



Abstract—Although valuable, the high-quality video
compression format H.264/AVC workload complicates real-time
encoding. This paper describes scalable parallel processing for
H.264/AVC. Macroblock (MB)-level decomposition is more
scalable than conventional methods for increasing the number of
multiple threads. Moreover, it presents memory bandwidth
advantages. This parallel algorithm can be improved using a
motion estimation algorithm that distributes the workload
among threads. Complementary recursive cross search (CRCS)
is used to achieve efficient video encoding using MB-level
decomposition. With and without B-frames for HDTV, MB-level
decomposition with CRCS can respectively increase the frame
rate of the conventional method by 2.4 and 4.6 times.
Furthermore, the method suppresses memory accesses despite
higher processing efficiency. Results show that MB-level
decomposition with CRCS is suitable for computing in the
many-core processor era.

I. INTRODUCTION
n H.264/AVC (H.264) encoding, more than ten times the
workload of conventional MPEG2 is necessary for higher

picture quality and a lower bitrate [1]. To process the high
workload of H.264 video coding, a multicore processor is
used to exploit multiple threads simultaneously. Using a
multicore processor, H.264 can be encoded efficiently
because it can be encoded with multiple threads. Therefore, a
data-level decomposition algorithm is easily used for
load-balancing for parallel processing in multicore processors
[2]. For this reason, we specifically examine data-level
decomposition.

One data decomposition granularity of H.264 is frame-level
decomposition. Encoding with frame-level decomposition,
however, causes saturation of the processing speed and
increases the number of memory accesses. Another data
decomposition granularity of H.264 is macroblock
(MB)-level decomposition [3]. In this decomposition
granularity, the basic unit assigned with each thread is at the
MB level. It is scalable for processing speed despite the more
numerous multiple threads. Another advantage is that it uses
little cache memory capacity. In this decomposition
granularity, a thread must be synchronized with other threads
if the workload of each thread is unbalanced and overhead is
increased. In H.264, the motion estimation (ME) workload

Manuscript received May 1, 2010.
Y. Takeuchi, Y. Nakata and H. Kawaguchi are the Graduate School of

System Informatics, Kobe University, Kobe, Hyogo 657-8501, Japan
(e-mail:takeuchi_y@cs28.cs.kobe-u.ac.jp).

M. Yoshimoto is the Graduate School of System Informatics, Kobe
University, Kobe, Hyogo 657-8501, Japan, and JST, CREST.

Integer-pel ME
(IME)

Fractional-pel ME
(FME)

ME

original
picture

reconstructed
picture

Integer-pel accuracy MVs

quarter-pel accuracy MVs

FME

IME

workload
Fig. 1. Workload required for ME.

dominates the overall encoding workload. The ME workload
varies according to the sequence. Therefore, a well-balanced
ME algorithm is required.

Fig. 1 presents a breakdown of the workload in a
conventional ME. Integer-pel ME (IME) outputs integer-pel
accuracy motion vectors (MVs). Using them, Fractional-pel
ME (FME) calculates the quarter-pel accuracy MVs.
According to the workload analysis for baseline profile
encoding [4], IME occupies about 80% in ME. If the IME
workload is balanced, the synchronization overhead of each
thread is suppressed; then H.264 with MB-level
decomposition can be processed efficiently.

Complementary recursive cross search (CRCS) was
proposed in an earlier report [5]. This ME algorithm is well
balanced in each MB workload. Therefore, the workload of
each thread using CRCS becomes well balanced. For that
reason, CRCS is suitable for MB-level decomposition. This
paper presents a proposal of MB-level decomposition with
CRCS that is more scalable and which entails fewer memory
accesses than conventional methods.

As described in this paper, the parallelizing algorithm for
H.264 is presented in Section II. Details of the CRCS
algorithm are explained in Section III. Section IV presents the
evaluation results. Section V concludes this paper.

II. PARALLELIZATION APPROACH
Many parallelizing approaches are useful for H.264.

Well-known approaches are task-level decomposition and
data-level decomposition. However, in the task-level
approach for H.264, the workload of each function is variable,
making the ME function workload much higher than those of
other functions. It is difficult to achieve a balance among
many threads. Furthermore, decomposing a function to
improve parallelism efficiency is difficult [2]. Therefore, we

Scalable Parallel Processing for H.264 Encoding Application to
Multi/Many-core Processor

Yukihiro Takeuchi, Yohei Nakata, Hiroshi Kawaguchi, and Masahiko Yoshimoto

I

International Conference on Intelligent Control and Information Processing
August 13-15, 2010 - Dalian, China

978-1-4244-7050-1/10/$26.00 c©2010 IEEE 163

Fig. 2. Slice-level decomposition.

