
A 40-NM 54-MW 3×-REAL-TIME VLSI PROCESSOR

FOR 60-KWORD CONTINUOUS SPEECH RECOGNITION

Guangji He, Yuki Miyamoto, Kumpei Matsuda, Shintaro Izumi,

Hiroshi Kawaguchi, and Masahiko Yoshimoto

Kobe University, Kobe, 657-8501 Japan

achilles@cs28.cs.kobe-u.ac.jp

ABSTRACT

This paper describes a low-power VLSI chip for speaker-

independent 60-kWord continuous speech recognition

based on a context-dependent Hidden Markov Model

(HMM). We implement parallel and pipelined architecture

for GMM computation and Viterbi processing. It includes a

8-path Viterbi transition architecture to maximize the

processing speed and adopts tri-gram language model to

improve the recognition accuracy. A two-level cache

architecture is implemented for the demo system. The test

chip, fabricated in 40 nm CMOS technology, occupies 1.77

mm × 2.18 mm containing 2.98 M transistors for logic and

4.29 Mbit on-chip memory. The measured results show that

our implementation achieves 25% required frequency

reduction (62.5 MHz) and 26% power consumption

reduction (54.8 mW) for 60 k-Word real-time continuous

speech recognition compared to the previous work. This

chip can maximally process 3.02× and 2.25× times faster

than real-time at 200 MHz using the bigram and trigram

language models, respectively.

Index Terms— 40 nm VLSI, large vocabulary

continuous speech recognition (LVSCR), 3×

1. INTRODUCTION

Speech recognition has been widely used in various

applications especially the mobile system, the ubiquitous

system and robotics as a human interface. High-end

personal computers can accommodate speech recognition

tasks well even with large acoustic and language models [1].

However, such software-based methods are not applicable

for mobile systems while considering the physical size and

power consumption [2]. Additionally, they are unsuitable

for next-generation applications such as audio mining,

which request the recognizer to deliver results at rates that

are 10×, 100×, faster than real-time [3, 4]. Hardware

implementation by VLSI or an FPGA is a good approach to

satisfy these demands because of its good processing speed

and power consumption. Lin et al. reported a Multi-FPGA

implementation for 5 k-word continuous speech recognition

[5] that achieves 10× faster than real time, but the system is

not extendable for larger vocabularies because it is not cost-

effective. It needs two FPGAs and two DDR2 DRAMs each

with a 64-bit wide data-path. Yoshizawa et al. proposed a

scalable architecture for speech recognition [6]. Their chip

can have an adjustment between vocabulary size and

processing speed, but the system only offers real-time

performance with a limited vocabulary of 800 words. Choi

et al. developed FPGA and VLSI implementations for 20 k-

word speech recognition [7, 8]. They implemented special

memory interfaces for several parts of the recognition

engine to apply optimized DRAM access, which improves

the data transfer efficiency, but the numerous external

DRAM accesses cause high IO frequency, which requires a

high supply voltage and causes high power consumption in

both the FPGA side and DRAM side.

0

1

2

10

0 10,000 20,000 30,000 40,000 50,000 60,000

CMU [5]

5,000-words

FPGA 10x

CMU [4]

1,000-words

FPGA 0.7x

SNU [7]

20,000-words

FPGA 1.52x

This work (HMM3)

60,000-words

VLSI 3x

X
 R

e
a
l-tim

e

Break through power

[words]

HMM1 [9]

60,000-words

VLSI 1x

SNU [8]

5000-words

VLSI 1.8x

HMM2 [11]

60,000-words

VLSI 2.4x

Fig. 1 Vocabulary vs speed.

In Image and Video processing system, the DRAM only

acts as a buffer between camera and chip, the pixels are

read from DRAM orderly and saved to the on-chip memory.

