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SUMMARY  This paper describes an ultra low power, mo-
tion estimation (ME) processor for MPEG2 HDTV resolution
video. It adopts a Gradient Descent Search (GDS) algorithm that
drastically reduces required computational power to 6 GOPS. A
SIMD datapath architecture optimized for the GDS algorithm de-
creases the clock frequency and operating voltage. A low power
3-port SRAM with a write-disturb-free cell array arrangement
is newly designed for image data caches of the processor. The
proposed ME processor contains 7-M transistors, integrated in
4.50 mm x 3.35mm area using 0.13 pm CMOS technology. Esti-
mated power consumption is less than 100 mW at 81 MHz@1.0 V.
The processor is applicable to a portable HDTV system.

key words: HDTV, MPEG, motion estimation processor, Gra-
dient Descent Search algorithm, SIMD datapath architecture

1. Introduction

The international video compression standard,
MPEG?2, is a key-technology in building digital video
applications. MPEG2 applications such as digital TV
are expanding to include High Definition TV resolution,
as well as Standard Definition TV. HDTYV resolution
monitors are becoming more widely used in the home.
Therefore, portable HDTV systems such as the MPEG
camera will continue to gain popularity.

Figure 1 shows a block diagram of an MPEG video
encoder. The conventional motion estimation tech-
nique requires more than 90% performance of the en-
coder. It requires about 1000 GOPS to operate the
HDTYV resolution video system. A highly efficient ME
processor is essential to realize a high quality and low
power MPEG codec in the system.

Figure 2 shows the power consumption trend of an
ME processor. The power consumption in the 0.13 pm
processor developed with the conventional technology
is more than 1200 mW even for 1/4 sub-sampling tech-
nique. Power consumption is prohibitively large for
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portable products. The objective of this work is to pro-
duce a very low power motion estimator for the HDTV
resolution video system.

Many MPEG?2 codec LSIs have been reported [1]-
[4]. These LSIs perform MP@ML video encoding; sev-
eral LSIs can also perform MPQHL video encoding.
Unfortunately, they usually cannot perform motion es-
timation for HDTV resolution video with a single chip
configuration. Several MPEG4 codec LSIs adopt fast
motion estimation algorithms and reduce power con-
sumption [6], [7]. They can handle QCIF or CIF reso-
lution video, but usually leave HDTV resolution video
out of consideration. A low power ME processor useful
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for a portable HDTYV system has not been reported.

This paper proposes a novel algorithm, architec-
ture and circuit design technique for a motion estima-
tion processor dedicated to a portable HDTV system
that requires very low power consumption. Features of
the newly developed ME processor are as follows:

e The GDS algorithm [5] is introduced for motion
estimation. The GDS algorithm realizes motion
estimation for HDTV resolution video only using
6 GOPS computational power, while the conven-
tional search algorithm requires about 1000 GOPS.

e A SIMD datapath architecture optimized for the
GDS algorithm is designed. The SIMD datapath
contains 32 processing elements (PE). It can cal-
culate the mean square error (MSE) in 8 cycles per
macro block (MB). Its performance is 10 GOPS at
81 MHz@1.0V. It operates at low frequency and
low voltage, so its power consumption is quite low.

e The 32 Kb 3-port SRAM macro that has a write-
disturb-free cell arrangement with a symmetrical
memory cell layout is newly introduced. Esti-
mated power consumption of this SRAM macro
is 1.32mW at 1.0V and 81 MHz.

2. Algorithm
2.1 GDS Algorithm

Figure 3 shows an example of the distortion function
over the search area for the GDS algorithm. The crite-
rion of the function is the mean square error of a macro
block indicated by a motion vector. The next search
starts toward a direction that produces the steepest
gradient of the function. The vector with the mini-
mum function value over the search area is the solution
to the procedure.

Figure 4 illustrates the searching procedure by the
GDS algorithm. Technical terms are defined here to
describe the GDS algorithm. “Template buffer” (TB)
is a memory that stores a MB pixel data in a current
frame. “Search Window Buffer” (SW) is a memory
that stores pixel data in the previous frame. Brightness
of the pixel that is located in T'B(i,j) is described as
TB; ;. The search vector is described as (Vz, Vy). The
GDS algorithm is described as follows:

Stepl. Decide start vector

Calculate MSE for the following four vectors. Start
searching from the vector that has the smallest MSE
among them.

