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Abstract— This paper describes a robust method for heart 
beat detection from noisy electrocardiogram (ECG) signals. 
Generally, the QRS-complex of heart beat is extracted from the 
ECG using a threshold. However, in a noisy condition such a 
mobile and wearable bio-signal monitoring system, noise 
increases the incidence of misdetection and false detection of 
QRS-complex. To prevent incorrect detection, we introduce a 
novel template matching algorithm. The template waveform can 
be generated autonomously using a short-term autocorrelation 
method, which leverages the similarity of QRS-complex 
waveforms. Simulation results show the proposed method 
achieves state-of-the-art noise tolerance of heart beat detection. 

I. INTRODUCTION 

Mobile and wearable healthcare is expected to play an 
increasingly prominent role in health provision because of the 
advent of an aging society. Especially, biosignal 
measurements during daily life at home is important to prevent 
lifestyle diseases, which are expected to raise the number of 
patients and elderly people requiring nursing care. 

Key factors affecting the usability of mobile and wearable 
systems are miniaturization and weight reduction. However, 
these constraints degrade the signal-to-noise ratio (SNR) of 
measured biosignal because the battery capacity and electrode 
size are strictly limited. The SNR is especially degraded if a 
subject is not at rest (e.g. during housework, exercise, and 
physical works). Consequently, a low-cost and noise tolerant 
biosignal measurement method is needed in this application. 

This report specifically describes a noise-tolerant heart 
beat detection algorithm from noisy electrocardiogram (ECG). 
The monitoring heart activity from ECG is useful for heart 
disease detection, heart rate variation analysis, and exercise 
intensity estimation. Furthermore, the human activity in the 
daily life can be correctly estimated using the combination of 
the heart rate and an accelerometer. 

In general, sophisticated analog front-end circuits are 
necessary to prevent SNR degradation of sensing systems. The 
analog front-end of the ECG monitoring system mainly 
comprises amplifiers, analog filters, and an analog-to-digital 
converter (ADC). However, it is difficult to use a high 
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performance amplifier and analog filters with a high quality 
factor because these circuits have large circuit area and high 
power consumption. On the other hand, ultra-low-power 
ADCs, which have sub-W power consumption and a limited 
sample rate, have been developed for biomedical applications. 
According to Moore's law, the power of digital components 
increases with the progress of process technology. Therefore, 
the digital signal processing is effective to reduce the 
performance requirements of analog components and total 
power consumption. 

II. CONVENTIONAL HEART BEAT EXTRACTION 

Recently, various algorithms have been proposed to 
improve the accuracy and reliability of heart rate extraction. 
Extracting R-waves using threshold determination is a widely 
used approach for IHR detection from ECG. 

The Pan–Tompkins (PT) algorithm [1] uses band-pass 
filtering, differentiation, squaring, and moving window 
integration. Periodically, the threshold is adjusted 
automatically using QRS morphology and the heart rate. The 
SQRS [2] and WQRS [3] algorithms can respectively detect 
QRS based on ECG slope and length transform. The SQRS 
uses band pass filtering for noise reduction, which uses only 
the integer coefficient. The WQRS also uses a low-pass filter 
to remove baseline wander. The Discrete Wavelet Transform 
(DWT) [4–6] uses a wavelet transform with quadratic spline 
wavelet (QSW). The threshold is calculated using the root 
mean square value of the wavelet transform. The DWT 
requires a small amount of calculation and hardware cost 
because it can be implemented using only adders and shift 
operators. Therefore, this algorithm has been used in robust 
ECG monitoring LSI [6]. The QSW requires a small amount 
of calculation and hardware cost because it can be 
implemented using only adders and shift operators. The Quad 
Level Vector (QLV) algorithm [7] is generated using DWT 
and the adaptive threshold. Then, the threshold is determined 
by the maximum mean deviation (MD) of the previous 
heartbeats. The Continuous Wavelet Transform (CWT) 
algorithm [8–10] employs a Mexican hat wavelet in the 
frequency interval of 15–18 Hz. The R-peak can be extracted 
using the adaptive threshold, which is calculated using the 
modulus maxima of the CWT. The CWT is a most noise 
tolerant algorithm. 

