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 
Abstract— This paper describes an electrocardiograph (ECG) 

monitoring SoC using a non-volatile MCU (NVMCU) and a 
noise-tolerant instantaneous heartbeat detector. The novelty of 
this work is the combination of the non-volatile MCU for 
normally off computing and a noise-tolerant-QRS (heartbeat) 
detector to achieve both low-power and noise tolerance. To 
minimize the stand-by current of MCU, a non-volatile flip-flop 
and a 6T-4C NVRAM are used. Proposed plate-line charge-share 
and bit-line non-precharge techniques also contribute to mitigate 
the active power overhead of 6T-4C NVRAM. The proposed 
accurate heartbeat detector uses coarse-fine autocorrelation and a 
template matching technique. Accurate heartbeat detection also 
contributes system-level power reduction because the active ratio 
of ADC and digital block can be reduced using heartbeat 
prediction. Measurement results show that the fully integrated 
ECG-SoC consumes 6.14 A including 1.28-A non-volatile MCU 
and 0.7-A heartbeat detector. 
 

Index Terms— Biomedical signal processing, 
Electrocardiography, Heartbeat detection, Microcontrollers, 
Mobile healthcare, Non-volatile memory, Wearable sensors 
 

I. INTRODUCTION 

OBILE health is expected to play an increasingly 
prominent role in health provision with the advent of an 

aging society [1]. Daily life monitoring is especially important 
to prevent lifestyle diseases, which raise the numbers of 
patients and elderly people requiring care. Key factors affecting 
wearable system usability are miniaturization and weight 
reduction. Battery weight is a dominant characteristic of a 
wearable system. Therefore, battery capacity and power 
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consumption must be limited. 
This report specifically describes an electrocardiograph 

(ECG) monitoring SoC for use in a wearable healthcare system. 
Table 1 shows specifications of the proposed system using 
ECG monitoring SoC. The proposed SoC, which uses normally 
off computing using non-volatile MCU (NVMCU) and a 
dedicated heartbeat detector, can minimize the active ratio and 
the stand-by power dissipation of the sensor system. This heart 
beat detector has superior noise tolerance and low power 
consumption. 

A preliminary version of this work has been reported in the 
literature [2]. This paper presents additional details of 
implementation and performance evaluation results. Section II 
of this report explains the architecture of the proposed ECG 
SoC and the non-volatile MCU. The noise-tolerant heartbeat 
detection algorithm and its dedicated hardware implementation 
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TABLE I 
SPECIFICATIONS OF PROPOSED SYSTEM 

 Size  28.5mm  22.5mm (w/o electrodes)

 Weight  3.9g (w/ battery)

 Sensor  ECG and heart rate

 Processing unit  32-bit Cortex M0 (24-MHz operation)

 Memory  16kByte NVRAM

 Communication  Near Field Communication (passive mode)

 Battery capacity  35mAh (CR1220 Lithium battery)

 Current consumption  6.14A  

Fig. 1.  Block diagram of normally off ECG-SoC. 
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are described in Section III. Section IV presents test chip 
implementation and performance evaluation results. Finally, 
conclusions are presented in Section V. 

II. NORMALLY OFF ECG-SOC ARCHITECTURE 

Fig. 1 presents a block diagram showing the proposed 
ECG-SoC, which consists of an ECG sensing block, NVMCU, 
and extra interfaces. The ECG sensing block has an analog 
front end (AFE), an 8-bit SAR ADC, and a robust heartbeat 
detector. The ADC output is connected to the heatbeat detector 
and the NVMCU block. The operating frequency of the 
NVMCU, which is used for on-node vital signal processing, is 
24 MHz, the operating frequency of other digital blocks is 32 
kHz. The AFE includes a 34-dB gain instrumental amplifier 
and a 20-dB gain amplifier. The ADC sampling rate is set to 
128 samples/s for the proposed heartbeat detector. 

A. Non-volatile MCU 

The NVMCU (see Fig. 2) includes a Cortex M0 (CM0) core 
with ferroelectric-based nonvolatile flip-flops (NVFF) [3, 4], a 
16-Kbyte 6T-4C NVRAM for instruction and data memory, 
and peripherals. Because the frequency range of vital signals is 
low, both the standby power reduction and sleep time 
maximization are important for system level power reduction. 
Therefore, the NVMCU is normally in a deep sleep state in our 
application. As presented in Fig. 2, the NVMCU is awakened 

only by an interrupt request (IRQ) from the 32-kHz always-on 
domain. 