1. 0 vector

2. The left MB motion vector

3. The upper MB motion vector

4. The motion vector of the MB that is located in the
same position of the previous frame.

Here, MSE is defined as:
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Step2. Decide search direction

Calculate = and y differential coefficients of the
distortion function at the point indicated by the start
vector.

ok
% = Z Z(TB%] — SWi+Va:,j+Vy>
i g

*(SWis14va,j+vy — SWisi4vae j+vy)

(2)
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3)

tanf = Dy (4)

Step3. 1-Dimensional Search

e Search vectors toward the direction 6 with step
width A.

e Continue to search vectors until MSE increase.

e The vector whose MSE is minimum is a temporary
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solution.
Step4. Decide to repeat or not

e (Calculate differential coefficients and new direction
0" at the point obtained in Step3.

e If # does not equal to ¢, then go to Step3, and
search in the new direction 6’.

e If 0 equals to #’, finish the procedure. The latest
temporary solution is taken as the final solution.

The simple GDS algorithm as above has a ten-
dency to fall in a local minimum solution. It is effective
to add a hierarchical search method in order not to fall
in a local minimum, because a smoothing effect in an
upper layer removes a noise effect and make it possible
to search vectors in a long distance. The hierachical
GDS algorithm is illustrated in Fig. 5. The hierarchical
GDS algorithm is applied for three image layers. Layer
1 is the original picture. Layer 2 is obtained by 1/4
sub-sampling of layer 1, and layer 3 is obtained by 1/4
sub-sampling of layer 2. The hierarchical GDS algo-
rithm starts searching in layer 3. This is followed by
searching in layer 2 and layer 1.

2.2 Picture Quality and Computational Power Esti-
mation

The PSNR between the original picture and the pre-
dicted picture obtained by the GDS algorithm is mea-
sured through a simulation. Simulation conditions are
summarized as:

e Motion estimation algorithm:

— Full search (FS)
— 1/4 sub-sampling full search (QFS)
— Gradient descent search (GDS)

Sample picture:

— Buildings along the Canal (Fig. 6)
— Church (Fig. 7)
— Yacht Harbor (Fig.8)

Resolution: 1920 x 1035

Number of frames: 150

Search range: H:—128, +127/V:—64, +63
Forward frame prediction

Half-pel precision.
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Fig.6 Buildings along the Canal.

Fig.8 Yacht Harbor.

Figures 9, 10 and 11 show simulation results. The
average PSNR obtained by the GDS algorithm is al-
most the same as the FS and QFS algorithms.

The conventional FS algorithm estimates all vec-
tors in a search range. Then, the optimal vector must
be found, but the number of operations is huge. The
computational power required by the FS algorithm for
HDTYV resolution video is

(16 % 16) * 2 x (256 x 128) % ((1920 * 1080)
/(16 % 16)) * 30 = 4077 GOPS.

The two operations to calculate mean absolute er-
ror (MAE), H:—128, +127/V:—64, +63 of the search
range, 1920 x 1080 pixels resolution, 30 fps of the bit
rate are assumed in the equation. The computational
power is about 1000 GOPS even for the 1/4 sub-
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sampling technique.

The computational power required by the GDS al-
gorithm is investigated with the simulation. The num-
ber of block matchings per macroblock obtained by the
simulation is 24, then the computational power can be
calculated as

(16 % 16) 4 % 24 * ((1920 * 1080) /(16 * 16)) * 30
= 6 GOPS.
The four operations to calculate the MSE and dif-

ferential coefficients for 1 pixel is assumed here. The
GDS algorithm requires only 6 GOPS to process HDTV
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resolution video. The computational power and picture
quality for three motion estimation techniques simu-
lated here are summarized in Fig. 12. A drastic power
reduction maintaining picture quality as the FS algo-
rithm is obtained using the GDS algorithm.

3. Architecture

Figure 13 shows the block diagram of the ME proces-
sor. The SIMD datapath is optimized for the GDS
algorithm. It contains 1 TB, 16 SWs, 32 PEs, and an
adder tree. A MemoryBus feeds new image data to TB
and SWs. The TB and SWs are image data caches.
The TB, SWs, and PEs are connected by two Cross-
Paths. The PE executes a calculation for 1 pixel in a
cycle. The PEs are followed by an adder tree which
completes the calculation. The control part contains
a MCORE, an instruction RAM (IRAM), a sequencer
(SEQ), and address generators (AG). Features of this
architecture are as follows:

e Concurrent data transfer
e 32 PE SIMD datapath
e Adaptive control by MCORE.