However, in large vocabulary continuous speech

recognition (LVCSR) system, the DRAM functions as a

data-base which saves the dictionary parameters and

language models because they are too large to be stored in

the internal SRAM. These data will be accessed randomly

during the processing. Due to the characteristics of DRAM ,

there are several cycles of latency caused by pre-charge and

147

2013 IEEE Workshop on Signal Processing Systems

978-1-4673-6238-2/13 $31.00 © 2013 IEEE

mailto:achilles@cs28.cs.kobe-u.ac.jp

address-setup every time before we read from the DRAM,

therefore if the required data are not saved sequentially, the

access-efficiency is bad. As a result, speech recognition

needs much higher IO frequency than video processing to

get the same amount of data from DRAM. Especially, with

the number of vocabulary increase, the external memory

bandwidth become enormous which causes two problems,

firstly, real-time processing is impossible to be achieved

because of the I/O frequency limitation. Secondly, large

amount of power is consumed by I/O because of the high

supply voltage (3.3V). Consequently, reducing external

memory bandwidth is one of the most important things to

implement a low-power speech recognition system.

In the prior work [9, 10], we presented a VLSI

processor (HMM1) for real-time continuous 60-kWord

continuous speech recognition. It employs some algorithm

optimization and specialized cache architecture. We

reduced 95% of the external memory bandwidth and 78%

of required frequency. It is the first hardware-based

recognizer that can recognize speech in real-time with 60-

kWord models. Nevertheless, its processing speed is limited

and the internal RAM size reaches 7.8 Mbit, occupying a

large area. Afterward, we optimized the on-chip memory

and implemented a 4-path Viterbi transition unit in [11]

(HMM2) to saved the area and accelerate the processing.

As described herein, to further improve the performance,

in this paper, we introduce a 8-path Viterbi transition unit

to maximize the processing speed and adopt the trigram

language model to improve the recognition accuracy. A

two-level cache architecture is implemented for the demo

system. We designed and fabricated a VLSI test chip in 40

nm CMOS technology. Results show that the developed

chip (HMM3) achieves 25% required frequency reduction

(62.5 MHz) and 26% power consumption reduction (54.8-

mW) for performing 60 k-Word continuous real-time

speech recognition compared to our previous chip HMM2.

This chip can maximally process 3.02× and 2.25× faster

than real-time at 200 MHz using the bigram and trigram

language, respectively. A comparison of the vocabulary size

and processing speed among recently announced hardware-

based speech recognizers is shown in Fig. 1.

The rest of this paper is organized as follows. The

speech recognition algorithm used in this chip is explained

in Section 2. Section 3 describes the proposed architecture

of the implemented system. Section 4 presents the VLSI

implementation and its measurement results. Finally,

Section 5 offers concluding marks.

2. ALGORITHEM OVERVIEW

Figure 2 presents the speech recognition flow with the

HMM algorithm [12]. Step 1: Feature vector extraction:

The speech input is sampled using an A/D converter and

the mel frequency cepstral coefficients (MFCC) feature

vectors are extracted from 30 ms length of speech every 10

ms. Step 2: GMM computation: State output probabilities

are calculated for all possible sounds that could have been

pronounced. Step 3: Viterbi Search: t (j) is calculated for

all active state nodes using GMM probabilities, transition

probabilities and language models. Step 4: Beam pruning:

according to the beam width, active state nodes having a

higher score (accumulated probability) are selected; the

others are dumped. Step 5: Output sentence: The word list

with the maximum score is output as speech recognition

results after final-frame calculation and determination of

the transition sequence.

N-gram model

　w

Phoneme HMM

k

Step 1: Step 2:
Step 5:

j
b)(log twPijalog

GMM
computation

tx

 )(log)(loglog)(max)(1-
,1

tjtijt
jji

t xbwPaij 




Recursion while not final frame

I want to
be …..

Step 3:

Output
sentence

Feature
vector

extraction

Viterbi

Search
)(log tj xb

Step 4:
Sort

Final frame

THIS CHIP

Fig. 2 Speech recognition flow with HMM algorithm.

We calculate the log probability density function (PDF)

by its max approximation as shown in Eq. (1).







D

d md

mdd
m

m
ts

x
CXb

1
2

2

}
)(

2

1
{max)(log





(1)

Therein, logbs(Xt) represents the state output probability of

a HMM state s for feature vector Xt at time t; xd stands for

the vector component of the feature vector Xt, D is the

feature dimension, and Cm, µmd, md respectively denote the

constant, the mean, and the standard deviation of Gaussian

mixture model.