Slow signals from the 32-kHz always-on domain are 
synchronized at the low-speed bus to the 24-MHz normally off 
NVMCU domain. To minimize the active power consumption 
of registers in the low-speed bus, the 24-MHz clock is gated 
using bus control signals. 

Standby current of the entire 24 MHz domain including an 
on-chip 24-MHz oscillator can be cut when the state of CM0 
core transits to a deep sleep state. Fig. 3 shows the shut-down 
and wake-up sequence of NVMCU. Then the data in the 
NVRAM and register values of CM0 core in the NVFF are 
stored sequentially to ferroelectric capacitors. The data and 
register values of NVMCU will be recalled if the interrupt 
occurs from the 32-kHz domain. Although the store and recall 
operation for NVRAM and NVFF dissipate up to 25 s 
overhead, that figure is sufficiently small in our application.  

B. Non-volatile Memory 

Fig. 4 portrays a block diagram of the 16-Kbyte 6T-4C 
NVRAM. It comprises eight macro blocks, each consisting of 
2-Kbyte memory cell arrays, which has 128 columns and 128 
rows. We used a 6T-4C memory cell (see Fig. 5) for the 
NVRAM because it presents the benefit of non-volatility and 
fast access time [5]. However, it has active power dissipation 
from the large ferroelectric capacitor, which is connected 
directly to plate-lines and internal nodes. Therefore, this work 
presents plate-line charge-share and bit-line non-precharge 
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Fig. 4.  Block diagram of 16 Kbyte non-volatile memory (NVRAM). 
 

 
Fig. 5.  6T-4C memory cell circuit. 

Fig. 2.  Block diagram of non-volatile MCU (NVMCU). 
 

 
Fig. 3.  Timing diagram of store/recall sequence in NVMCU. 
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techniques to reduce the power overhead. 
The 6T-4C memory requires store and recall operations 

before power gating and power on. The plate-lines (PLA and 
PLB in Fig. 5) are charged by a plate line driver in these 
operations. However, driving of the plate lines requires large 
power dissipation because large ferroelectric capacitors are 
connected to the plate lines. Therefore, plate-line charge-share 
is introduced to reduce the power consumption in store and 
recall operation. As depicted in Fig. 6(a), additional switches 
between plate lines are used to share the charge used for store 
and recall operations. The charge is transported sequentially 
from one plate line to the next one. 

Fig 7 depicts the waveform of store operation with plate-line 
charge share. SW_PLA[0] and SW_PLB[0] are connected after 

PLA[0] and PLB[0] are charged. Then, the charging of PLA[0] 
and PLB[0] is shared with the PLA[1] and PLB[1]. Finally, 
PLA[1] and PLB[1] are charged after cutting off the 
SW_PLA[0]. Other plate-lines PLA[n] and PLB[n] are charged 
sequentially in the same manner. Fig. 8 depicts the waveform of 
the recall operation with the plate-line charge sharing. Only 
PLA[n] should be drive in this operation. As presented in Fig. 8, 
the charge of PLA[n] is shared in the same manner as the store 
operation. Consequently, in both store and recall operation, the 
plate-line driver need not charge plate lines from 0 V to VDD.  

Next, bit-line non-precharge is introduced to reduce the 
power consumption in read and write operations. The 
conventional 6T-4C memory charges the bit-line before 
charging the word line to prepare read operations and to 
stabilize the status of the half-selected cell. The half-selected 
cell is selected by the X decoder, although it is not selected by 
the Y decoder during read and write operations. Because 128 
memory cells are connected to each bit line in this design, the 
pre-charging power is dominant in the read and write 
operations. However, the bit-line precharge can be omitted. 
Only equalizing is used in this design. The large ferroelectric 
capacitors are also connected to the internal nodes of the 
memory cell. Therefore, the 6T-4C cell is sufficiently tolerant 
to the half-select problem. 

Fig. 9 shows the waveform of read and write operations with 
bit-line non-precharge. First, bit-lines are equalized to force the 
same voltage by a bit-line equalizer (see Fig. 6(b)), they are not 
charged to VDD. During read and write operations, the bit line 
equalizer is disabled. Finally, the bit lines are equalized again 
when the operation is finished. Therefore the pre-charging 
power can be omitted from write and read operations. 