Fig. 3. Frame-level decomposition.

frame
Encode target MB

MV range
The range must be
encoded in ref. frames

reference frame

refer

Fig. 4. Required range for synchronization of encoding.

chose data-level decomposition. The parallelizing approach
of data-level decomposition for H.264 uses data independence
of various granularities such as those used for groups of
pictures, frames, slices, and MBs. These granularities are
assigned to multiple threads and features efficiency of video
encoding.

A. Slice-level decomposition
Slice-level decomposition is an encoding method by which

one frame is divided into several slices. Then the slices are
processed in parallel. Fig. 2 portrays a frame that is divided
into four slices. Each slice is assigned one processor core.
Because each slice is independent of other slices, they can be
processed in parallel. Under slice-level decomposition, each
thread executes the same kind of encoding process.
Consequently, highly parallel performance can be achieved.
This method, however, presents coding inefficiencies because
the entropy coding table is divided into slice levels and MB
information can not be referred on slice boundaries. Therefore,
the bit rate of encoded results is increased if the slices from

A

B C
Current

MB

MV_A

MV_B MV_C

A

B

Current
MB

(a) Intra- and MV dependencies (b) Deblocking filter dependencies

Fig. 5. Data dependencies of MB.

Area encoded by CPU 0 Area encoded by CPU 1

Area encoded by CPU 2 Area encoded by CPU 3

CPU
0

CPU
1

CPU
2

CPU
3

Fig. 6. Macroblock-level decomposition.

one frame are increased [6]. Furthermore, synchronization
overhead increases because all threads must complete their
tasks before encoding of the subsequent frame.

B. Frame-level decomposition
Under frame-level decomposition, one frame is assigned to

one thread. Fig. 3 depicts four frames assigned to four
processor cores. This figure presents an example in which one
processor core executes encoding of one frame. This method
is exploited in x264 [7].

In this method, when more than a certain number of MBs of
reference frames targeted by the next frame are encoded, the
next frame can be started (Fig. 4). The next frame can encode
one MB line if the encoding of MB lines of reference
frames––including the MV range referenced by the next
frame––is completed. Therefore, if the MV range is increased,
then the synchronization overhead of each thread increases.

If the reference frame number is increased, then encoding
slows because the waiting time of encoding of reference
frames is increased. This method has another feature: the
coding efficiency is not degraded because the frame is not
divided. Therefore, the bitrate is not increased if the number
of threads executing encoding frames is increased. Moreover,
using this method, memory usage and memory bandwidth
increase when parallel processing tasks increase. Reference
frames referred by each thread generally differ because each
thread encodes a different frame individually. Many reference

164

Area encoded by CPU 0 Area encoded by CPU 1

Area encoded by CPU 2 Area encoded by CPU 3

CPU
1

CPU
2

CPU
3

CPU
0

Frame n Frame n+1

Fig. 7. Inter-Frame transition of threads.

Crossover area Reference area

MB

MB

MB

MB

Fig. 8. Reference frames used in encoding.

frames are therefore loaded into cache memory, thereby
increasing the memory bandwidth.

C. Macroblock-level decomposition
In H.264, there are several dependencies on adjacent MBs

[8]. Fig. 5 presents the three kinds of data dependencies of MB.
Left, upper-left, upper, and upper-right MBs are dependent
because they are used in intra-prediction and MV prediction.
Other dependencies are attributable to the deblocking filter
(Fig. 5(b)). Therefore filtering is processed using the bottom
row of the upper MB and the right row of the left MB; the
upper MB and the left MB are dependent. For reasons listed
above, MBs must wait until adjacent MBs are completely
encoded.