The Viterbi search is divisible into two parts: internal

word transition and cross-word transition. Dynamic

programming (DP) recursion for the internal word

transition is shown in Eq. (2).

)(log]log);([max);(1
,1

tjijit
jji

jt xbawsws  




(2)

Where aij is the transition probability from state si to sj, and

δt (sj; w) stands for the largest accumulated probability of

the state sequence reaching state sj of word w at time t.

Once an internal word transition reach a word-end state,

cross-word transition will be treated, the n-gram model is

used where the transition probability of a word depends on

the n preceding words. We adopt both bigram and trigram

for this chip. DP recursion for cross-word transition using

bigram is shown in Eq. (3).

)]}|(log[);({max);(10 vwpvsws ft
v

t  

(3)

Therein, p(w | v) stands for the bi-gram probability from

word v to word w, s0 and sf respectively denote the start

state of word w and the last state of word v.

148

3. ARCHITECTURE

3.1. Speech recognition system

SDRAM
(HMM lexicon,

Acoustic model,

language model)

FPGA

USB

I/F

SDRAM

Controller

External Sequencer

8bit

64bit

64bit

MFCC
Vectors

Word
ID

L2 Cache

GMM BUS

MFCC
BUFF

GMM Processer

Memory I/F

VITERBI BUS

Viterbi Processor

GMM Core

N-gram
Cache

GMM Result buffer GMM Result RAM2GMM Result RAM1

Viterbi Core

Chip area

Active
Node
Map

Cache

Active
Node
Cache

1 Mb0.4Mb0.4Mb

32bit32bit

1Mb1Mb

16Kb

Output
BUFF

2Kb

GMM
BUFF

buffer2
27Kb

buffer1
27Kb

Custom Test-board

(PowerMedusa [13])

PC

(Feature

extraction)

Speech input

Display word

Fig. 3 Overall speech recognition system architecture.

The overall speech recognition system architecture is

depicted in Fig. 3, The MFCC feature vectors are extracted

using a PC, we separate the feature extraction from the chip

because the use of fixed-point computation in the feature

extraction part would cause big degradation in recognition

accuracy and the computation workload for feature

extraction is small thus can be easily handled by PC or an

embedded soft-core [4]. The input speech data can either be

recorded as an audio stream or with real-time speaking.

Before start working, the language and acoustic models are

transferred from PC to SDRAM through USB to construct

the database. The test chip accesses the DRAM through an

on-board FPGA. The data-path of the SDRAM is 64 bit,

The data-path for GMM computation (32pin) and Viterbi

search (32pin) is separated to support pipeline operation.

 A two-level cache architecture is implemented to reduce

the latency for accessing SDRAM. The Level-1 cache is the

specialized caches we proposed in [9] which are

implemented inside the chip and can offer a high hit-rate of

75%. However, when mis-hit occurs, the chip has to access

the external SDRAM which causes long latency. As

described herein, a Level-2 cache is created in the host

FPGA as shown in Fig. 3 . The possible required data are

loaded to the L2 Cache during processing. If the required

data is found in L1 cache, it will not be transferred to the

chip. When the required data is not saved in L1 cache,

There’s no need to access the SDRAM because the data can

be read immediately from the L2 cache.

3.2. 20-frame parallel GMM architecture

We implement a 20-frame parallel architecture for GMM

computation to support 3× real-time processing (decided

by Viterbi). The GMM core comprise a MFCC buffer for

feature vectors, two GMM buffers for loading parameters

and 20 GMM computation processors as shown in Fig.4.

The same parameters of one mixture are loaded to the

registers, then each of the processors computes for one

frame. Therefore the parameters are reused by 20 times,

which reduce the external memory bandwidth for GMM

computation to 1/20. In the previous chip HMM2 [11], we

suffered from the pin limitation that only 16 data-pin are

available for GMM part. We optimize the pin-placement in

this chip by sharing the output pin with Viterbi part

because we don’t need to output result in GMM

computation except the initial test. Therefore the available

data-pin for GMM is increased to 32 which is enough to

support the required speed . There are two GMM result

buffer to support the GMM-Viterbi pipeline operation, each

of the result buffers will be accessed by GMM core and

Viterbi core respectively during processing.