Store and recall operations are executed sequentially in each 
macro block. Consequently, these operations require 128 cycles 
with 24-MHz operating frequency for the entire 16-Kbyte 
NVRAM. 
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Fig. 6.  (a) Plate-line charge sharing switch and (b) bit-line equalizer. 
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Fig. 7.  Store operation with plate-line charge share. 
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Fig. 8.  Recall operation with plate-line charge share. 
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III. NOISE-TOLERANT HEARTBEAT DETECTOR 

The ECG signal in wearable systems is sensitive to various 
noises because the electrode distance, size, and the battery 
capacity are strictly limited. The SNR will be especially 
degraded if a user is not at rest. Therefore, our approach uses 
digital signal processing to mitigate the performance 
requirements for the analog portion and to minimize the overall 
system power consumption. For this work, we propose a 
noise-tolerant algorithm using a combination of short-term 
autocorrelation and the template matching approach. The 
proposed method is implemented in dedicated hardware to 
achieve both noise tolerance and low power consumption.  

A. Heartbeat detection algorithms 

Extracting R-waves with threshold determination is a general 
approach. Recently, various statistical approaches have been 
proposed for noise-tolerant threshold calculation [6–15]. 
However, both misdetection and false detection are increased in 
wearable healthcare systems by noise from various sources 
such as myoelectric signals from muscle and electrode 
movements because the power consumption and electrode 
distance of the wearable sensor are strictly limited to reduce its 

size and weight. 
More robust approaches to prevent incorrect detection are 

autocorrelation [16, 17] and template matching [18] because 
these algorithms use the similarity of QRS complex waveforms 
and because they have no threshold calculation process. 
Autocorrelation has been used in a non-invasive monitoring 
system [17], but the method necessitates numerous 
computations to calculate the average heart rate over a long 
duration (30 s). A short-term autocorrelation (STAC) technique 
was proposed for heart rate detection in our previous work [19]. 

For this work, we implemented the combination algorithm of 
quadratic spline wavelet (QSW) filter [9–11] and two-stage 
STAC based heartbeat detection [20]. The QSW is commonly 
used as the low-power noise reduction method for ECG [11]. 
The hum-noise and baseline wander are well suppressed using 
QSW. Nevertheless, it is difficult to remove these noises solely 
by using QSW because it has a similar frequency range of the 
QRS complex. Therefore, in the next step, we used a 
noise-tolerant heartbeat detection algorithm. 

Figs. 10 and 11 present the heartbeat detection algorithm. In 
the first stage, the template data of QRS complex are generated 
autonomously using the extended version of STAC. Following 
equations (1–4) express the coarse QRS search, as presented in 
Fig. 11 (a). The correlation coefficient (CCCS) between the 
template window and the search window is calculated as 
presented below. 

CSܥܥ ሾ݊ሿ ൌ 1ܹ
2 ∙෍ 2ܹ ∙ ݀ሾ݊ݐ െ ݅ሿ ∙ ݀ሾ݊ݐ െ ݅ െ sܶhift ሿ

wܮ

݅ൌ0

  (1) 

1ܹ ൌ ൝
1

0.75
0.5

ሺ sܶhift ൑ 0.54ሻ	
ሺ0.54 ൏ sܶhift ൑ 0.98ሻ		

ሺ sܶhift ൏ 0.98ሻ
  (2) 

2ܹ ൌ ൝
1

0.75
0.5

ሺ݅ ൑ 0.25 ∙ 	ሻݓܮ
ሺ0.25 ∙ wܮ ൏ ݅ ൑ 0.5 ∙ 		wሻܮ

ሺ0.5 ∙ wܮ ൏ ݅ሻ
  (3) 

Here, d[tn] denotes the nth sampled ECG data. W1 and W2 are 
the weight coefficients to avoid the detection error caused by 
multiple heart beats in search range. Lw is the search window 
and the template window length, which is set to 1.5 s for this 
study. Then, the window shift length Tshift with the maximum 
value of the correlation coefficient (4) shows the heart rate at 
time tn (IHR[n]). 

ሾ݊ሿܴܪܫ ൌ argܶshift max
0.27൑ܶ shift ൑1.5

ሼܥܥCS ሾ݊ሿሽ  (4) 

Equations (5) and (6) show the coarse QRS search, as 
presented in Fig. 11(b). 