3.1 Concurrent Data Transfer

The TB and SWs receive the next MB data from Mem-
oryBus and feed pixel data to PEs concurrently as il-
lustrated in Fig. 14. Thus, TB and SWs keep supplying
pixel data to PEs so that pipeline operation of PEs can
be maintained continuously. The TB, SWs, and PEs
are connected by two CrossPaths, which sort the se-
quence of pixel data from SWs corresponding to the
sequence of pixel data from TB. The CrossPath is im-
plemented with 1:16 demultiplexers.

The next MB data received by SWs are illustrated
in Fig.15. The SWs must receive the next MB data
within 1 macroblock cycle. The bandwith to transfer
the next MB data can be calculated as

(16 % 144) = ((1920 = 1080) /(16 % 16)) * 30
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— 559,872,000 (Bytes/s).

The width of the MemoryBus is 64 bit; it operates
at 81 MHz. Therefore, the bandwidth of the Memory-
Bus is 648,000,000 (Bytes/s), a sufficient memory band-
width. It is assumed that the MemoryBus connects the
ME processor with a frame memory dedicated to the
ME. The ME processor generates addresses very regu-
larly to read pixel data from the frame memory. Thus
86% utilization of the MemoryBus can be attained if
the frame memory is composed of SDRAMs, with its
pipeline feature.

3.2 32-PE SIMD Datapath

The ME chip contains 32 PEs. The PE is optimized for
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the GDS algorithm. A PE can execute the calculation
for MSE and differential coefficients. Figure 16 shows
the block diagram of the PE. Figure 16(a) depicts the
PE configuration for the MSE calculation. The PE re-
ceives 1-pixel data from TB and 1-pixel data from SW.
Figure 16(b) describes the PE configuration to calcu-
late a differential coefficient in the x direction. The PE
receives 1-pixel data from TB and 3-pixel data from
SWs. The data from S1 terminal represents a center
pixel; the other two data from SO and S2 are left and
right pixels. Figure 16(c) describes the PE configura-
tion for a differential coeflicient in the y direction. The
PE receives 1-pixel data from TB, 2-pixel data from
SWs and 1-pixel data from the opposite PE. The data
from S3 is a center pixel; the other two data from S1
are upper and lower pixels. Delay buffers are inserted
for delay adjustment for these pixel data. The PEs
are followed by adders and accumulators which com-
plete calculation of MSE or differential coefficient for
the search vector.

A PE can perform above computation for 1 pixel
in a cycle, so 32 PEs can evaluate one search vector (or
1MB) in 8 cycles. A PE can execute 2 subtractions,
1 multiplication and 1 addition simultaneously, so that
32 PEs can execute 128 operations in a cycle. The per-
formance of this SIMD is 10 GOPS at 81 MHz. The
GDS algorithm requires 6 GOPS to execute motion es-
timation for the HDTV resolution video as described
in Sect. 2.2; therefore this SIMD is able to execute it.

Several ME processors connected to the same
MemoryBus can work concurrently to obtain a high
quality picture. For example, two ME processors start
searching from different initial vectors, and a better re-
sult can be taken from one of two ME processors. In
this case, the way that a codec circuit performs half pel
motion estimation is more efficient than that the ME
processor does it. Thus the ME processor doesn’t have
a half pel motion estimation cirtuit.
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3.3 Adaptive Control by MCORE

The control part of the ME processor consists of an
MCORE, an instruction RAM (IRAM), a sequencer
(SEQ), and address generators (AG). The MCORE is
a RISC processor developed by Motorola for embedded
systems. It executes instructions in IRAM. It sets com-
mands and parameters in SEQ registers and can con-
trol the SIMD datapath indirectly. The command set
includes “initial vector evaluation,” “search vector eval-
uation,” “differential coefficients calculation,” and “1-
dimensional search.” The parameter set includes “the
number of cycles,” “the image layer number,” “the size
of TB,” “the size of SW,” “initial vectors,” “search vec-
tor,” “search direction,” and “search step width.” The
SEQ supplies control signals to PEs according to the
commands and parameters. It supplies a search vector
and start signal to AG. The AG translates a search vec-
tor from SEQ to memory addresses and supplies them
to TB and SWs.