Gaussian
Processor
Frame 2

REG1.6KbitREG

Gaussian
Processor
Frame 3

REG1.6KbitREG

Gaussian
Processor
Frame 4

REG1.6KbitREG

Gaussian
Processor
Frame 5

REG1.6KbitREG

Gaussian
Processor
Frame 7

REG1.6KbitREG

Gaussian
Processor
Frame 8

REG1.6KbitREG

Gaussian
Processor
Frame 9

REG1.6KbitREG

Gaussian
Processor
Frame 10

REG1.6KbitREG

Gaussian
Processor
Frame 12

REG1.6Kb REG

Gaussian
Processor
Frame 13

REG1.6Kb REG

Gaussian
Processor
Frame 14

REG1.6Kb REG

Gaussian
Processor
Frame 15

REG1.6Kb REG

Gaussian
Processor
Frame 17

REG1.6Kb REG

Gaussian
Processor
Frame 18

REG1.6Kb REG

Gaussian
Processor
Frame 19

REG1.6Kb REG

Gaussian
Processor
Frame 20

REG1.6Kb REG

GMM
BUFF

MFCC
BUFF

Gaussian
Processor
Frame 1

REG1.6Kbit REG

Gaussian
Processor
Frame 6

REG1.6KbitREG

Gaussian
Processor
Frame11

REG1.6Kb REG

Gaussian
Processor
Frame 16

REG1.6Kb REG GMM
CORE

G
M

M
 R

e
su

lt
R

am
 I/

F
G

M
M

 R
e
su

lt R
A

M
2

G
M

M
 R

e
su

lt R
A

M
1

1Mbit

1Mbit

buffer1 buffer2
27Kb 27Kb

MFCC
 vectors

GMM Bus

GMM
Parameter

32bit

Fig. 4 20-frame parallel GMM architecture.

3.3. 8-path Viterbi transition architecture

The architecture of Viterbi core is shown in Fig. 5. It

comprises two active node workspace, an output buffer, a

threshold calculator, trellis & token write module and the

specialized cache consist of N-gram cache and active node

map cache. During transition processing , the active node

information and the GMM probabilities can be read from

the on-chip memory immediately without miss-hit.

However, the N-gram data and active node map data may

not be found in the caches. Even the hit-rate of the

proposed cache reach 75% [9], the miss-hit still cause big

latency because the Viterbi processing will have to stop to

wait until the required data is read from the external data-

base, which strongly delays the Viterbi processing.

Increasing the number of transition-path can hide the

miss-hit latency, which improve the processing speed of the

149

recognition system because the computation time for

Viterbi transition is the bottle neck of the GMM-Viterbi

pipeline operation [11]. To maximize the utilization ratio of

the internal data-path to caches and the external data-path

to the SDRAM data-base, we analyze the tradeoff between

the number of gates, the number of transition-path and

processing speed at 200MHz as presented in Fig. 6.

200MHz is the maximum operating frequency of the test

chip. Few speed improvement can be achieved while

increasing the number of paths from 8 to 10. This means

eight paths is enough to process most of the transitions in

pipeline, as caches and external data-base has already been

occupied, the extra paths will be in the waiting state most

of the time during processing. Consquently, We choose to

implement a 8-path Viterbi transition architecture, which

offers a processing speed of 3.02×.

Viterbi Core

A
D

D

A
c
tive

 n
o
d
e

W
o
rksp

ac
e
 R

A
M

0
A

c
tive

 n
o
d
e

W
o
rksp

ac
e
 R

A
M

1

External Data base (HMM Tree Dictionary, N-gram Model)

N-gram
Cache

N-gram
SharedTree
DB Cache

MUX

C
M

P

Divider

Beam
threshold

Active
Node Map

Cache

M
U

X

Trellis
&

Token
Write

module

Output
Buffer

・
・
・
・
・

・
・
・
・
・ ・

・
・
・
・

A
D

D

A
D

D
A

D
D

A
D

D
A

D
D

C
M

P
C

M
P

C
M

P

C
M

P
C

M
P

C
M

P
C

M
P

MUXG
M

M
 R

E
S
U

L
T
 R

A
M

 1

Viterbi Bus

G
M

M
 R

E
S
U

L
T
 R

A
M

 2

Fig. 5 8-path Viterbi transition architecture.