Macroblock-level decomposition is the method by which
one MB is assigned to one thread [3]. Using this method, the
MB processing order is special, however, because it must
adhere to the restriction explained above. Fig. 6 shows the
data processing order of this method with four processor cores.
First, encoding is started from the top-left MB. If the
upper-right MB in the upper MB line is finished encoding,

step 2 step 3-1 step 3-2 step 4-1 step 4-2
Fig. 9. Search process of the UMHS algorithm.

then encoding of next MB line can be processed. In other
words, encoding of the current MB must wait until the
upper-right MB encoding is finished. If all MBs in one MB
line are finished, then the next unprocessed MB line is started
encoding. If the unprocessed MB line does not exist in the
current encoding frame, then encoding of the next frame is
started as shown in Fig. 7.

In this algorithm, the amount of memory transferred
between the processor and the main memory is low. Fig. 8
shows the assigned reference frames by four threads for
MB-level decomposition. Most of the reference frames of
each thread are overlapped. Therefore, if the cache-memory is
shared by processor cores, then the cache usage rate and
memory transfer rate are low because reference frames are
overlapped. Therefore, as described above, using this
algorithm increases the likelihood for the embedded system
that cache-memory and memory-bandwidth are restricted.

III. MOTION ESTIMATION ALGORITHM
In MB-level decomposition, the following MB encoding

must wait if the leading MB encoding is late: that delay is
transmitted to all threads. Therefore, to achieve high
processing efficiency, each thread must process well-balanced
encoding. The dominant encoding process of H.264 is motion
estimation, of which IME is the main one. Consequently,
MB-level decomposition requires a well-balanced IME.

A. Unsymmetrical-cross multi-hexagon grid search (UMHS)
A well-known conventional IME algorithm is UMHS [9]; it

includes the four sequentially executed steps described below.
(1) Initial search point decision: This decides the initial search
points for step 2 and step 3. Candidates that indicate the initial
search point are the following: Median prediction vector
(median vector of the left MV, the upper MV, the upper-right
MV), 0 vector (indicates (0, 0) position), upper-layer
prediction vector (MV predicted by other block mode in the

165

same MB), neighboring reference – picture prediction vector.
(2) Unsymmetrical-cross search: Two-pixel interval search is
executed (Fig. 9, step 2). In this step, the number of search
points is search_range/2 in the horizontal direction, and
search_range/4 in the vertical direction.
(3-1) Narrow-range full search: This executes a full search
that adjusts to ±2×±2 pixels (Fig. 9, step 3-1).
(3-2) Uneven Multi-Hexagon-grid search: This hexagonal
search is executed as shown in Fig. 9, step 3-2. In this step, the
search center point is tied up at first. Similar to step 2, the
horizontal search points become less dense.
(4-1) Extended Hexagon-based search: This searches six
pixels that surround the center point while the minimum
evaluated value of six pixels is smaller than the evaluated
value of the center point (Fig. 9, step 4-1). The point at which
the evaluation value is the smallest among six pixels becomes
the next center point.
(4-2) Diamond search: search four pixels which surround the
center point while the minimum evaluated value of four pixels
is smaller than the evaluated value of the center point (Fig. 9,
step 4-2). The minimum evaluated point obtained in this step
is the result point of the UMHS method.

In fact, UMHS is superior in terms of the search accuracy,
even though it is fast and has a low average workload. As
described above, UMHS comprises step 1 to step 3 and
hexagonal search. Hexagonal search is an effective algorithm
for image quality performance for a larger motion sequence.
The UMHS has an early termination (ET) strategy: when
switching from step 1 to step 2, or from step 2 to step 3-1, or
from step 3-1 to step 3-2, or evaluation in step 3-2 if the
conditions are met, it moves to step 4-1 or step 4-2. By ET, the
average workload of UMHS is low. In a hexagonal search, the
conditional branch, however, is frequent. The next search
point is indeterminate until the prior search is completed;
pixel reusability is low. In addition, the worst computational
load is extremely large because this algorithm is targeted to
reduce the average computational load. Because of these
features, the UMHS workload varies greatly according to the
encoding sequence. An elementary unit of H.264 is assigned
with each thread. Therefore, to achieve highly parallel
efficiency, it is desired that processes executed by each thread
be evenly divided. As described above, the UMHS workload
varies greatly. If this algorithm applies to MB-level
decomposition, workloads of each thread fluctuate and
parallelism efficiency decreases. Therefore, some other IME
algorithm for which the workload of each thread is well
balanced, e.g. the average workload is the same for the worst
computational load, is desired for MB-level decomposition.

