number of sources is varied from two to nine;
they are randomly chosen among 500 sensor nodes.

The packet has a 36-byte header. The payload length is
varied as 4, 36, 108, and 216 bytes.

We implemented two schemes of the dissemination
of the exploratory messages: “traditional exploratory” and
“hop exploratory.”

To evaluate only the effect of adjustment of aggrega-
tion point, we implemented the ideal media access control
(MAC), which enables simultaneously transmitted packets
to be received correctly without any collision. Further it
suppresses overhearing at all. Unfortunately, such the ideal
MAC can not be realized in practice. However, if we use
wake-up radio [8] which has small overhead of collision and
overhearing, we expect to have similar result.

Assuming the case by which the pass loss coefficient of
n = 2, we modeled the energy consumption for transmission
and reception of the packet of length l bits with distance R
m, Etx and Erx, as follows:

Etx = (αtx + β · R2) · l, (10)

Erx = αrx · l, (11)

MIKAMI et al.: AGGREGATION EFFICIENCY-AWARE GREEDY INCREMENTAL TREE ROUTING FOR WIRELESS SENSOR NETWORKS
2747

where αtx and αrx respectively denote the energy consump-
tions of the transmission circuit and the reception circuit,
expressed as nanojoules per bit, and β denotes the radiation
energy in appropriate units (nJ/bit/m2) [5].

In simulation experiments, we use αtx = 50 nJ/bit,
αrx = 300 nJ/bit, and β = 1.6 nJ/bit/m2. We assumed δ = 0.1
which is experimentally determined so that unnecessary in-
cremental cost messages are suppressed. Channel rate is set
to 19.2 kbps (after the specification of Mote [4]) and a packet
is generated by a source every 10 seconds.

In each case, 50 simulation trials are executed. In
Figs. 8, 9 and 11, we will plot out the average value of them.

5.2 Simulation Results

Figures 9 and 10 show the characteristics of gain defined
in Sect. 3 as a function of the number of sources for dif-
ferent payload lengths. In this paper, we employ the ideal
MAC which can suppress overhearing. Energy consump-
tion caused by one transmission composes that by its trans-
mitter and that by the intended receiver. Therefore, the en-
ergy consumption on the path depends on the absolute value
of Etx + Erx regardless the ratio of Etx to Erx. Therefore,
gain is an universal measure to expresses the energy saving
of AGIT routing since it is independent of so much as the
absolute value of energy.

Fig. 9 Gains by nodes on the path tree in the case of the traditional ex-
ploratory scheme.

Fig. 10 Gains by nodes on the path tree in the case of the hop exploratory
scheme.

Figure 9 shows the results of the traditional exploratory
scheme. In this case, the exploratory messages are dis-
tributed network-wide. In the case of the small payload,
4 bytes, the gain is quite low because the aggregation ratio of
the linear aggregation is almost identical that of the perfect
aggregation. However, in the case of the medium payload,
36 bytes, which is the same as the header, the gain increases
concomitant with the number of sources. This tendency is
more remarkable in the case of the large payload, 108 bytes.
However, in the case of too large payload, 216 bytes, the
path tree will become similar to that of the opportunistic
routing. Therefore, the gains decrease. These results coin-
cide with predictions by our analysis shown in Sect. 3.

Figure 10 shows results of the hop exploratory scheme.
From this figure, we can see that the AGIT routing is still
more efficient than GIT routing and opportunistic routing,
but the values of gain are decreased in comparison to those
of the traditional exploratory scheme. This degradation can
be explained as follows. The number of candidate aggre-
gation points decrease in the hop exploratory scheme. This
fact possibly shifts position of an aggregation point finally
chosen to the sink in the GIT routing compared to the tra-
ditional exploratory scheme. However, the AGIT routing is
hardly impacted since it tends to find aggregation points near
to the sink compared to the original GIT routing. Therefore,
in the hop exploratory scheme, the path tree constructed by
the original GIT routing resembles that by the AGIT rout-
ing compared to the traditional exploratory scheme. This is
reason of the above result.