P
ro

c
e
s
s
in

g
 s

p
e
e
d

#
 o

f G
a
te

s

Fig. 6 # of paths versus # of logic elements versus

processing speed at 200MHz

Both bigram and trigram are available in this chip. The

60k-word bigram language model consists of 60,001

unigram and 4,000,273 bigram transitions while the

trigram language model consists of 60,001 unigram, 2,420

231 bigram and 8,368,507 trigram transitions. To adopt

trigram transition, we need to treat much more transitions

and remain a large network for the history of the two

preceding words as shown in Fig. 7, which is too costly.

Therefore we utilize a simplified trigram transition [7]

which only consider the best predecessor word. After

bigram transition is applied, the best predecessor word can

be decided, then the trigram transition from this word is

treated. In case of Fig.7, after treating the bi-gram

transitions, word B1 is chosen as the best word. Therefore

only the tri-gram transitions from B1 is applied, the other

tri-gram are not considered. The recognition accuracy for

our test patterns is improved by 1.4% when the trigram

restrict is added. In that case, the processing speed is

decreased to 2.25× (Fig. 8).

Word C2First
state

 Word A1 Last
state

Word C1First
state

Word C3First
state

 Word A2 Last
state

Predecessor word B1

Predecessor word B2

Predecessor word Bn

…
 …

…
 …

…
 …

P(A1|B1)

P(A2|B1)

P(An|B1)

…
 …

P(A1|B2)

P(A2|B2)

P(An|B2)

…
 …

P(C1|A1)

P(C2|A1)

P(Cn|A1)

…
 …

P(C1|A2)

P(C2|A2)

P(Cn|A2)

Bi-gram Tri-gram

…
 …

P(C1|A1B1)

P(C2|A1B1)

P(Cn|A1B1)

…
 …

P(C1|A2B1)

P(C2|A2B1)

P(Cn|A2B1)

…
 …

…

 …

…
 …

P(C1|A1B2)

P(C2|A1B2)

P(Cn|A1B2)

…
 …

P(C1|A2B2)

P(C2|A2B2)

P(Cn|A2B2)

…
 …

… …

… …

… …

…
 …

P(C1|A1Bn)

P(C2|A1Bn)

P(Cn|A1Bn)

…
 …

P(C1|A2Bn)

P(C2|A2Bn)

P(Cn|A2Bn)

…
 …

Best

Fig. 7 Cross-word transition using bi-gram and tri-gram.

A
c
c
u

ra
c
y
 (

%
)

P
e
rf

o
rm

a
n

c
e
 (
x
)

Fig. 8 Performance and recognition accuracy for bigram

and trigram (Test speech pattern: 172 Japanese setences).

150

4. IMPLEMENTATION

We implement a software prototype profiling with

Microsoft Visual C++ and a referential hardware using

hardware description language (HDL) to check the required

memory bandwidth and operating frequency for real-time

operation. The required frequency reduction for real-time

processing is reduced by 88.9% compared to the base-line

system and 25% compared to our previous work HMM2 as

shown in Fig. 9.

The layout of the chip, which was fabricated in 40 nm

CMOS technology is shown in Fig. 10. It occupies

1.77×2.18 2mm containing 2.98 M transistors for Logic and

4.29 Mbit on-chip SRAM. The logic part is placed in the

center area and the cache memory is placed around. We

evaluated the test chip with a logic tester. The generated

Shmoo plot is presented in Fig. 11. The green area of the

Shmoo plot shows the available frequency and operation

voltage with which the chip can function correctly.

200MHz is the maximum operation frequency of the test

chip under the standard operating voltage (1.1V).

