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SUMMARY  This paper reports a 65 nm 8 Mb spin transfer torque mag-
netoresistance random access memory (STT-MRAM) operating at a sin-
gle supply voltage with a process-variation-tolerant sense amplifier. The
proposed sense amplifier comprises a boosted-gate nMOS and negative-
resistance pMOSs as loads, which maximizes the readout margin at any
process corner. The STT-MRAM achieves a cycle time of 1.9us (=
0.526 MHz) at 0.38 V. The operating power is 1.70 uW at this voltage. The
minimum energy per access is 1.12 pJ/bit when the supply voltage is 0.44 V.
The proposed STT-MRAM operates at a lower energy than an SRAM when
the utilization of the memory bandwidth is 14% or less.
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1. Introduction

The capacity of embedded memory on a chip has been in-
creasing. In fact, the ITRS predicts that the leakage power
in embedded memory will account for 40% of all power
consumption by 2024 [1]. A spin transfer torque magne-
toresistance random access memory (STT-MRAM), which
stores data as magnetic resistance states, is promising for
use as non-volatile memory to reduce the leakage power. It
is useful as embedded memory because it can function at
low voltages and has a lifetime of over 10'® write cycles
[2]. In addition, STT-MRAM technology has a smaller bit-
cell than an SRAM, making STT-MRAM suitable for use in
high-density products [3]-[7].

Figure 1 shows a schematic 1TIMT]J bitcell with one
transistor and one magnetic tunnel junction (MTJ) STT-
MRAM bitcell. The MTJ is a magnetoresistive device and
has pinned and free layers with a tunnel barrier (MgO bar-
rier) between them as an insulator. The MTJ has two states:
a parallel state and an antiparallel state. The magnetization
direction of the free layer determines the state. In the free
layer, the magnetization direction can be switched by the
current flowing through the MTJ, which corresponds to a
datum stored in a bitcell. The MTJ resistances are low and
high in the parallel and antiparallel states, respectively. In
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Fig.2  Conventional read circuit and bias condition at TT corner.

the read operation, the stored datum is read out as the differ-
ence in the flowing current.

Although the MTJ has the potential to operate at less
than 0.4V [8], such low-voltage operation has not been
demonstrated to date for an STT-MRAM macro because the
design of the peripheral circuitry is difficult. A pMOS load
sense amplifier [8] or a sense amplifier with an op-amp for
a replica bias [9] does not function at such a low voltage.

Figure 2 shows a conventional read circuit [8] and its
bias condition at a supply voltage of 0.4 V. This readout cir-
cuit draws a read current Iy,q to the STT-MRAM cell. The
voltage of node “S” is determined by the cell datum because
the resistance of the STT-MRAM is dependent on the state
of the MTIJ. Specifically, the voltage at node “S” is deter-
mined by the balance of Ij,q and the cell current (Ip or Iap)
as shown in the figure. The sense amplifier can distinguish
the datum, for instance, at a typical process corner where
the voltage difference between the parallel and antiparallel
states is sufficiently larger than the offset voltage of the sense
amplifier. Figure 3 shows another bias condition at the FS
corner; the conventional read circuit, however, cannot oper-
ate at 0.4V because the voltage difference at node “S” be-
comes as small as 40 mV, which is insufficient to operate the
sense amplifier.

Copyright © 2014 The Institute of Electronics, Information and Communication Engineers
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Figure 4 shows operating VDDs and cycle times of
conventional STT-MRAM in previous studies [7], [9]-[15].
The operating voltage in these studies was 1.0V or more,
which indicates that it is difficult to realize peripheral cir-
cuits that can operate at low voltages. Herein, we present an
STT-MRAM operating at a single 0.4 V supply voltage. Our
proposed sense amplifier functions effectively below 0.4V
at any process corner, as a result of assistance from a charge
pump circuit.

2. 8-Mb STT-MRAM Design

Figure 5 shows a macro-block diagram of the proposed
8 Mb STT-MRAM. A Dickson charge pump circuit provides
a boosted voltage to eight 1 Mb STT-MRAM macros. A
schematic of the charge pump circuit is depicted in Fig. 6. A
0.4V clock swing is doubled to a 0.8 V amplitude by a dou-
ble boosted clock (DBC) generator, which is then forwarded
to a charge pump capacitor. The potential output voltage of
this Dickson charge pump is 3.0V (=5 (2VDD — Vy,) =5
(0.8 — 0.2)) because the clocking amplitude from the DBC
generator is doubled to 0.8 V. In the macro, the supply volt-
age from the charge pump (VDDg) is controlled to 1.6 V so
as not to damage the transistors. Figure 7 shows the block
diagram of the macro and voltage domains of the 1 Mb STT-
MRAM. The macro comprises four 256 kb blocks, each of
which consists of 512 bits x 512 words. The supply voltage
(VDD) is 0.4 V. Figure 8 shows the bitcell array and the pe-
ripheral circuits. To minimize the voltage drop through a bit
line, a column selector using a transmission gate is adopted;
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the gate voltage of the transmission gate is controlled with a
boosted voltage (VDDg) of 1.6 V. In actual macro designs,
the transmission gates connected to the global bit line and
the global source line are located on opposite sides so that
the sum of the wiring lengths of the bit line and the source
line is the same for any STT-MRAM bitcell to balance the
current path and voltage drop. Therefore, the parasitic resis-
tance is the same in an STT-MRAM bitcell regardless of its
position.

Figure 9 presents the operating waveforms. When writ-
ing the datum “1”, the bit line (BL) is increased to 0.4V,
whereas the source line (SL) is raised to 0.4 V when writing
the datum “0”. VDDg is provided as a word line voltage,
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which suppresses the variation of the cell current caused by
variations in the access transistors.

