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Abstract—Although valuable, the high-quality video 
compression format H.264/AVC workload complicates real-time 
encoding. This paper describes scalable parallel processing for 
H.264/AVC. Macroblock (MB)-level decomposition is more 
scalable than conventional methods for increasing the number of 
multiple threads. Moreover, it presents memory bandwidth 
advantages. This parallel algorithm can be improved using a 
motion estimation algorithm that distributes the workload 
among threads. Complementary recursive cross search (CRCS) 
is used to achieve efficient video encoding using MB-level 
decomposition. With and without B-frames for HDTV, MB-level 
decomposition with CRCS can respectively increase the frame 
rate of the conventional method by 2.4 and 4.6 times. 
Furthermore, the method suppresses memory accesses despite 
higher processing efficiency. Results show that MB-level 
decomposition with CRCS is suitable for computing in the 
many-core processor era. 

I. INTRODUCTION 
n H.264/AVC (H.264) encoding, more than ten times the 
workload of conventional MPEG2 is necessary for higher 

picture quality and a lower bitrate [1]. To process the high 
workload of H.264 video coding, a multicore processor is 
used to exploit multiple threads simultaneously. Using a 
multicore processor, H.264 can be encoded efficiently 
because it can be encoded with multiple threads. Therefore, a 
data-level decomposition algorithm is easily used for 
load-balancing for parallel processing in multicore processors 
[2]. For this reason, we specifically examine data-level 
decomposition. 

One data decomposition granularity of H.264 is frame-level 
decomposition. Encoding with frame-level decomposition, 
however, causes saturation of the processing speed and 
increases the number of memory accesses. Another data 
decomposition granularity of H.264 is macroblock 
(MB)-level decomposition [3]. In this decomposition 
granularity, the basic unit assigned with each thread is at the 
MB level. It is scalable for processing speed despite the more 
numerous multiple threads. Another advantage is that it uses 
little cache memory capacity. In this decomposition 
granularity, a thread must be synchronized with other threads 
if the workload of each thread is unbalanced and overhead is 
increased. In H.264, the motion estimation (ME) workload 
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dominates the overall encoding workload. The ME workload 
varies according to the sequence. Therefore, a well-balanced 
ME algorithm is required. 

Fig. 1 presents a breakdown of the workload in a 
conventional ME. Integer-pel ME (IME) outputs integer-pel 
accuracy motion vectors (MVs). Using them, Fractional-pel 
ME (FME) calculates the quarter-pel accuracy MVs. 
According to the workload analysis for baseline profile 
encoding [4], IME occupies about 80% in ME. If the IME 
workload is balanced, the synchronization overhead of each 
thread is suppressed; then H.264 with MB-level 
decomposition can be processed efficiently. 

Complementary recursive cross search (CRCS) was 
proposed in an earlier report [5]. This ME algorithm is well 
balanced in each MB workload. Therefore, the workload of 
each thread using CRCS becomes well balanced. For that 
reason, CRCS is suitable for MB-level decomposition. This 
paper presents a proposal of MB-level decomposition with 
CRCS that is more scalable and which entails fewer memory 
accesses than conventional methods. 

As described in this paper, the parallelizing algorithm for 
H.264 is presented in Section II. Details of the CRCS 
algorithm are explained in Section III. Section IV presents the 
evaluation results. Section V concludes this paper. 

II. PARALLELIZATION APPROACH 
Many parallelizing approaches are useful for H.264. 

Well-known approaches are task-level decomposition and 
data-level decomposition. However, in the task-level 
approach for H.264, the workload of each function is variable, 
making the ME function workload much higher than those of 
other functions. It is difficult to achieve a balance among 
many threads. Furthermore, decomposing a function to 
improve parallelism efficiency is difficult [2]. Therefore, we  
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Fig. 2. Slice-level decomposition. 