When using clean ECG, there is no significant difference 
in the accuracy of these algorithms. However, as depicted in 
Fig. 1, both misdetection and false detection are increased in 
the wearable healthcare system by noise from various sources. 
Fig. 2(a) presents frequency characteristics of the PT, SQRS, 

Noise Tolerant QRS Detection using Template Matching  
with Short-Term Autocorrelation 

Yozaburo Nakai, Shintaro Izumi, IEEE Member, Masanao Nakano, IEEE Student Member,  
Ken Yamashita, IEEE Student Member, Takahide Fujii, Hiroshi Kawaguchi, IEEE Member,  

and Masahiko Yoshimoto, IEEE Member 

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 34



  

DWT, and CWT with 128 Hz sampling rate. Fig. 2(b) depicts 
the ECG and well-known noise waveforms. A base-line 
wander and a hum noise can be removed easily using digital 
filters. However, unfortunately, the frequency range of the 
muscle artifact and electrode motion artifact is similar to the 
desired ECG signals. 

Therefore, we address the noise tolerance improvement in 
this work. Threshold based conventional algorithms can be 
classified by preprocessing method and QRS detection 
method as summarized in Table I. Our proposed method, 
which describes in Sect. III, can replace the threshold based 
method. On the other word, the proposed method can be 
combined with any other preprocessing filter techniques 
shown in Table I. 

III. PROPOSED METHOD 

 To prevent erroneous detection, we introduce a novel 
template matching algorithm. The template waveform can be 
generated autonomously using short-term autocorrelation. Fig. 
3 presents a flow chart of the proposed method. 

A.  Autonomous Template Generation 

In our previous work, we proposed a two-step QRS 
complex detection algorithm using short-term autocorrelation 
[11]. This algorithm can extract the QRS complex from a 
noisy ECG because it uses similarity of the QRS waveform. 
For this work, we used this algorithm to generate a template 
autonomously. 

First, as portrayed in Fig. 4, an RR interval at time t0 
(RR[0]) is obtained as a window shift length (Tshift) that 
maximizes the correlation coefficient between the template 
window and the search window (CCST). Then, the window 
length Lw is set as 1.5 s. The value of Tshift is set as 0.25 s to 1.5 
s because the heart rate of a healthy subject is 40 bpm to 240 
bpm. 

When the search window is fixed at Tshift  RR[0], both the 
template window and the search window contain the QRS 
complex at the same distance from the right edge of the 
window. Therefore, as presented in Fig. 5, the time of a recent 
QRS complex (TQRS[1]) at t0 is identifiable using the 
autocorrelation of small windows in the template and search 
window. Then, the small window length (L'

w) should be set 
much smaller than that of Lw, and larger than the QRS 
complex length. For this study, L'

w was set to 0.1 s. 

Finally, the first template can be generated using small 
windows at TQRS[1] and TQRS[0] (=TQRS[1]  RR[0]) as 
depicted in Fig. 6. 

B. Template Matching and Error Detection 

Next, template matching is conducted to extract QRS 
complexes using the generated template as depicted in Fig. 6. 
Then, the search range of the QRS complex (TQRS[n]) is 
defined as TQRS[n  1] to TQRS[n  1] + 1.5  RR[n  2]. The 
window shift length T'shift with maximum correlation 
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Figure 3.  Flow chart of proposed method. 

 

Figure 1.  Noise problem with threshold based R-peak detection. 
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Figure 2.  (a) Frequency characteristics of filters with 128Hz sampling rate, 
and (b) waveform example of ECG signals with various noises. 

TABLE I.  PREPROCESSING AND QRS DETECTION IN CONVENTIONAL 
METHODS. 

Preprocessing (filter technique) QRS detection (threshold)

[1]
Bandpass filter, derivative, squaring,

 and moving window integrator
Signal peak and noise

peak

[2] Bandpass filter Slope criterion

[3]Lowpass filter and curve length transform QRS amplitude

[5] DWT Root Mean Square (RMS)

[7] Discrete wavelet transform (DWT) Mean deviation (MD)

[9] Continuaous wavelet transform (CWT) Modulus maxima
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coefficient CCTM[n] between the template and ECG signals in 
the search range shows the nest QRS complex. Whenever the 
QRS complex is extracted, the QRS template is updated. 

The proposed algorithm can be awake and can recover the 
error if misdetection or false detection occurs because of 
arrhythmia or intense noise. The coefficient of autocorrelation 
will decrease rapidly when such an error occurs. When the 
maximum value of correlation coefficient CCTM[n] is less than 
half of the previous maximum value of CCTM[n 1], then 
TQRS[n] is treated as an error. When an error has occurred in 
template matching, the template generation is executed again 
as depicted in Fig. 3. 

IV. PERFORMANCE EVALUATION 

To verify the effects of the proposed method, we 
performed simulation experiments using the public ECG 
database (MIT-BIH arrhythmia database [12]) and the noise 
database (MIT-BIH noise stress test database [13]). 