B. Complementary Recursive Cross search (CRCS)
In this subsection, we describe the recursive cross search

(RCS) and CRCS [5], which are based on a gradient search
method with enhanced parallelism. The RCS is presented in
Fig. 10. The RCS algorithm operation is described as follows.
First, the points of 62.5% within the search range in the

RCS(1)
Step 3

RCS(1)
Step 2

RCS(1)
Step 1RCS(2)

Step 3

RCS(2)
Step 2

RCS(2)
Step 1

RCS(1) search points = H:±40，V:±16，H:±16

search center

local best
CRCS best

Fig. 10. Search process of the CRCS algorithm.

horizontal direction are evaluated using one-directional
search (1-DS) which detects MVs in continuous points on a
straight line (step 1). In step 1, the search center point is
determined similarly to UMHS. Secondly, the search
continues over the points of 40% in the first step in the vertical
direction, taking the point with minimal evaluated value in
step 1 as the search center (step 2). And next, points of the
same number as the step 2 in the horizontal direction whose
center is result of step 2 are searched (step 3). For instance, in
case of HDTV (search range is ±128 × ±128), ±80 points in
the horizontal direction in step 1, ±32 points in the vertical
direction in step 2, and horizontal ±32 points in step 3 are
evaluated.

The RCS result is the point with the smallest evaluated
value among all search points. After processing of two RCSs,
a narrow-range full search (±4 × ±4 pixels) is executed to
enhance the image quality. Whether higher picture quality is
provided by RCS starting from the horizontal direction or the
vertical direction depends on image sequence characteristics.
Therefore, the CRCS algorithm is used to improve picture
quality by complementarily using two RCSs starting with the
horizontal direction search and the vertical direction search,
respectively. In CRCS, two RCSs are executed with the same
initial point. After the search, the vector with the smaller
evaluated value of the two vectors of RCSs is chosen as a
CRCS result.

The average workload of this algorithm is lower than that of
UMHS. In addition, the average workload and the worst
workload of this algorithm are almost identical. Therefore, the
workload of this algorithm is much lower than that of UMHS
because the worst workload of UMHS is large, as shown in
Fig. 11. The processing time of UMHS is varied by ET (Fig.
11(a)). If ET occurs in an earlier step, the processing time is
extremely short, but if ET does not occur, the processing time
is long. In contrast, the CRCS processing time is constant (Fig.
11(b)).

This algorithm is adaptive for the MB-level decomposition

166

Preprocessing IME
of UMHS

FME other

Encoding of 1 MB

time

(a) Time chart of UMHS

Preprocessing IME
of CRCS

FME other

Encoding
of 1 MB

time

(b) Time chart of CRCS

Fig. 11. Time chart of Encode of MBs.

because efficiency of the MB-level decomposition is high if
the workload assigned with each thread is well balanced. In
this algorithm, different from UMHS with ET, the workload
of each MB is almost identical. For that reason, the waiting
time of synchronization of each MB is small in the MB-level
decomposition. Fig. 12 shows a time chart of the encoding of
MBs for four processor cores with UMHS and CRCS. The
encoding time of a MB with UMHS is occasionally early, but
if encoding of other processor cores is delayed, it must wait to
encode the delayed MB (Fig. 12(a)). Therefore, the entire
encoding efficiency worsens. However, the encoding time of
MB with CRCS is almost constant (Fig. 12(b)). Therefore, if
the encoding of an MB of CRCS is slower than that of UMHS,
there is little waiting overhead. The overall encoding
efficiency is good.

IV. EVALUATION RESULT
To evaluate MB-level decomposition with CRCS, we

conducted several evaluations. Our evaluations were
performed using the SESC simulator [10]. Table I shows the
evaluated configuration of the SESC.

A. Motion estimation evaluation
We evaluated execution of the MB-level decomposition

with CRCS and UMHS. Block sizes used for evaluation were
16×16, 16×8, 8×16, 8×8, and 4×4. This block configuration
was used for the following evaluations. Table II presents
evaluation conditions of the encoding sequence.