 

 
Fig. 3. Frame-level decomposition. 
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Fig. 4. Required range for synchronization of encoding. 

 
chose data-level decomposition. The parallelizing approach 
of data-level decomposition for H.264 uses data independence 
of various granularities such as those used for groups of 
pictures, frames, slices, and MBs. These granularities are 
assigned to multiple threads and features efficiency of video 
encoding. 

A. Slice-level decomposition 
Slice-level decomposition is an encoding method by which 

one frame is divided into several slices. Then the slices are 
processed in parallel. Fig. 2 portrays a frame that is divided 
into four slices. Each slice is assigned one processor core. 
Because each slice is independent of other slices, they can be 
processed in parallel. Under slice-level decomposition, each 
thread executes the same kind of encoding process. 
Consequently, highly parallel performance can be achieved. 
This method, however, presents coding inefficiencies because 
the entropy coding table is divided into slice levels and MB 
information can not be referred on slice boundaries. Therefore, 
the bit rate of encoded results is increased if the slices from 
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Fig. 5. Data dependencies of MB. 
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one frame are increased [6]. Furthermore, synchronization 
overhead increases because all threads must complete their 
tasks before encoding of the subsequent frame. 

B. Frame-level decomposition 
Under frame-level decomposition, one frame is assigned to 

one thread. Fig. 3 depicts four frames assigned to four 
processor cores. This figure presents an example in which one 
processor core executes encoding of one frame. This method 
is exploited in x264 [7]. 

In this method, when more than a certain number of MBs of 
reference frames targeted by the next frame are encoded, the 
next frame can be started (Fig. 4). The next frame can encode 
one MB line if the encoding of MB lines of reference 
frames––including the MV range referenced by the next 
frame––is completed. Therefore, if the MV range is increased, 
then the synchronization overhead of each thread increases.  

If the reference frame number is increased, then encoding 
slows because the waiting time of encoding of reference 
frames is increased. This method has another feature: the 
coding efficiency is not degraded because the frame is not 
divided. Therefore, the bitrate is not increased if the number 
of threads executing encoding frames is increased. Moreover, 
using this method, memory usage and memory bandwidth 
increase when parallel processing tasks increase. Reference 
frames referred by each thread generally differ because each 
thread encodes a different frame individually. Many reference  
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Fig. 7. Inter-Frame transition of threads. 
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frames are therefore loaded into cache memory, thereby 
increasing the memory bandwidth. 

C. Macroblock-level decomposition 
In H.264, there are several dependencies on adjacent MBs 

[8]. Fig. 5 presents the three kinds of data dependencies of MB. 
Left, upper-left, upper, and upper-right MBs are dependent 
because they are used in intra-prediction and MV prediction. 
Other dependencies are attributable to the deblocking filter 
(Fig. 5(b)). Therefore filtering is processed using the bottom 
row of the upper MB and the right row of the left MB; the 
upper MB and the left MB are dependent. For reasons listed 
above, MBs must wait until adjacent MBs are completely 
encoded. 

Macroblock-level decomposition is the method by which 
one MB is assigned to one thread [3]. Using this method, the 
MB processing order is special, however, because it must 
adhere to the restriction explained above. Fig. 6 shows the 
data processing order of this method with four processor cores. 
First, encoding is started from the top-left MB. If the 
upper-right MB in the upper MB line is finished encoding, 

step 2 step 3-1 step 3-2 step 4-1 step 4-2  
Fig. 9. Search process of the UMHS algorithm. 

 
then encoding of next MB line can be processed. In other 
words, encoding of the current MB must wait until the 
upper-right MB encoding is finished. If all MBs in one MB 
line are finished, then the next unprocessed MB line is started 
encoding. If the unprocessed MB line does not exist in the 
current encoding frame, then encoding of the next frame is 
started as shown in Fig. 7. 