FSܥܥ ሾ݊ሿ ൌ෍݀ሾ݊ݐ െ ݅ െ ܶ′ shift ሿ ∙ ݀ሾ݊ݐ െ ݅ െ ܶ′ shift െ ሾ݊ሿሿܴܪܫ

swܮ

݅ൌ0

 (5) 

QRSݐ ሾ݊ሿ ൌ ݊ݐ െ argܶ′ shift max
0൑ܶ ′

shift ൑ݓܮ

ሼܥܥFS ሾ݊ሿሽ  (6) 

 
Fig. 11.  Flow chart of heart beat detection algorithm. 
 

Fig. 12.  Algorithm overview of coarse-fine QRS template generation and
template matching with QRS prediction. 

 
Fig. 10. Flow chart of heart beat detection algorithm. 

 

Fig. 11. Algorithm overview of coarse-fine QRS template generation and
template matching with QRS prediction. 
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Then, the QRS is detected by a small window with window 
length LSW, set to 0.1 s. When the window shift length Tshift is 
set to IHR[n] in (4), the QRSs exist at the same distance from 
the edge of the search window. The template window as 
presented in Fig. 11(b). Therefore, as shown in (5) and (6), the 
time of the nearest QRS complex (tQRX) from tn is calculable 
from the small window shift length (T'shift) and the correlation 
coefficient between small windows (CCFS[n]). Then, the initial 
QRS complex template TMinit is set as presented below. 

initܯܶ ሾ݅ሿ ൌ ݀ሾݐQRS ሾ݊ሿ ൅ ݅ሿ			ሺെ
swܮ
2

൑ ݅ ൑
swܮ
2
ሻ  (7) 

Next, template matching is conducted to extract QRS 
complexes as presented in Fig. 11(c). Then, the time at which 
the next QRS complex occurs is predicted from the beat-to-beat 
variation to minimize the search range. We assumed that the 
maximum rate of the beat-to-beat variation is 25% in this 
implementation, although it is generally 20% in healthy 
subjects [21]. The prediction result is used to maximize the 
sleep time of the ADC and heartbeat detector. Even in cases 
where misdetection or false detection occurs because of 
arrhythmia or intense noise, the heartbeat detector can awaken 
and recover from the error because the coefficient of 
autocorrelation will decrease rapidly if such an error occurs. 
Whenever the QRS complex is detected at tQRS, the QRS 
complex template (TM) is updated by adding the detected QRS 
complex to the previous template (TMprev) as shown below. 

ሾ݅ሿܯܶ ൌ
7 ∙ prevܯܶ ሾ݅ሿ ൅ ݀ሾݐQRS ሾ݊ሿ ൅ ݅ሿ

8
		ሺെ

ݓݏܮ
2

൑ ݅ ൑
ݓݏܮ
2
ሻ  (8) 

B. Performance evaluation of heartbeat detection 

First, we investigated the success rate of heart rate extraction 
using 48 records from the MIT-BIH arrhythmia database [22]. 
The proposed method is modeled using MATLAB. Table 2 
presents the simulation results. Here, the definition of 
sensitivity (Se) is TP / (TP + FN). The definition of positive 
predictivity (+P) is TP / (TP + FP). Then, TP, FN, and FP 
respectively denote the number of correct QRS complex 
detection, the number of failures to detect the true QRS 
complex, and the number of false detections. The success rate 
denotes the heart rate extraction success rate every second. 
Then the recent beat-to-beat interval is compared with a 
database every second. 

Comparison with the conventional algorithms [6–15] 
showed no significant difference in the simulation result with 
most records. Table 3 shows the success rate comparison with 
proposed method and conventional algorithms of QSW and 
CWT [13–15]. However, the success rate was degraded for 
several records because a certain type of arrhythmia, which has 
irregular heartbeat waveform (e.g. premature ventricular 
contraction), increases misdetection. Table 4 shows that, 
although the proposed method shows equivalent or better 
performance in most cases, it is degraded by such arrhythmia 
because the algorithm uses similarity of the QRS waveform. 