Processing speed versus required frequency and the

measured power are presented in Fig. 12 and Fig. 13. This

chip can process real-time 60-kWord continuous speech

recognition with bi-gram model at 62.5 MHz while

consumes 54.8 mW and maximally function 3.02× faster

than real-time at 200MHz while consumes 177.4 mW. 26%

power consumption reduction for real-time processing is

achieved compared to HMM2. When tri-gram is used,

HMM3 can process real-time operation at 88.9 MHz with

power consumption of 76.7 mW and maximally function

2.25× faster than real-time at 200 MHz with power

consumption of 165 mW. Table 1 presents a comparison

between this chip and some recently announced works in

terms of the vocabulary size, GMM model, language model,

beam-width, real-time factor, operation frequency, external

memory bandwidth , area , logic element and power

consumption.

0

100

200

300

400

500

600

Base-line HMM1 [9] HMM2 [11]

R
e
q

u
ir

e
d

 f
re

q
u

e
n

c
y

fo
r

re
a

l-
ti

m
e

 [
M

H
z
]

Sort

Viterbi

GMM-77.7%

-85.3%

567.46

126.5

83.33

This work (HMM3)

-88.9%

62.5

Fig. 9 Required frequency reduction for real-time 60 k-

Word real-time continuous speech recognition.

Fig. 10 Chip layout.

PASS

FAIL

1.1v 200MHz

200MHz 180MHz 140MHz150MHz165MHz

Fig. 11 Shmoo plot generated by a logic tester.

Processing Speed

R
eq

u
ir

ed
 fr

eq
u

en
cy

 [M
H

z]

0

50

100

150

200

250

300

x1 x1.1 x1.2 x1.3 x1.4 x1.5 x1.6 x1.7 x1.8 x1.9 x2

HMM2@bi-gram
HMM1@bi-gram

200MHz,3.02x
@2-gram

x2.1 x2.4

62.5 MHz, 1X
@2-gram

X3.02

HMM3@bi-gram

x2.25

200MHz, 2.25x
@3-gram

HMM3@tri-gram

Fig. 12 Processing speed versus required frequency.

 Fig. 13 Processing speed versus Power consumption.

151

Table 1 Comparison with recently reported works
HMM1 [9]

60
VLSI (40 nm)

 # of states 2,000
 # of distributions 16
 # of dimensions 25
 # of unigram 60,001
 # of bigram 4,000,273
 # of trigram NA

3000 3000 3000
1 1 0.42 1 0.33 0.44

126.5 83.3 200 62.5 200 200
70.86 82.6 198 82.6 250 264
144 74.14 168 54.8 177 165
5.5

 1.9 MTr.
975

This work
60

VLSI (40 nm)
2,000
16

88.9

4,000,273
NA

3000

2,420,231
8,368,507

3000

25
60,001

536

60,001
4,000,273

NA

3.86
 2.52 MTr.

3.86
 2.98 MTr.

536

117

25
60,001

76.7

1

HMM2 [11]
60

VLSI (40 nm)
2,000
16

NACore area (mm2) 15.47

100
External memory BW (MB/s) NA 800
Internal Frequency (MHz)

Power consumption (mW) NA NA

13,835 slices
Internal memory (KB) 140.1 416
Logic elements NA

1,402,259
5000

LM
NA

100

500
Real-time factor 0.42 0.66
Viterbi beam width NA

3,617,327
835,000

19,771

[8]

 GMM Model
3,001 3,001

 Technology VLSI (0.18 um)

16 16
39 39

FPGA
5Vocabulary (k) 20

[7]

5. SUMMARY

We have developed a low-power VLSI chip for 60 k-Word

real-time continuous speech recognition. We implement

parallel and pipelined architecture for GMM computation

and Viterbi processing. It includes 8-path Viterbi transition

units and adopts tri-gram search . A two-level cache

architecture is implemented for the overall speech

recognition system. The measured results show that our

implementation achieves 25% required frequency reduction

(62.5 MHz) and 26% power consumption reduction (54.8

mW) for 60 k-Word real-time continuous speech

recognition compared to the previous work. This chip can

maximally process 3.02× and 2.25× times faster than real-

time at 200 MHz using the bigram and trigram language

models, respectively.