In this algorithm, the amount of memory transferred 
between the processor and the main memory is low. Fig. 8 
shows the assigned reference frames by four threads for 
MB-level decomposition. Most of the reference frames of 
each thread are overlapped. Therefore, if the cache-memory is 
shared by processor cores, then the cache usage rate and 
memory transfer rate are low because reference frames are 
overlapped. Therefore, as described above, using this 
algorithm increases the likelihood for the embedded system 
that cache-memory and memory-bandwidth are restricted. 

III. MOTION ESTIMATION ALGORITHM 
In MB-level decomposition, the following MB encoding 

must wait if the leading MB encoding is late: that delay is 
transmitted to all threads. Therefore, to achieve high 
processing efficiency, each thread must process well-balanced 
encoding. The dominant encoding process of H.264 is motion 
estimation, of which IME is the main one. Consequently, 
MB-level decomposition requires a well-balanced IME.  

A. Unsymmetrical-cross multi-hexagon grid search (UMHS) 
A well-known conventional IME algorithm is UMHS [9]; it 

includes the four sequentially executed steps described below. 
(1) Initial search point decision: This decides the initial search 
points for step 2 and step 3. Candidates that indicate the initial 
search point are the following: Median prediction vector 
(median vector of the left MV, the upper MV, the upper-right 
MV), 0 vector (indicates (0, 0) position), upper-layer 
prediction vector (MV predicted by other block mode in the  
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same MB), neighboring reference – picture prediction vector. 
(2) Unsymmetrical-cross search: Two-pixel interval search is 
executed (Fig. 9, step 2). In this step, the number of search 
points is search_range/2 in the horizontal direction, and 
search_range/4 in the vertical direction. 
(3-1) Narrow-range full search: This executes a full search 
that adjusts to ±2×±2 pixels (Fig. 9, step 3-1). 
(3-2) Uneven Multi-Hexagon-grid search: This hexagonal 
search is executed as shown in Fig. 9, step 3-2. In this step, the 
search center point is tied up at first. Similar to step 2, the 
horizontal search points become less dense. 
(4-1) Extended Hexagon-based search: This searches six 
pixels that surround the center point while the minimum 
evaluated value of six pixels is smaller than the evaluated 
value of the center point (Fig. 9, step 4-1). The point at which 
the evaluation value is the smallest among six pixels becomes 
the next center point. 
(4-2) Diamond search: search four pixels which surround the 
center point while the minimum evaluated value of four pixels 
is smaller than the evaluated value of the center point (Fig. 9, 
step 4-2). The minimum evaluated point obtained in this step 
is the result point of the UMHS method. 

In fact, UMHS is superior in terms of the search accuracy, 
even though it is fast and has a low average workload. As 
described above, UMHS comprises step 1 to step 3 and 
hexagonal search. Hexagonal search is an effective algorithm 
for image quality performance for a larger motion sequence. 
The UMHS has an early termination (ET) strategy: when 
switching from step 1 to step 2, or from step 2 to step 3-1, or 
from step 3-1 to step 3-2, or evaluation in step 3-2 if the 
conditions are met, it moves to step 4-1 or step 4-2. By ET, the 
average workload of UMHS is low. In a hexagonal search, the 
conditional branch, however, is frequent. The next search 
point is indeterminate until the prior search is completed; 
pixel reusability is low. In addition, the worst computational 
load is extremely large because this algorithm is targeted to 
reduce the average computational load. Because of these 
features, the UMHS workload varies greatly according to the 
encoding sequence. An elementary unit of H.264 is assigned 
with each thread. Therefore, to achieve highly parallel 
efficiency, it is desired that processes executed by each thread 
be evenly divided. As described above, the UMHS workload 
varies greatly. If this algorithm applies to MB-level 
decomposition, workloads of each thread fluctuate and 
parallelism efficiency decreases. Therefore, some other IME 
algorithm for which the workload of each thread is well 
balanced, e.g. the average workload is the same for the worst 
computational load, is desired for MB-level decomposition. 