Figures 10 and 11 show SEM micrographs of a CoFeB-
based MTJ and the STT-MRAM bitcell layout respectively.
The dimensions of the MTJ are 59 x 59nm?. The STT-
MRAM process is the same as that described in earlier re-
ports [2], [16].

A detailed schematic of the proposed sense amplifier
is shown in Fig. 12. The bitcell datum is determined by
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the voltage of node “S” and is input to the sense amplifier.
Figure 13 shows details of the current flowing through the
proposed circuit. In the initial state, the initializing switch
grounds node “S”. This cuts off the leakage current through
M;o (Inego) in the current mirror of the negative-resistance
pMOS load. In the read state, the “Read enable” signal be-
comes high and the nMOS load transistor (M;) turns on.
Then a load current (Ijp,g) flows from VDD. The voltage
of node “S” is higher in the early phase of the read opera-
tion. This is because the output current from node “S” which
flows to the clamp transistor and MRAM cell is smaller than
the input current of node “S” I},,9. When the voltage of node
“S” becomes higher than Vi, for M,,1, My, drives the current
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from VDD. The readout currents Ijpaq and Iyey flow from
VDD, which exhibits 0.4 V operation. The boosted voltage
of VDDg is used for the gate of the nMOS load transistor
(M,,) and the initializing switch in the reading structure.
Figure 14 shows operating curves of the load circuits
at a typical process corner (TT: pMOS = typical, nMOS =
typical). The resistances of the MTJ are 3.5kQ and 7kQ
respectively, in the parallel and antiparallel states. The total
load current Ieeii = Iigad + Inegi 1S a function of the voltage of
node “S”. The intersection of the load current and Ip (“L”) or
Iap (“H”) results in I¢;;. The voltage difference between “L”
and “H” is greater than 250 mV, which is much more than
that of a conventional pMOS load circuit [3]; VDD/2 is ef-
fective as a reference voltage (Vggr). The size of the boosted
nMOS load Mn can be reduced (moreover, its standby leak-
age can be reduced) because it operates in a linear region
by virtue of its boosted voltage. Therefore, the load cur-
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rent is sufficient even with a small transistor. The proposed
sense amplifier is tolerant to process variations, as shown in
Figs. 15(a)-15(d). Even at the FF, FS, SF, and SS corners,
the proposed sense amplifier can distinguish parallel from
antiparallel states.

Figure 16 shows the results of a Monte Carlo simula-
tion of the proposed circuit. The number of trials is 1 M.
The simulation was performed by varying the MTJ and the
access transistor at the TT corner. In the figure, the mini-
mum and maximum values of Ip and Isp are shown. Fig-
ure 17 shows histograms of the voltage of node “S” in the
10° Monte Carlo simulations at the intersections of I,o,q With
Ip and Inp. The proposed circuit is tolerant to variations in
both the MTJ and the access transistor.
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Fig.18  Chip photograph.
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3. Chip Implementation and Measurement Results

We fabricated a 65nm test chip at the TT process corner,
as shown in Fig. 18, to evaluate the low-voltage and low-
leakage operation. The detailed fabrication process of the
MT]J device used in the test chip is presented in references
[2], [16]. The macro size is 2.2 X 2.9 mm?. Figure 19 shows
a Shmoo plot of the test chip. We confirmed operation at
0.38 V for a cycle time of 1.9 us (the operating frequency is
therefore 0.526 MHz); under these conditions the operating
power is 1.70 uW. At this low voltage, the read operation is
achieved using the proposed sense amplifier; the write op-
eration is carried out by applying a long write pulse with a
small write current.

Figure 20 shows the energy consumption of the pro-
posed STT-MRAM and a low-voltage SRAM [17] fabri-
cated with the same process technology. Both sets of re-
sults are measured values. The ratio of read to write ac-
cesses is 50:50. At an operating voltage of 0.5V, the energy
consumed by the STT-MRAM is 3.03 times larger than that
consumed by the SRAM. Figure 21 presents a breakdown of
the energy components. The ratios of active energy (E,ciive)
to total energy (E,ciive + Eleak), are 96.7% and 15.4% in the
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STT-MRAM and SRAM, respectively. Figure 22 shows an
comparison of the energy when the utilization of the mem-
ory bandwidth is changed. The STT-MRAM is superior to
the SRAM in terms of energy consumption if the utilization
of the memory bandwidth is 14% or less, which means that
the STT-MRAM is suitable for use in less active applica-
tions such as the healthcare systems and sensor networks.
Table 1 shows the characteristics of the test chip.
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Table 1

Process technology

Test chip characteristics.
65nm bulk CMOS

Nominal voltage 1.2V
Charge pump output 1.6V
Capacity 8Mb
Cell size 0.203um’
(0.495umx0.41um)
Operating VDD 0.38V-0.6V

0.536MHz-5.00MHz
1.70uW@0.526 MHz

Oparating frequency
Oparating power

Minimum energy 1.12 pJ/bit
per access at 0.44V and 1.66MHz
Charge pump output 1.6V

4. Conclusion

We presented a new sense amplifier with tolerance to pro-
cess valiations for an STT-MRAM operating at low volt-
ages. The proposed sense amplifier can distinguish between
parallel and antiparallel states at all process corners. We fab-
ricated an 8 Mb STT-MRAM using a 65 nm process technol-
ogy. The test chip exhibits 0.38 V operation at a frequency
of 0.526 MHz, at which the power consumption is 1.70 uW.
The proposed STT-MRAM operates at a lower energy than
an SRAM when the utilization of the memory bandwidth is
14% or less.
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