Evaluation results for SDTV are portrayed in Fig. 13. The
normalized fps is normalized by the fps of UMHS executed by
one thread. In MB-level decomposition, using CRCS is faster
than UMHS; the memory accesses of CRCS are fewer than
those of UMHS. The CRCS increased fps by 1.4 times and
decreased memory accesses by 4% compared with UMHS in

Encoding
of 1MB×4

Preprocessing IME
of UMHS

FME other

time

CPU0

CPU1

CPU2

CPU3

(a) Time chart of UMHS

Encoding
of 1MB×4

Preprocessing IME
of CRCS

FME other

CPU0

CPU1

CPU2

CPU3

time

(b) Time chart of CRCS

Fig. 12. Time chart of Encode of MBs on four processor cores.

TABLE I

PROCESSOR CONFIGURATION AND SYSTEM PARAMETERS
Multi-core processor
architecture

Homogeneous multicore, Out-of-order Alpha
like-processor

of cores 32
issue 4
Frequency 4 GHz
L1 instruction cache 32 KB
L1 data cache 32 KB
L2 shared cache 2048 KB
Memory band width 2.4 GB/s

TABLE II

CONDITION FOR MOTION ESTIMATION EVALUATION
Resolution SDTV, 720 × 480; HDTV, 1920 × 1024
Frame rate 15 fps
of reference frames 2
(M, N) (1, 15)
Bitrate SDTV, 4 Mbps; HDTV, 10 Mbps
of frames 10
Search range SDTV, ±64 × ±64; HDTV, ±128 × ±128

16 threads.

Evaluation results for HDTV are shown in Fig. 14. This
figure shows the same result as Fig. 13. Here, CRCS increased
fps by 1.7 times and decreased memory accesses by 16%
compared with UMHS in 16 threads. The search range
becomes wide for HDTV; UMHS uses many data. The
memory accesses of UMHS are far more numerous than those
of CRCS. In MB-level decomposition for SDTV and HDTV,
the PSNR of CRCS was 1% or less, on average, than UMHS.

167

0

2

4

6

8

10

1 4 8 12 16

of threads

N
or

m
al

iz
ed

 fp
s

CRCS

UMHS

(a) Normalized fps

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

4 8 12 16
of threads

of

 m
em

or
y

ac
ce

ss
es

1

CRCS

UMHS

(b) Number of memory accesses

Fig. 13. Evaluation result for SDTV.

B. Parallelization evaluation
We evaluated the execution of frame-level decomposition

with UMHS and MB-level decomposition with CRCS. Table
III shows the evaluation condition of the encoding sequence.

Evaluation results for SDTV without B-frame are
summarized in Fig. 15. The proposed method is MB-level
decomposition with CRCS; the conventional method is
frame-level decomposition with UMHS. As shown in Fig. 15,
these displacements are used in the following analyses.
Normalized fps is normalized by fps of the conventional
method executed by one thread. The proposed method
increased fps more than conventional method by 2.5 times in
16 threads. The processing speed used for the conventional
method is saturated as the thread number increases (Fig.
15(a)). Therefore, the number of memory accesses used for
the conventional method is saturated similarly (Fig. 15(b)).
This saturation results from the waiting time that reference
area is constructed. The proposed method, however, is not
saturated because the synchronization overhead is lower and
the number of memory accesses is suppressed though higher
fps. In 16 threads, the memory accesses of the proposed
method, however, increase considerably because data of
reference areas overflowed from the cache. The memory
bandwidth of the conventional method is saturated because
fps and the memory accesses are saturated. For this reason, the
memory bandwidth of the proposed method is greater than
that of the conventional method (Fig. 15(c)).

0

2

4

6

8

10

4 8 12 16
of threads

N
or

m
al

iz
ed

 fp
s

1

CRCS

UMHS

(a) Normalized fps

0.0E+00

1.0E+07
2.0E+07

3.0E+07
4.0E+07
5.0E+07

6.0E+07

7.0E+07

4 8 12 16
of threads

of

 m
em

or
y

ac
ce

ss
es

1

CRCS

UMHS

(b) Number of memory accesses

Fig. 14. Evaluation result for HDTV.