B. Complementary Recursive Cross search (CRCS) 
In this subsection, we describe the recursive cross search 

(RCS) and CRCS [5], which are based on a gradient search 
method with enhanced parallelism. The RCS is presented in 
Fig. 10. The RCS algorithm operation is described as follows. 
First, the points of 62.5% within the search range in the 

RCS(1)
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Fig. 10. Search process of the CRCS algorithm. 

 
horizontal direction are evaluated using one-directional 
search (1-DS) which detects MVs in continuous points on a 
straight line (step 1). In step 1, the search center point is 
determined similarly to UMHS. Secondly, the search 
continues over the points of 40% in the first step in the vertical 
direction, taking the point with minimal evaluated value in 
step 1 as the search center (step 2). And next, points of the 
same number as the step 2 in the horizontal direction whose 
center is result of step 2 are searched (step 3). For instance, in 
case of HDTV (search range is ±128 × ±128), ±80 points in 
the horizontal direction in step 1, ±32 points in the vertical 
direction in step 2, and horizontal ±32 points in step 3 are 
evaluated. 

The RCS result is the point with the smallest evaluated 
value among all search points. After processing of two RCSs, 
a narrow-range full search (±4 × ±4 pixels) is executed to 
enhance the image quality. Whether higher picture quality is 
provided by RCS starting from the horizontal direction or the 
vertical direction depends on image sequence characteristics. 
Therefore, the CRCS algorithm is used to improve picture 
quality by complementarily using two RCSs starting with the 
horizontal direction search and the vertical direction search, 
respectively. In CRCS, two RCSs are executed with the same 
initial point. After the search, the vector with the smaller 
evaluated value of the two vectors of RCSs is chosen as a 
CRCS result. 

The average workload of this algorithm is lower than that of 
UMHS. In addition, the average workload and the worst 
workload of this algorithm are almost identical. Therefore, the 
workload of this algorithm is much lower than that of UMHS 
because the worst workload of UMHS is large, as shown in 
Fig. 11. The processing time of UMHS is varied by ET (Fig. 
11(a)). If ET occurs in an earlier step, the processing time is 
extremely short, but if ET does not occur, the processing time 
is long. In contrast, the CRCS processing time is constant (Fig. 
11(b)). 

This algorithm is adaptive for the MB-level decomposition 
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Fig. 11. Time chart of Encode of MBs. 

 
because efficiency of the MB-level decomposition is high if 
the workload assigned with each thread is well balanced. In 
this algorithm, different from UMHS with ET, the workload 
of each MB is almost identical. For that reason, the waiting 
time of synchronization of each MB is small in the MB-level 
decomposition. Fig. 12 shows a time chart of the encoding of 
MBs for four processor cores with UMHS and CRCS. The 
encoding time of a MB with UMHS is occasionally early, but 
if encoding of other processor cores is delayed, it must wait to 
encode the delayed MB (Fig. 12(a)). Therefore, the entire 
encoding efficiency worsens. However, the encoding time of 
MB with CRCS is almost constant (Fig. 12(b)). Therefore, if 
the encoding of an MB of CRCS is slower than that of UMHS, 
there is little waiting overhead. The overall encoding 
efficiency is good. 

IV. EVALUATION RESULT 
To evaluate MB-level decomposition with CRCS, we 

conducted several evaluations. Our evaluations were 
performed using the SESC simulator [10]. Table I shows the 
evaluated configuration of the SESC. 

A. Motion estimation evaluation 
We evaluated execution of the MB-level decomposition 

with CRCS and UMHS. Block sizes used for evaluation were 
16×16, 16×8, 8×16, 8×8, and 4×4. This block configuration 
was used for the following evaluations. Table II presents 
evaluation conditions of the encoding sequence. 

Evaluation results for SDTV are portrayed in Fig. 13. The 
normalized fps is normalized by the fps of UMHS executed by 
one thread. In MB-level decomposition, using CRCS is faster 
than UMHS; the memory accesses of CRCS are fewer than 
those of UMHS. The CRCS increased fps by 1.4 times and 
decreased memory accesses by 4% compared with UMHS in  
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Fig. 12. Time chart of Encode of MBs on four processor cores. 