The proposed template matching (TM) method can be 
combined with any other preprocessing filter technique shown 
in Table I. In this simulation, the DWT [5] and the CWT [9] 
are implemented as a filter. Conventional threshold-based 
DWT and CWT are also implemented for comparison with the 
proposed TM. These methods are modeled in Matlab. 

Table II presents a performance comparison of QRS 
complex detection with 48 waveforms from MIT-BIH 
database without noise. Here, the definition of the sensitivity 

(Se) is Se = TP / (TP + FN). The definition of the positive 
predictability (+P) is +P =TP / (TP + FP) [7]. The error rate 
(ER) is defined as ER = (FP + FN) / (TP + FN). Then, TP, FN, 
and FP respectively denote the number of correct QRS 
detection, the number of failures to detect the true QRS 
complex, and the number of false detections. The proposed 
TM with CWT filter achieves 95.8% sensitivity and 98.3% 
positive predictivity, on average. 

Figs. 7, 8, and 9 present the relation between intensity 
noise and accuracy of QRS detection. The muscle artifact and 
the motion artifact are used in this simulation because these 
noises are difficult to remove. Furthermore, the ECG in daily 
life monitoring is often contaminated by these noises. 

The signal-to-noise ratio (SNR) is defined as shown below.
  

2
log10

aN

S
SNR


  

In that equation,  S, N, and a are defined respectively as the 
signal power, frequency-weighted noise power, and scale 
factor [13]. 

As portrayed in Fig. 7, the conventional method has higher 
sensitivity in the noisy condition. However, the proposed 
methods have higher positive predictivity and a lower error 
rate (see Figs. 8 and 9). These results demonstrate that 
conventional methods lead to more cases of misdetection in 
noisy conditions. 

Figure 6.  Template matching. 

 
Figure 4.  IHR detection using short-term autocorrelation. 

 
Figure 5.  QRS complex search using small-window autocorrelation. 
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V. CONCLUSION 

As described herein, we proposed a template matching 
algorithm using short-term autocorrelation for heart beat 
detection in noisy environments. The proposed method, which 
is combined with a CWT filter, achieves 95.8% sensitivity and 
98.3% positive predictivity, on average, for 48 ECG records. 
In the noise stress test, the proposed method produces a 
state-of-the-art error rate both with the muscle artifact and the 
motion artifact. 
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Figure 7.  Noise stress test simulation results of sensitiviti (Se). 
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Figure 8.  Noise stress test simulation results of positive predictivity (+P).
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Figure 9.  Noise stress test simulation results of error rate. 

TABLE II.  PERFORMANCE COMPARISON OF QRS DETECTION. 

Record # Se(%) PP(%) error(%) Se(%) PP(%) error(%)
100 99.9 100.0 0.1 99.9 100.0 0.1
101 99.6 99.8 0.5 99.6 99.8 0.6
102 94.5 94.8 10.8 99.1 99.3 1.6
103 99.8 100.0 0.2 99.8 100.0 0.2
104 97.0 98.9 4.1 95.9 98.3 5.8
105 98.3 97.9 3.8 97.4 96.1 6.6
106 82.1 99.2 18.6 82.2 99.8 18.0
107 98.5 99.9 1.6 98.6 100.0 1.4
108 92.2 91.8 16.0 90.7 90.5 18.8
109 99.3 100.0 0.7 99.5 100.0 0.5
111 99.7 99.9 0.4 99.8 100.0 0.3
112 99.9 100.0 0.1 99.9 100.0 0.1
113 99.6 100.0 0.4 99.7 100.0 0.3
114 98.9 99.6 1.5 99.1 99.8 1.1
115 99.9 100.0 0.1 99.9 100.0 0.1
116 99.2 98.2 2.7 99.2 99.1 1.7
117 99.9 100.0 0.1 99.9 100.0 0.1
118 99.8 100.0 0.3 99.9 100.0 0.1
119 85.0 99.4 15.6 91.3 98.9 9.7
121 99.2 98.9 1.9 99.7 100.0 0.3
122 99.8 100.0 0.2 99.8 100.0 0.2
123 99.3 99.5 1.2 99.7 100.0 0.3
124 99.2 100.0 0.8 99.1 100.0 0.9
231 86.0 75.9 41.2 89.9 77.3 36.5
232 93.8 74.1 39.0 92.3 75.5 37.7

6.1Average
(#100~234)

95.6 97.9 6.7 95.8 98.3

37.7

Best
(#100~234)

99.9 100.0 0.1 99.9 100.0 0.1

Worst
(#100~234)

86.0 75.9 41.2 89.9 75.5

DWT with TM CWT with TM
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