The gain values are smaller than the expected values
obtained from analysis. For analysis, we assume a dense
network. However, in the simulation, the nodes are de-
ployed in a discrete fashion. For that reason, the range of
choices for the optimal aggregation point in the simulation
is smaller than that for the analysis.

In Figs. 9 and 10, the gain fluctuates especially for the
cases of 36-byte and 108-byte payloads, even though the
average value for each case is led from 50 trials. This is
because the variance of gain in this case is relatively large
compared to the other cases. In Appendix, we will explain
the dependency of the variance of gain on the aggregation
ratio.

Figures 9 and 10 show the gain in the data transmis-
sion phase. From this viewpoint, the traditional exploration
is preferable. However, it consumes more energy to con-
struct the path tree. Therefore, we investigate the amount
of the energy in the path setup phase. Figure 11 shows the
total energy consumption of the entire network before com-
pletion of the path tree construction. This figure indicates
that the traditional exploratory scheme has more overhead to
construct the path tree than that the hop exploratory scheme.
This overhead comes from excess flood of exploratory mes-
sages. Thus a trade-off exists between the gain of the data
transmission phase and the overhead of the path tree con-
struction phase. The answer to the problem depends on the
applications: more precisely, it depends on how long the
data transmission phase lasts.

2748
IEICE TRANS. COMMUN., VOL.E89–B, NO.10 OCTOBER 2006

Fig. 11 Total energy consumption in whole network until the path tree is
constructed.

Fig. 12 Impact of node failure in the case of the traditional exploratory
scheme (payload size = 4 bytes, number of sources = 5).

Fig. 13 Impact of node failure in the case of the traditional exploratory
scheme (payload size = 216 bytes, number of sources = 5).

Figures 12–14 show robustness of opportunistic, GIT
and AGIT routing with the traditional exploratory scheme.
We also have similar trends for the hop exploratory scheme,
but omit due to space limitation. We define the data arrival
ratio as the ratio of the number of data received by the sink
to that of data generated by all sources. In this simulations, it
is assumed that some nodes fail after path tree construction
phase.

Figures 12 and 13 show the characteristics of data ar-
rival ratio when the number of sources is five. From these

Fig. 14 Impact of node failure in the case of the traditional exploratory
scheme (payload size = 4 bytes, number of sources = 10).

figures, we notice the following. The AGIT routing has sim-
ilar characteristics to the GIT routing and the opportunistic
routing in the case of shorter (4-byte) payload and longer
(216-byte) payload, respectively. This is because, in the
case of shorter (4-byte) payload, the path tree constructed by
the AGIT routing resembles that by the GIT routing. Oth-
erwise it resembles that by the opportunistic routing. Fig-
ure 14 show the characteristics of data arrival ratio in the
case where 10 sources exist. From Figs. 12 and 14, we no-
tice the following. The opportunistic routing is superior to
the GIT routing in the case of 10 sources while the former
is inferior to the latter in the case of five sources. Note that
the AGIT routing has the data arrival ratio between both ex-
tremes. This is because the opportunistic routing has dif-
ferent paths from sources to the sink while the GIT routing
shares the path among the sources.

6. Conclusions

This paper presented the aggregation efficiency-aware GIT
(AGIT) routing, and also described analyses incorporating
the suppression scheme for exploratory messages: hop ex-
ploratory.

The AGIT routing can construct a more efficient path
tree than the original GIT routing and the opportunistic rout-
ing. The improvement becomes more remarkable as the
payload packet length becomes larger and/or more sources
exist. Our simulation results demonstrate that the AGIT
routing achieves about 8% of the gain for the energy con-
sumption of the data transmission compared to the original
GIT routing. However, our simulation results also empha-
size that the suppression scheme, hop exploratory, reduces
energy consumption up to 40%.