 
TABLE I 

PROCESSOR CONFIGURATION AND SYSTEM PARAMETERS 
Multi-core processor 
architecture 

Homogeneous multicore, Out-of-order Alpha 
like-processor 

# of cores 32 
issue 4 
Frequency 4 GHz 
L1 instruction cache 32 KB 
L1 data cache 32 KB 
L2 shared cache 2048 KB 
Memory band width 2.4 GB/s 

 
TABLE II 

CONDITION FOR MOTION ESTIMATION EVALUATION 
Resolution SDTV, 720 × 480; HDTV, 1920 × 1024 
Frame rate 15 fps 
# of reference frames 2 
(M, N) (1, 15) 
Bitrate SDTV, 4 Mbps; HDTV, 10 Mbps 
# of frames 10 
Search range SDTV, ±64 × ±64; HDTV, ±128 × ±128 

 
16 threads. 

Evaluation results for HDTV are shown in Fig. 14. This 
figure shows the same result as Fig. 13. Here, CRCS increased 
fps by 1.7 times and decreased memory accesses by 16% 
compared with UMHS in 16 threads. The search range 
becomes wide for HDTV; UMHS uses many data. The 
memory accesses of UMHS are far more numerous than those 
of CRCS. In MB-level decomposition for SDTV and HDTV, 
the PSNR of CRCS was 1% or less, on average, than UMHS.  
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Fig. 13. Evaluation result for SDTV. 

 

B. Parallelization evaluation 
We evaluated the execution of frame-level decomposition 

with UMHS and MB-level decomposition with CRCS. Table 
III shows the evaluation condition of the encoding sequence. 

Evaluation results for SDTV without B-frame are 
summarized in Fig. 15. The proposed method is MB-level 
decomposition with CRCS; the conventional method is 
frame-level decomposition with UMHS. As shown in Fig. 15, 
these displacements are used in the following analyses. 
Normalized fps is normalized by fps of the conventional 
method executed by one thread. The proposed method 
increased fps more than conventional method by 2.5 times in 
16 threads. The processing speed used for the conventional 
method is saturated as the thread number increases (Fig. 
15(a)). Therefore, the number of memory accesses used for 
the conventional method is saturated similarly (Fig. 15(b)). 
This saturation results from the waiting time that reference 
area is constructed. The proposed method, however, is not 
saturated because the synchronization overhead is lower and 
the number of memory accesses is suppressed though higher 
fps. In 16 threads, the memory accesses of the proposed 
method, however, increase considerably because data of 
reference areas overflowed from the cache. The memory 
bandwidth of the conventional method is saturated because 
fps and the memory accesses are saturated. For this reason, the 
memory bandwidth of the proposed method is greater than 
that of the conventional method (Fig. 15(c)). 
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Fig. 14. Evaluation result for HDTV. 

 
TABLE III 

CONDITION FOR PARALLELIZATION EVALUATION 
Resolution SDTV, 720 × 480; HDTV, 1920 × 1024 
Frame rate 15 fps 
# of reference frames 2 
(M, N) (1, 15) and (2, 15) 
Bitrate SDTV, 4 Mbps; HDTV, 10 Mbps 
# of frames SDTV, 50; HDTV, 30 
Search range SDTV, ±64 × ±64; HDTV, ±128 × ±128 

 
Evaluation results for SDTV with a B-frame are presented 

in Fig. 15. The proposed method increased fps to more than 
1.3 times that provided by the conventional method in 16 
threads. Different from the result without B-frame, the 
conventional method is not saturated in Fig. 15(a) because the 
processing efficiency of the conventional method increases 
because of the ability to encode the P-frame and B-frame in 
parallel efficiently. Since the processing speed is faster 
compared with the encoding without B-frame, however, the 
number of memory accesses is extended. The memory 
accesses under the proposed method are suppressed to the 
level of that without B-frame. Consequently, the memory 
bandwidth of the conventional method comes closer to that of 
the proposed method, but the bandwidth of the proposed 
method is greater than that of the conventional method 
because of the higher fps (Fig. 15(c)). 