Adaptive and efficient control of motion estimation
processing is realized by a combination of MCORE and
SEQ. For example, an appropriate search step width
can be calculated by MCORE using MSE and differ-
ential coefficients at the start point of 1-dimensional
search. The MCORE makes the control system adap-
tive. On the other hand, in a 1-dimensional search, if
MCORE accesses SEQ registers every time the evalua-
tion completes, the MCORE overhead is not negligible.
The SEQ has been designed so as to execute a series
of evaluations and stop searching when it finds a tem-
porary solution without control by MCORE. The SEQ
makes the control system efficient.

4. Circuit Design

The block diagram of the 3-port SRAM macro, which
is utilized for SWs, is illustrated in Fig. 17. The macro
has concurrent 3-port access capability (2R1W) and a 4
Kword by 8-bit configuration. The ME chip integrates
16 pieces of the macro for about 500kbit storage as
SWs. As a result, a low power design for the 3-port
SRAM macro is essential to realize sub-100mW ME
LSIL

The 3-port SRAM macro has three major features
to reduce power dissipation. A symmetric 3-port mem-
ory cell layout has been introduced to avoid influence
to the cell ratio by misalignment and processing is-
sues. This enhances cell stability, particularly under
low voltage condition less than 1V. Also, the write-
disturb problem, which frequently appears in the op-
eration of the conventional multi-port RAM, is com-
pletely eliminated by a newly developed cell-array ar-
rangement. This is realized by a combination of full
divided wordline structure [8] for the entire 3-port cir-
cuit and a wordline scheme which is connected to only
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one row of eight memory cells (1 pixel). The above two
features enable 1V operation, allowing low power char-
acteristics. Moreover, the divided wordline structure
drastically reduces the bitline current, which occupies
a significant amount of total power consumption of the
macro, to 1/8 of its previous value.

Figure 18 shows a breakdown of power consump-
tion of the 3-port SRAM macro. The macro of 4K x
8 bit consumes only 0.36 mW at 0.7V and 1.32mW
at 1V under 81 MHz operation condition. Hence, the
power dissipation of total search window buffer is sup-
pressed to 25 mW under 1V operation, which is about
one-third of that using the conventional design tech-
nique shown in Fig. 18.

5. Implementation and Performance Estima-
tion

5.1 Delay Analysis

Figure 19 shows a simulation waveform of the 3-port
SRAM obtained by HSPICE. It is verified that the
SRAM operates at 100 MHz@0.7V. It is also verified
that the logic part operates at 81 MHz@0.7V using cir-
cuit simulation and static timing analysis. Then, the
ME processor can operate at 81 MHzQ1.0 V certainly.
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5.2 Power Consumption Analysis

Power consumption is estimated by HSPICE and Pow-
erMill. As described in Sect.4, power dissipation of
total search window buffer is suppressed to 25 mW un-
der 1V operation. The estimated power consumption
of the logic part and interconnection part is 20 mW and
20 mW, respectively. So, 65 mW of power consumption
for the ME core under 81 MHz@1.0 V condition is at-
tained.

5.3 Plot Image and Characteristics

The plot image of the newly developed ME processor
is shown in Fig. 20. Characteristics of the processor are
summarized as follows:

Technology: 0.13 pm CMOS, 5 metal layers

Chip Size: 4.80 x 3.65 mm

Number of Transistors: about 7 million

Function: frame structure, forward frame predic-
tion, integer-pel precision (in realtime)
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e Resolution: 1920 x 1080 pixels

e Frame Rate: 301fps

e Search Range: H:—128, +127/V:—64, +63

e Clock Frequency: 81 MHz

e Power Supply: 1.0V

e Power Consumption: 65 mW (estimated by circuit
simulation).

6. Conclusion

A motion estimation processor for MPEG2 HDTYV res-
olution video encoding is newly designed. The es-
timated power consumption is less than 100mW at
81 MHz@1.0V, which is equal to less than 10% of
the power dissipation realized by 1/4 sub-sampling
technique. This low power characteristic is obtained
through the development of the GDS algorithm whose
required computational power is about 0.1% of the FS
algorithm and the VLSI architecture with little degra-
dation of video quality. Consequently, it can be appli-
cable to portable HDTV systems.
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