TABLE III

CONDITION FOR PARALLELIZATION EVALUATION
Resolution SDTV, 720 × 480; HDTV, 1920 × 1024
Frame rate 15 fps
of reference frames 2
(M, N) (1, 15) and (2, 15)
Bitrate SDTV, 4 Mbps; HDTV, 10 Mbps
of frames SDTV, 50; HDTV, 30
Search range SDTV, ±64 × ±64; HDTV, ±128 × ±128

Evaluation results for SDTV with a B-frame are presented

in Fig. 15. The proposed method increased fps to more than
1.3 times that provided by the conventional method in 16
threads. Different from the result without B-frame, the
conventional method is not saturated in Fig. 15(a) because the
processing efficiency of the conventional method increases
because of the ability to encode the P-frame and B-frame in
parallel efficiently. Since the processing speed is faster
compared with the encoding without B-frame, however, the
number of memory accesses is extended. The memory
accesses under the proposed method are suppressed to the
level of that without B-frame. Consequently, the memory
bandwidth of the conventional method comes closer to that of
the proposed method, but the bandwidth of the proposed
method is greater than that of the conventional method
because of the higher fps (Fig. 15(c)).

Evaluation results for HDTV without B-frame are shown in
Fig. 16. Evaluation was executed using 1, 4, 8, 12, 16, and 32
threads. The normalized fps is normalized by the fps of the
conventional method executed by one thread. The proposed

168

0
2
4
6
8

10
12
14

4 8 12 16
of threads

N
or

m
al

iz
ed

 fp
s

1

proposed (w/o B-frame)
conventional (w/o B-frame)

proposed (w/ B-frame)
conventional (w/ B-frame)

(a) Normalized fps

0.0E+00
5.0E+06
1.0E+07
1.5E+07
2.0E+07
2.5E+07
3.0E+07
3.5E+07
4.0E+07
4.5E+07

1 4 8 12 16
of threads

of

 m
em

or
y

ac
ce

ss

proposed (w/o B-frame)
conventional (w/o B-frame)

proposed (w/ B-frame)
conventional (w/ B-frame)

(b) Number of memory accesses

0.0E+00
1.0E+02
2.0E+02
3.0E+02
4.0E+02
5.0E+02
6.0E+02
7.0E+02

4 8 12 16
of threads

M
em

or
y

ba
nd

w
id

th
 [M

B/
s]

1

proposed (w/o B-frame)
conventional (w/o B-frame)

proposed (w/ B-frame)
conventional (w/ B-frame)

(c) Memory bandwidth

Fig. 15. Evaluation result for SDTV.

method increased fps to 4.6 times that obtained using the
conventional method in 32 threads. As shown in Fig. 16(a),
the processing speed of the conventional method for HDTV is
saturated because the number of threads increases, as was true
also for SDTV. Different from SDTV, the number of memory
accesses under the conventional method increases
considerably compared with the proposed method because the
reference area broadens. In the conventional method,
reference areas accessed from each thread are different, but in
the proposed method, the reference areas accessed from each
thread are overlapped. By this overlap of the reference areas,
the memory accesses performed using the proposed method is
considerably fewer than under the conventional method. In 32
threads, the number of memory accesses of the proposed

0

5

10

15

20

25

4 8 12 161 32
of threads

N
or

m
al

iz
ed

 fp
s

proposed (w/o B-frame)
conventional (w/o B-frame)

proposed (w/ B-frame)
conventional (w/ B-frame)

 (a) Normalized fps

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

4 8 12 161 32
of threads

of

 m
em

or
y

ac
ce

ss
es

proposed (w/o B-frame)
conventional (w/o B-frame)

proposed (w/ B-frame)
conventional (w/ B-frame)

(b) Number of memory accesses

0.0E+00

5.0E+02

1.0E+03

1.5E+03

2.0E+03

2.5E+03

4 8 12 161 32
of threads

M
em

or
y

ba
nd

w
id

th
 [M

B
/s

]

proposed (w/o B-frame)
conventional (w/o B-frame)

proposed (w/ B-frame)
conventional (w/ B-frame)

(c) Memory bandwidth

Fig. 16. Evaluation result for HDTV.

method increases considerably, however, as was true also for
SDTV. This increase results from data of reference areas
overflowing from the cache. The memory bandwidth of the
conventional method is saturated as it was with SDTV, but the
memory bandwidth using the proposed method is greater than
that under the conventional method (Fig. 16(c)), but the
memory bandwidth of the proposed method is closer to that of
the conventional method by suppression of the number of
memory accesses.