Acknowledgment

This research work was partially supported by a Grant-in-
Aid for Young Scientists (B), No. 16700066, 2005, from the
Ministry of Education, Culture, Sports, Science and Tech-
nology, Japan, and by the Kayamori Foundation for Ad-
vancement of Information Science.

MIKAMI et al.: AGGREGATION EFFICIENCY-AWARE GREEDY INCREMENTAL TREE ROUTING FOR WIRELESS SENSOR NETWORKS
2749

References

[1] T.F. Abdelzaher, T. He, and J.A. Stankovic, “Feedback control of
data aggregation in sensor networks,” IEEE Conference on Decision
and Control, Dec. 2004.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wire-
less sensor networks: A survey,” Comput. Netw. J., vol.38, pp.393–
422, March 2002.

[3] K. Akkaya, M. Younis, and M. Youssef, “Efficient aggregation of
delay-constrained data in wireless sensor networks,” Proc. Internet
Compatible QoS in Ad Hoc Wireless Networks 2005, Jan. 2005.

[4] G. Anastasi, A. Falchi, A. Passarella, M. Conti, and E. Gregori,
“Performance measurements of motes sensor networks,” Proc. ACM
MSWiM, pp.174–181, Oct. 2004.

[5] M. Bhardwaj, T. Garnett, and A.P. Chandrakasan, “Upper bounds on
the lifetime of sensor networks,” Proc. ICC, pp.785–790, June 2001.

[6] A. Depedri, A. Zanella, and R. Verdone, “An energy efficient proto-
col for wireless sensor networks,” Proc. AINS 2003, June 2003.

[7] M. Enachescu, A. Goel, R. Govindan, and R. Motwani, “Scale free
aggregation in sensor networks,” Proc. First International Workshop
on Algorithmic Aspects of Wireless Sensor Networks, pp.71–84,
July 2004.

[8] C. Guo, L.C. Zhong, and J.M. Rabaey, “Low power distributed MAC
for ad hoc sensor radio networks,” Proc. Globecom, vol.5, pp.2944–
2948, 2001.

[9] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin,
and D. Ganesan, “Building efficient wireless sensor networks with
low-level naming,” Proc. ACM Symposium on Operating Systems
Principles, Oct. 2001.

[10] J. Hill and D. Culler, “Mica: A wireless platform for deeply embed-
ded networks,” IEEE Micro, vol.22, no.6, pp.12–24, Nov. 2002.

[11] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and
F. Silva, “Directed diffusion for wireless sensor networking,”
IEEE/ACM Trans. Netw., vol.11, no.1, pp.2–16, Feb. 2003.

[12] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, “Im-
pact of density on data aggregation in wireless sensor networks,”
Proc. 22nd International Conference on Distributed Computing Sys-
tems, Nov. 2001.

[13] M. Khan, G. Pandurangan, and B. Bhargava, “Energy-efficient rout-
ing schemes for wireless sensor networks,” Tech. Rep. of Depart-
ment of Computer Science, Purdue University, CSD TR 03-013, July
2003.

[14] B. Krishnamachari, D. Estrinf, and S. Wicker, “Modelling data-
centric routing in wireless sensor networks,” IEEE INFOCOM, June
2002.

[15] B. Krishnamachari, D. Estrin, and S. Wicker, “The impact of data
aggregation in wireless sensor networks,” Proc. 22nd International
Conference on Distributed Computing Systems, July 2002.

[16] D. Petrovic, C. Shah, K. Ramchandran, and J. Rabaey, “Data funnel-
ing: Routing with aggregation and compression for wireless sensor
networks,” Proc. IEEE Sensor Network Protocols Applications, An-
chorage, AK, May 2003.

[17] A. Wang, W.B. Heinzelman, A. Sinha, and A.P. Chandrakasan,
“Energy-scalable for battery-operated microsensor networks,” J.
VLSI Signal Process., vol.29, pp.223–237, Nov. 2001.