Evaluation results for HDTV without B-frame are shown in 
Fig. 16. Evaluation was executed using 1, 4, 8, 12, 16, and 32 
threads. The normalized fps is normalized by the fps of the 
conventional method executed by one thread. The proposed  
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Fig. 15. Evaluation result for SDTV. 

 
method increased fps to 4.6 times that obtained using the 
conventional method in 32 threads. As shown in Fig. 16(a), 
the processing speed of the conventional method for HDTV is 
saturated because the number of threads increases, as was true 
also for SDTV. Different from SDTV, the number of memory 
accesses under the conventional method increases 
considerably compared with the proposed method because the 
reference area broadens. In the conventional method, 
reference areas accessed from each thread are different, but in 
the proposed method, the reference areas accessed from each 
thread are overlapped. By this overlap of the reference areas, 
the memory accesses performed using the proposed method is 
considerably fewer than under the conventional method. In 32 
threads, the number of memory accesses of the proposed  
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Fig. 16. Evaluation result for HDTV. 

 
method increases considerably, however, as was true also for 
SDTV. This increase results from data of reference areas 
overflowing from the cache. The memory bandwidth of the 
conventional method is saturated as it was with SDTV, but the 
memory bandwidth using the proposed method is greater than 
that under the conventional method (Fig. 16(c)), but the 
memory bandwidth of the proposed method is closer to that of 
the conventional method by suppression of the number of 
memory accesses. 

Evaluation results for HDTV with a B-frame are shown in 
Fig. 16. The proposed method can increase fps to 2.4 times 
more than the conventional method in 32 threads. In Fig. 16(a), 
the processing speed of the conventional method is shown to 
be as saturated as that encoded without B-frame. The memory 
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accesses of the conventional method encoded with B-frame, 
however, are not saturated because the P-frame and B-frame 
are encoded simultaneously, as was true for SDTV, but the 
proposed method shows the same tendency as SDTV. 
Therefore, the memory accesses under the proposed method 
are fewer than those under the conventional method. In 32 
threads, the memory accesses of the proposed method increase 
considerably, as shown also in the result of evaluation of 
without B-frame, but that of the conventional method in 32 
threads increased similarly. The memory bandwidth of the two 
methods is nearly equal, but the fps of proposed method is 
considerably high (Fig. 16(c)). 

V. CONCLUSION 
The effectiveness of the MB-level decomposition with 

CRCS was described. The MB-level decomposition is more 
scalable to the thread number; CRCS is a suitable motion 
estimation method for MB-level decomposition because the 
workload of each thread is well balanced in CRCS. 

We evaluated encoding of MB-level decomposition with 
CRCS and this method with UMHS. Results show that this 
method with CRCS is faster and uses less memory access than 
UMHS does. For instance, CRCS increased fps by 1.7 times 
and decreased memory accesses by 16% compared with 
UMHS in 16 threads for HDTV. Therefore, CRCS is effective 
for MB-level decomposition. Additionally, we evaluated 
encoding of MB-level decomposition with CRCS and 
frame-level decomposition with UMHS. Results show that the 
proposed method is more scalable than the conventional 
method because the processing speed of the conventional 
method is saturated as the thread number increases. The 
proposed method for HDTV without the B-frame increased 
fps to 4.6 times as high as that by the conventional method; for 
HDTV with the B-frame, the proposed method increased fps 
to 2.4 times that of the conventional method, despite fewer 
memory accesses under the proposed method. Because of its 
scalability and fewer memory accesses, MB-level 
decomposition with CRCS is suitable for use with multi-core 
computing of the future. 
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