ACKNOWLEDGMENTS

The VLSI chip used in this study was fabricated in the chip

fabrication program of VLSI Design and Education Center

(VDEC), The University of Tokyo. This development was

performed by the author for STARC as part of the Japanese

Ministry of Economy, Trade and Industry sponsored

“Silicon Implementation Support Program for Next

Generation Semiconductor Circuit Architectures”.

REFERENCES

[1] A. Lee, T. Kawahara and K. Shikano, “Julius – an open

source real-time large vocabulary recognition engine,” Proc.

European Conf. on Speech Communication and Tech.

(EUROSPEECH), pp. 1691-1694, Sep. 2001.

[2] K. Yu, and R. Rutenbar, “Profiling Large-Vocabulary

Continuous Speech Recognition on Embedded Device: A

Hardware Resource Sensitivity Analysis,” Proc. ISCA Annual

Conf. of Intl. Speech Communication Association (Interspeech),

pp. 995-998, Sep. 2009.

[3] E. C. Lin, K. Yu., R. Rutenbar, and T. Chen, “In silico Vox:

Towards Speech Recognition in Silicon” HOTCHIPS 18, August,

2006.

[4] E. C. Lin, K. Yu. R. Rutenbar, and T. Chen, “ A 1000-Word

Vocabulary, Speaker-Independent, Continuous Live-Mode Speech

Recognizer Implemented in a Single FPGA”, International

Symposium on Field-Programmable Gate Arrays (FPGA), Feb.

2007.

[5] E. C. Lin, and R. A. Rutenbar, “A Multi-FPGA 10x-Real-

Time High-Speed Search Engine for a 5000-Word Vocabulary

Speech Recognizer,” Proc. ACM/SIGDA Intl. Symposium on

Field Programmable Gate Arrays (FPGA), pp.83-92, Feb. 2009.

[6] S. Yoshizawa, N. Wada, N. Hayasaka, and Y. Miyanaga,

“Scalable architecture for word HMM-based speech recognition

and implementation in complete system,” Proc. IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 53, no. 1, pp. 70-77, Jan. 2006

[7] Y. Choi, K. You, J. Choi, and W. Sung, “A Real-Time FPGA-

based 20,000-Word Speech Recognizer with optimized DRAM

Access,” IEEE Trans. Circuits Syst. I, Reg. Papers, issue 99, Feb.

2010.

[8] K. You, Y.Choi, J. Choi, and W. Sung, “Memory Access

Optimized VLSI for 5000-Word Speech Recognition,” JOURNAL

OF SIGNAL PROCESSING SYSTEMS, vol.63, no. 1, pp. 95-

105, Nov. 2009.

[9] G. He, T. Sugahara, T. Fujinaga, Y. Miyamoto, H. Noguchi, S.

Izumi, H. Kawaguchi, and M. Yoshimoto, “A 40 nm 144 mW

VLSI processor for Realtime 60 kWord Continuous Speech

Recognition,” Proc. IEEE Custom Integrated Circuits Conference

(CICC), pp.1-4 Sep. 2011.

[10] G. He, T. Sugahara, T. Fujinaga, Y. Miyamoto, H. Noguchi,

S. Izumi, H. Kawaguchi, and M. Yoshimoto, “A 40 nm 144 mW

VLSI processor for Realtime 60 kWord Continuous Speech

Recognition,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59,

no. 8, pp.1656-1666, Aug. 2012.

[11] G. He, T. Sugahara,Y. Miyamoto, S. Izumi, H. Kawaguchi,

and M. Yoshimoto, “A 40-nm 168-mW 2.4×-Real-Time VLSI

Processor for 60-kWord Continuous Speech Recognition,” in Proc.

IEEE Custom Integrated Circuits Conference (CICC), Sep. 2012.

[12] X. Huang, A. Acero, and H. W. Hon, Spoken Language

Processing-A Guide to Theory, Algorithm, and System

Development. Englewood Cliffs, NJ: Prentice Hall, 2001.

[13]http://www.mms.co.jp/powermedusa/concept/index.htl

152