Next, we evaluated the noise tolerance using the MIT-BIH 
noise stress test database [23]. To evaluate the heartbeat 

extraction performance in noisy conditions, the proposed 
method and the conventional QSW, Quad Level Vector (QLV) 
[12], Continuous Wavelet Transform (CWT) [13–15], and 
STAC [19] are modeled using MATLAB. The QSW has been 
used in robust ECG monitoring LSIs [11, 24, 25]. The threshold 
is calculated using the root mean square value of the wavelet 
transform. The QLV is implemented in dedicated hardware for 
ECG monitoring LSI [26, 27]. The QLV is generated using 

TABLE II 
QRS DETECTION PERFORMANCE AND HEART RATE EXTRACTION SUCCESS RATE

(SR) OF PROPOSED HEARTBEAT DETECTOR WITH 48 CLEAN ECG RECORDS 
Record Se [%] +P [%] SR [%] Record Se [%] +P [%] SR [%]

100 99.8 100.0 100.0 202 91.6 99.4 95.3
101 99.7 99.9 99.7 203 69.4 98.5 70.7
102 93.0 93.4 93.0 205 84.2 100.0 82.0
103 99.8 100.0 100.0 207 84.1 93.2 88.3
104 97.1 99.4 98.6 208 74.2 89.8 55.1
105 97.0 99.3 97.3 209 99.7 100.0 100.0
106 77.7 98.9 92.6 210 86.9 99.9 91.8
107 97.5 99.1 97.5 212 99.9 100.0 100.0
108 94.9 95.9 80.4 213 87.8 99.4 83.5
109 99.0 100.0 99.0 214 91.8 99.6 96.9
111 99.7 99.9 96.3 215 91.5 100.0 92.4
112 99.9 100.0 100.0 217 98.8 99.7 92.4
113 99.6 100.0 99.9 219 92.8 97.6 94.6
114 98.1 99.8 97.8 220 98.1 100.0 99.1
115 99.9 100.0 100.0 221 76.1 99.6 85.1
116 99.0 98.1 97.0 222 84.3 99.2 89.9
117 99.9 100.0 95.2 223 85.7 100.0 84.0
118 99.6 100.0 99.4 228 86.8 98.3 96.3
119 78.0 99.0 96.8 230 99.9 100.0 99.9
121 99.6 99.6 99.6 231 87.1 79.4 74.8
122 99.8 100.0 100.0 232 90.1 77.4 61.3
123 99.3 99.6 99.4 233 76.6 99.9 67.2
124 99.1 100.0 99.7 234 78.6 100.0 73.0
200 76.9 99.8 64.2
201 87.4 95.5 88.2

Avg. 91.8 98.1 90.9
 

 
TABLE III 

COMPARISON OF HEART RATE EXTRACTION SUCCESS RATE 

QSW CWT Prop. QSW CWT Prop.
100 96.9 98.8 100.0 202 98.5 95.4 95.3
101 96.1 98.4 99.7 203 59.4 81.1 70.7
102 87.9 95.5 93.0 205 98.7 98.9 82.0
103 99.4 98.9 100.0 207 80.2 86.7 88.3
104 55.5 80.5 98.6 208 62.4 35.3 55.1
105 92.1 97.1 97.3 209 95.7 98.5 100.0
106 85.1 88.3 92.6 210 91.0 86.3 91.8
107 77.8 97.7 97.5 212 96.4 99.2 100.0
108 48.3 86.4 80.4 213 92.3 92.6 83.5
109 96.8 98.1 99.0 214 95.3 96.7 96.9
111 65.6 96.6 96.3 215 95.8 93.8 92.4
112 98.1 98.7 100.0 217 68.6 87.1 92.4
113 99.3 98.2 99.9 219 94.8 92.9 94.6
114 95.2 99.2 97.8 220 99.1 98.8 99.1
115 98.6 98.3 100.0 221 97.0 84.4 85.1
116 96.4 97.8 97.0 222 77.2 87.8 89.9
117 94.8 68.6 95.2 223 97.1 83.7 84.0
118 90.1 97.8 99.4 228 67.5 69.7 96.3
119 80.2 94.0 96.8 230 98.3 98.4 99.9
121 96.3 99.2 99.6 231 71.8 98.6 74.8
122 99.3 99.0 100.0 232 95.4 89.5 61.3
123 99.2 98.5 99.4 233 68.1 86.5 67.2
124 56.5 96.5 99.7 234 99.3 98.7 73.0
200 88.7 96.0 64.2
201 77.1 79.7 88.2

Avg. 86.9 91.6 90.9

Record
Success rate [%]

Record
Success rate [%]
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DWT and the adaptive threshold. Then, the threshold is 
ascertained from the maximum mean deviation (MD) of the 
previous heartbeats. The CWT employs a Mexican hat wavelet 
in the frequency interval of 15–18 Hz. The R-peak can be 
extracted using the adaptive threshold, which is calculated 
using the modulus maxima of the CWT. This algorithm was 
implemented in an earlier study [27]. 