Evaluation results for HDTV with a B-frame are shown in
Fig. 16. The proposed method can increase fps to 2.4 times
more than the conventional method in 32 threads. In Fig. 16(a),
the processing speed of the conventional method is shown to
be as saturated as that encoded without B-frame. The memory

169

accesses of the conventional method encoded with B-frame,
however, are not saturated because the P-frame and B-frame
are encoded simultaneously, as was true for SDTV, but the
proposed method shows the same tendency as SDTV.
Therefore, the memory accesses under the proposed method
are fewer than those under the conventional method. In 32
threads, the memory accesses of the proposed method increase
considerably, as shown also in the result of evaluation of
without B-frame, but that of the conventional method in 32
threads increased similarly. The memory bandwidth of the two
methods is nearly equal, but the fps of proposed method is
considerably high (Fig. 16(c)).

V. CONCLUSION
The effectiveness of the MB-level decomposition with

CRCS was described. The MB-level decomposition is more
scalable to the thread number; CRCS is a suitable motion
estimation method for MB-level decomposition because the
workload of each thread is well balanced in CRCS.

We evaluated encoding of MB-level decomposition with
CRCS and this method with UMHS. Results show that this
method with CRCS is faster and uses less memory access than
UMHS does. For instance, CRCS increased fps by 1.7 times
and decreased memory accesses by 16% compared with
UMHS in 16 threads for HDTV. Therefore, CRCS is effective
for MB-level decomposition. Additionally, we evaluated
encoding of MB-level decomposition with CRCS and
frame-level decomposition with UMHS. Results show that the
proposed method is more scalable than the conventional
method because the processing speed of the conventional
method is saturated as the thread number increases. The
proposed method for HDTV without the B-frame increased
fps to 4.6 times as high as that by the conventional method; for
HDTV with the B-frame, the proposed method increased fps
to 2.4 times that of the conventional method, despite fewer
memory accesses under the proposed method. Because of its
scalability and fewer memory accesses, MB-level
decomposition with CRCS is suitable for use with multi-core
computing of the future.

REFERENCES
[1] ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC, Draft ITU-T

Recommendation and Final Draft Information Standard of Joint Video
Specification, 2003.

[2] Y.-K. Chen, X. Tian, S. Ge, and M. Girkar, “Towards Efficient
Multi-Level Threading of H.264 Encoder on Intel Hyper-Threading
Architectures,” Parallel and Distributed Processing Symp., 2004. Proc..
18th Int’l., pp.063-072.

[3] Y.-K. Chen, E.-Q. Li, X. Zhou, and S. Ge, “Implementation of H.264
Encoder and Decoder on Personal Computers,” Journal of Visual
Communication and Image Representation, 2006, pp. 509–532.

[4] T.-C. Chen, S.-Y. Chien, Y.-W. Huang, C.-H. Tsai, C.-Y. Chen, T.-W.
Chen, and L.-G. Chen, “Analysis and architecture design of an
HDTV720p 30 frames/s H.264/AVC encoder,” IEEE Trans. Circuits
Syst. Video Technol., vol.16, no.6, pp.128-129, Feb. 2005.

[5] Y. Murachi, J. Miyakoshi, M. Hamamoto, T. Iinuma, T. Ishihara, F.
Yin, J. Lee, H. Kawaguchi, and M. Yoshimoto, “A Sub 100 mW H.264
MP@L4.1 Integer-Pel Motion Estimation Processor Core for MBAFF
Encoding with Reconfigurable Ring-Connected Systolic Array and

Segmentation-Free, Rectangle-Access Search-Window Buffer,” IEEE
Trans. Electron., April 2008.

[6] M. Roitzsch, “Slice-Balancing H.264 Video Encoding for Improved
Scalability of Multicore Decoding,” in WorkinProgress Proceedings of
the 27th IEEE Real-Time Systems Symposium (RTSS), 2006.

[7] x264, http://www.videolan.org/developers/x264.html
[8] E. B. Van Der Tol, E. G. T. Jaspers, and R. H. Gelderblom, “Mapping

of h.264 decoding on a multiprocessor architecture,” Image and Video
Communications and Processing, May 2003.

[9] ISO/IEC | ITU-T VCEG, Fast Integer Pel and Fractional Pel Motion
Estimation for JVT, JVT-F017, 2002

[10] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, K.
Strauss, S. Sarangi, P. Sack, and P. Montesinos, “SESC Simulator,”
January 2005. http://sesc.sourceforge.net.

170