[18] J. Zhao, R. Govindan, and D. Estrin, “Computing aggregates for
monitoring wireless sensor networks,” Proc. IEEE International
Workshop on Sensor Network Protocols and Applications, May
2003.

Appendix: Variance of Gain

Figures A· 1 and A· 2 show the samples of path tree of GIT
routing and AGIT routing, respectively, in the case where

Fig. A· 1 Path tree of the GIT routing.

Fig. A· 2 Path tree of the AGIT routing.

the gain of AGIT routing to GIT routing is relatively large
on condition of 36-byte payload (the aggregation ratio is
0.75). In both figures, the first source labeled “Source 1”
established the path to the sink, and then the second source
labeled “Source 2” establishes the additional path. In AGIT
routing, the path from the second node grows toward to the
sink while, in GIT routing, the second source makes the ad-
ditional path as the perpendicular line to the existing path.

The energy consumption on the paths from the first
and second further sources from the sink constitutes a great
portion of the total on the path tree. Therefore, we investi-
gate the two source model shown in Fig. 3 in the unit square
where the positions of two sources, the first and second fur-
ther sources from the sink, are uniformly distributed on the
chord of the unit quadrant with center at the upper-right cor-
ner at which the sink is located. (See Fig. A· 3.)

LetΘ denote the angle between two sources. The prob-
ability distribution function Pr(Θ ≤ θ) is given as

Pr(Θ ≤ θ) = 1 −
(
1 − 2
π
θ

)2

, 0 ≤ θ ≤ π
2
.

Therefore, we have the probability density function f (θ) of
the angle Θ as

2750
IEICE TRANS. COMMUN., VOL.E89–B, NO.10 OCTOBER 2006

Fig. A· 3 Model of angle between two source.

Fig. A· 4 Variance of gain in a two-source model.

f (θ) =
4
π

(
1 − 2
π
θ

)
. (A· 1)

From (6) and (A· 1), we have the first moment G(r) and
the second moment G2(r) of the gain as follows:

G(r) =
∫ π

2

0
G(r, θ) f (θ)δθ,

G2(r) =
∫ π

2

0
G(r, θ)2 f (θ)δθ.

Using these expressions, we can calculate the variance
Var{G(r)} = G2(r) − (G(r))2 numerically.

Figure A· 4 shows the variance of the gain as a func-
tion of the aggregation ratio r. We can see that the vari-
ance of the gain has a maximum when the aggregation ratio
is around 0.8. In Figs. 9 and 10, the aggregation ratio r is
0.55, 0.75, 0.88, and 0.93 when the payload size is equal
to 4 bytes, 36 bytes, 108 bytes, and 216 bytes, respectively.
From Fig. A· 4, the variance is relatively large in the cases
of 36-byte payload and 108-byte payload compared to the
other cases. This is the reason why the gain fluctuates es-
pecially for the cases of 36-byte and 108-byte payloads in
Figs. 9 and 10.

Shinji Mikami received the B.E. degree in
electrical and information engineering in 2002
and the M.E. degree in electronic and informa-
tion system in 2004 both from Kanazawa Uni-
versity, Ishikawa, Japan. He is currently a Ph.D.
candidate at the same university. Currently, he is
involved in research project of Kobe University
to develop ultra low power wireless-network-
sensor-node. His research interests include low-
power RF circuit designs, media access controls
and routing for sensor networks.

Takafumi Aonishi received the B.E. degree
in Computer and Systems Engineering from
Kobe University in 2005. He is currently a Mas-
ter’s student at Kobe University. His interests
include routing for sensor networks.

Hironori Yoshino received the B.E. degree
in Computer and Systems Engineering in 2004
and the M.E. degree in graduate school of sci-
ence and technology in 2006 both from Kobe
University. Currently, he is an officer in the
Ehime Prefectural Government.