Figs. 12 and 13 portray the relation between the noise 
intensity and the heart rate detection success rate. A muscle 
artifact and motion artifact records are used because these 
noises have critical frequency characteristics. We used the 
muscle artifact and the motion artifact databases from 
MIT-BIH noise stress test database [23]. Then, the 
signal-to-noise ratio (SNR) is defined as shown below. 

2
log10

aN

S
SNR


  (9) 

 
Here, S, N, and a respectively denote the signal power, 
frequency-weighted noise power, and scale factor. Simulation 
results show that the proposed algorithm has better noise 
tolerance in each condition. 

In Fig. 12, MIT-BIH record #100 is used to evaluate the 
effect of noise contamination and to eliminate the effect of 
arrhythmia because this record includes a few arrhythmic beats. 
In Fig. 13, all 48 records from MIT-BIH are used. These results 
show that proposed method can improve the noise tolerance 
compared with conventional algorithms when the ECG is 
contaminated by both a muscle artifact and a motion artifact. 

Finally, we evaluate the required resolution of the ECG 
signal to minimize the computational amount and the hardware 
overhead because the battery capacity is strictly limited in our 
target application. The bit width and the sampling rate of ECG 
signal directly affect the overhead. Fig. 14 presents the effect of 
bit width with record #100 with and without 6-dB noises. Then, 
the sampling rate of the ECG signal is fixed to 128 samples/s. 
The simulation result shows that the success rate is degraded 
when the bit width is less than eight in noisy conditions. Fig. 15 
portrays the effects of sampling rate differences. The bit width 
is fixed to eight bits in this simulation. Simulation results show 
that a 64 samples/s or more sampling rate is needed for heart 
rate extraction without degradation. 

C. Hardware implementation of the heartbeat detector 

The proposed method is implemented as dedicated hardware 
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Fig. 15.  Sampling rate of ECG signal versus extraction success rate from record
#100 with and without 6-dB noises. The bit width is set to eight bits.  
 

TABLE IV 
SUCCESS RATE AND ARRHYTHMIA TYPE IN 48 RECORDS  

QSW CWT Prop.
Normal beat 52927 93.18 96.16 94.86
Left bundle branch block beat 6372 82.42 97.65 98.40
Right bundle branch block beat 6366 74.55 96.26 94.49
Atrial premature beat 2588 92.31 93.59 82.88
Aberrated atrial premature beat 258 58.53 33.72 38.76
Nodal (junctional) premature beat 64 68.75 95.31 98.44
Premature ventricular contraction 9847 62.96 63.18 42.77
Fusion of ventricular and normal beat 715 84.90 92.31 80.84
Atrial escape beat 21 100.00 90.48 95.24
Nodal (junctional) escape beat 252 82.94 92.46 90.87
Ventricular escape beat 108 87.96 92.59 93.52
Paced beat 5880 71.04 92.45 96.46
Fusion of paced and normal beat 854 56.91 76.93 88.52
Unclassifiable beat 35 8.57 57.14 71.43
Ventricular flutter wave 147 14.29 26.53 38.10
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Type of arrhythmia
Success rate [%]
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Fig. 12.  Noise stress test (MIT-BIH record #100). 
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to minimize the power overhead. Fig. 16 presents a block 
diagram of the heartbeat detector, which consists of dual port 
SRAMs, registers, and accumulators. As presented in Fig. 16, 
the hardware resources are shared in both the coarse-fine QRS 
search state and the template matching state. Therefore, the 
capacity and the stand-by current of SRAMs can be minimized. 
The bit-width reduction according to the simulation result of 
Fig. 14 also reduces hardware overhead. 

The required operating frequency to realize the real-time 
heartbeat detection is less than 32 kHz when applying the 
128-samples/s sampling rate according to the evaluation result 
of Fig. 15. Therefore, this heartbeat detection block can operate 
using only 32.768-kHz real-time clocks. The real-time clock is 
a necessary component of a wearable monitoring system and it 
has low power consumption. 