Chikara Ohta received the B.E., M.E. and
Ph.D. (Eng.) degrees in communication engi-
neering from Osaka University, Osaka, Japan, in
1990, 1992 and 1995, respectively. From April
1995, he was with the Department of Com-
puter Science, Faculty of Engineering, Gunma
University, Gunma, Japan, as an Assistant Pro-
fessor. In October 1996, he joined the De-
partment of Information Science and Intelligent
Systems, Faculty of Engineering, University of
Tokushima, Tokushima, Japan, as a Lecturer,

and there he had been an Associate Professor since March 2001. Since
November 2002, he has been an Associate Professor of the Department of
Computer and Systems Engineering, Faculty of Engineering, Kobe Univer-
sity, Japan. From March 2003 to February 2004, he was a visiting scholar
in the University of Massachusetts at Amherst, USA. His current research
interests include performance evaluation of communication networks. He
is a member of IEEE.

MIKAMI et al.: AGGREGATION EFFICIENCY-AWARE GREEDY INCREMENTAL TREE ROUTING FOR WIRELESS SENSOR NETWORKS
2751

Hiroshi Kawaguchi received the B.E.
and M.E. degrees in electronic engineering from
Chiba University, Chiba, Japan, in 1991 and
1993, respectively. He received the Ph.D. degree
in engineering from the University of Tokyo, To-
kyo, Japan, in 2006. He joined Konami Corpo-
ration, Kobe, Japan, in 1993, where he devel-
oped arcade entertainment systems. He moved
to the Institute of Industrial Science, the Univer-
sity of Tokyo, as a Technical Associate in 1996,
and was appointed to be a Research Associate in

2003. Since 2005, he has been a Research Associate in the Department of
Computer and Systems Engineering, Kobe University, Kobe, Japan. He is
also a Collaborative Researcher in the Institute of Industrial Science, the
University of Tokyo. He is a recipient of the IEEE ISSCC 2004 Takuo
Sugano Award for Outstanding Far-East Paper. He has served as a program
committee member for IEEE Symposium on Low-Power and High-Speed
Chips (COOL Chips). He is a guest associate editor of IEICE Transac-
tions on Fundamentals of Electronics, Communications and Computer Sci-
ences. His current research interests include low-power VLSI design, wire-
less sensor network, and robot vision. Dr. Kawaguchi is a member of the
IEEE and ACM.

Masahiko Yoshimoto received a B.S. de-
gree in electronic engineering from Nagoya In-
stitute of Technology, Nagoya, Japan, in 1975,
and an M.S. degree in electronic engineering
from Nagoya University, Nagoya, Japan, in
1977. He received a Ph.D. degree in Electrical
Engineering from Nagoya University, Nagoya,
Japan in 1998. He joined the LSI Laboratory,
Mitsubishi Electric Corp., Itami, Japan, in April
1977. From 1978 to 1983 he was engaged in
the design of NMOS and CMOS static RAM in-

cluding a 64 K full CMOS RAM with the world’s first divided-word-line
structure. From 1984, he was involved in research and development of
multimedia ULSI systems for digital broadcasting and digital communica-
tion systems based on MPEG2 and MPEG4 Codec LSI core technology.
Since 2000, he has been a Professor of the Dept. of Electrical and Elec-
tronic Systems Engineering at Kanazawa University, Japan. Since 2004, he
has been a Professor of the Dept. of Computer and Systems Engineering
at Kobe University, Japan. His current activity is focused on research and
development of multimedia and ubiquitous media VLSI systems including
an ultra-low-power image compression processor and a low power wireless
interface circuit. He holds 70 registered patents. He served on the Program
Committee of the IEEE International Solid State Circuit Conference from
1991 to 1993. In addition, he has served as a Guest Editor for special issues
on Low-Power System LSI, IP, and Related Technologies of IEICE Trans-
actions in 2004. He received the R&D100 awards from R&D Magazine for
development of the DISP and development of a real-time MPEG2 video
encoder chipset in 1990 and 1996, respectively.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