IV. IMPLEMENTATION RESULT 

The 3.7  4.3 mm2 test chip is fabricated using 0.13 m 
CMOS technology. Fig. 17 depicts the chip micrograph and a 
performance summary. The operating voltage is 1.2 V for the 
AFE, the ADC, the 24-MHz oscillator, the heartbeat detector, 
NVMCU, and other digital blocks. Only the 32-kHz oscillator 
and IO circuits are operated with 3.0V supply voltage. 

First, we evaluated the performance of NVRAM and 
NVMCU. As presented in Fig. 18, the energy consumption of 
the 6T-4C NVRAM in store, recall, write, and read operations 
are reduced respectively by 22%, 11%, 74%, and 77% by virtue 
of the charge sharing and pre-charge-less techniques. In bit-line 
equalization, some power dissipation overhead exists in the 
memory cell power supply. Nevertheless, the total power 
consumption of read and write operations can be reduced. The 
power during plate-line equalization can be negligible because 
the plate-lines are connected only to ferroelectric capacitors. 
The plate-line driver is isolated from plate-lines during 
equalization. The measurement results show that the operating 
frequency of read and write operations is 47 MHz at maximum. 
However, the store and recall operations require at least 40-ns 
cycle time, as presented in Fig. 19. Therefore, the maximum 
operating frequency of NVRAM is 24 MHz, which complies 

with the NVMCU operating frequency. 
Next, to demonstrate the test chip performance, we 

implemented a heart rate logging application. Fig. 20 shows the 
measured waveforms of the heart rate extraction. The 
measurement results show that the heart rate is extracted 
correctly even in a noisy condition, and especially not at rest. 

Fig. 21 shows the summary of current consumptions in each 
block with heart rate logging application. Then, the ADC 
sampling rate is set to 128 Hz. The heartbeat detector output is 
stored to data memory every second. The AFE, 32-kHz OSC, 
and timer block are always activated. The total current 
consumption is 6.14 A on average, including 1.28-A 
non-volatile MCU and 0.7-A heartbeat detector. As presented 
in Fig. 22, the proposed heart rate extractor has higher noise 
tolerance and minimum power overhead compared with 
previous studies of hardware implemented heartbeat detector 
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Fig. 16.  Block diagram of heartbeat detector. 
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[25, 27, 28] 
Table 5 presents a comparison with other recently published 

ECG monitoring SoCs [25, 28–31]. The proposed SoC has the 
lower power consumption in fully integrated (with AFE, ADC, 
digital filter, non-volatile MCU, OSC, and communication I/F) 
ECG sensors for daily life monitoring. 

Fig. 23 portrays the application board of the proposed 
wearable sensor system. The board size is 22.5 mm  28.5 mm. 
A near field communication (NFC) Tag IC is used to 
communicate with a smartphone. The proposed system weighs 
3.9 g including the NFC tag IC, linear regulator, 32.768-kHz 
crystal oscillator, and a 1.0 g battery, which has 35mAh 
capacity. 

To evaluate the accuracy of extracted heartbeats, 
measurement results obtained using the proposed sensor are 
compared with those of the reference sensor (CamNtech 
Actiwave Cardio [32]). The proposed sensor and reference 
sensor record the ECG signal and heart rate simultaneously as 
depicted in Fig. 24. 

In Fig. 25, the heart rate output of the proposed sensor is 
compared with the reference sensor. This result demonstrates 
that the proposed system can extract the heart rate correctly, 
although the electrode distance and the SNR of ECG are 
limited. 

V. CONCLUSION 

We proposed the ECG-SoC using the noise-tolerant 
heartbeat detector and NVMCU in 0.13 m CMOS. The 
heartbeat detector uses short-term autocorrelation and a 

template matching algorithm for noisy conditions in wearable 
systems. The NVMCU consists of 16-Kbyte 6T-4C NVRAM 
and Cortex M0 core with ferroelectric-based nonvolatile FFs. 
The 3.7  4.3 mm2 ASIC consumes 6.14 A for heart rate 
extraction and logging application. The proposed heartbeat 
detector achieves state-of-the-art noise tolerance and power 
consumption. This result demonstrates that it accommodates 
the performance requirements for analog front end and 
electrodes. 
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