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ABSTRACT 

 

This paper describes a low-power VLSI chip  for speaker-

independent 60-kWord continuous speech recognition 

based on a context-dependent Hidden Markov Model 

(HMM). We implement parallel and pipelined architecture 

for GMM computation and Viterbi processing. It includes a 

8-path Viterbi transition architecture to maximize the 

processing speed and adopts tri-gram language model to 

improve the recognition accuracy. A two-level cache 

architecture is implemented for the demo system. The test 

chip, fabricated in 40 nm CMOS technology, occupies 1.77 

mm × 2.18 mm containing 2.98 M transistors for logic and 

4.29 Mbit on-chip memory. The measured results show that 

our implementation achieves 25% required frequency 

reduction (62.5 MHz) and 26% power consumption 

reduction (54.8 mW) for 60 k-Word real-time continuous 

speech recognition compared to the previous work. This 

chip can maximally process 3.02× and 2.25× times faster 

than real-time at 200 MHz using the bigram and trigram 

language models, respectively. 

 

Index Terms— 40 nm VLSI, large vocabulary 

continuous speech recognition (LVSCR), 3× 

 

1. INTRODUCTION 

 

Speech recognition has been widely used in various 

applications especially the mobile system, the ubiquitous 

system and robotics as a human interface. High-end 

personal computers can accommodate speech recognition 

tasks well even with large acoustic and language models [1].  

However, such software-based methods are not applicable 

for mobile systems  while considering the physical size and 

power consumption [2].  Additionally, they are unsuitable 

for next-generation applications such as audio mining, 

which request the recognizer to deliver results at rates that 

are 10×, 100×, faster than real-time [3, 4]. Hardware 

implementation by VLSI or an FPGA is a good approach to 

satisfy these demands because of its good processing speed 

and power consumption. Lin et al. reported a Multi-FPGA 

implementation for 5 k-word continuous speech recognition 

[5] that achieves 10× faster than real time, but the system is 

not extendable for larger vocabularies because it is not cost-

effective. It needs two FPGAs and two DDR2 DRAMs each 

with a 64-bit wide data-path. Yoshizawa et al. proposed a 

scalable architecture for speech recognition [6]. Their chip 

can have an adjustment between vocabulary size and 

processing speed, but the system only offers real-time 

performance with a limited vocabulary of 800 words. Choi 

et al. developed FPGA and VLSI implementations for 20 k-

word speech recognition [7, 8]. They implemented special 

memory interfaces for several parts of the recognition 

engine to apply optimized DRAM access, which improves 

the data transfer efficiency, but the numerous external 

DRAM accesses cause high IO frequency, which requires a 

high supply voltage and causes high power consumption in 

both the FPGA  side and DRAM side.  
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Fig. 1 Vocabulary vs  speed. 

 

In Image and Video processing system, the DRAM only 

acts as a buffer between camera and chip, the pixels are 

read from DRAM orderly and saved to the on-chip memory. 

However, in large vocabulary continuous speech 

recognition (LVCSR) system, the DRAM functions as a 

data-base which saves the dictionary parameters and 

language models because they are too large to be stored in 

the internal SRAM. These data will be accessed randomly 

during the processing. Due to the characteristics of DRAM , 

there are several cycles of  latency caused by pre-charge and 
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address-setup every time before we read from the DRAM, 

therefore if the required data are not saved sequentially, the 

access-efficiency is bad. As a result, speech recognition 

needs much higher IO frequency than video processing to 

get the same amount of data from DRAM. Especially, with 

the number of vocabulary increase, the external memory 

bandwidth become enormous which causes two problems, 

firstly, real-time processing is impossible to be achieved 

because of  the I/O frequency limitation. Secondly, large 

amount of power is consumed by I/O because of the high 

supply voltage (3.3V). Consequently, reducing external 

memory bandwidth is one of the most important things to 

implement a low-power speech recognition system. 

In the prior work [9, 10], we presented a VLSI 

processor (HMM1) for real-time continuous 60-kWord 

continuous speech recognition. It employs some algorithm 

optimization and specialized cache architecture.  We 

reduced 95% of the external memory bandwidth and 78% 

of required frequency. It is the first hardware-based 

recognizer that can recognize speech in real-time with 60-

kWord models. Nevertheless, its processing speed is limited 

and the internal RAM size reaches 7.8 Mbit, occupying a 

large area. Afterward, we optimized the on-chip memory 

and implemented a 4-path Viterbi transition unit in [11] 

(HMM2) to saved the area and accelerate the processing.  

As described herein, to further improve the performance,  

in this paper, we introduce a 8-path Viterbi transition unit 

to maximize the processing speed and adopt the trigram 

language model to improve the recognition accuracy. A 

two-level cache architecture is implemented for the demo 

system. We designed and fabricated a VLSI test chip in 40 

nm CMOS technology. Results show that the developed 

chip (HMM3) achieves 25% required frequency reduction 

(62.5 MHz) and 26% power consumption reduction (54.8-

mW) for performing 60 k-Word continuous real-time 

speech recognition compared to our previous chip HMM2. 

This chip can maximally process 3.02× and 2.25× faster 

than real-time at 200 MHz using the bigram and trigram 

language, respectively. A comparison of the vocabulary size 

and processing speed among recently announced hardware-

based speech recognizers is shown in Fig. 1.    

The rest of this paper is organized as follows. The 

speech recognition algorithm used in this chip is explained 

in Section 2. Section 3 describes the proposed architecture 

of the implemented system. Section 4 presents the VLSI 

implementation and its measurement results. Finally, 

Section 5 offers concluding marks. 

 

2. ALGORITHEM OVERVIEW 

 

Figure 2 presents the speech recognition flow with the 

HMM algorithm [12]. Step 1: Feature vector extraction: 

The speech input is sampled using an A/D converter and 

the mel frequency cepstral coefficients (MFCC) feature 

vectors are extracted from 30 ms length of speech every 10 

ms. Step 2: GMM computation: State output probabilities 

are calculated for all possible sounds that could have been 

pronounced. Step 3: Viterbi Search: t (j) is calculated for 

all active state nodes using GMM probabilities, transition 

probabilities and language models. Step 4: Beam pruning: 

according to the beam width, active state nodes having a 

higher score (accumulated probability) are selected; the 

others are dumped. Step 5: Output sentence: The word list 

with the maximum score is output as speech recognition 

results after final-frame calculation and determination of 

the transition sequence. 
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Fig. 2  Speech recognition flow with HMM algorithm. 

 

We calculate the log probability density function (PDF) 

by its max approximation as shown in Eq. (1). 
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(1) 

Therein, logbs(Xt) represents the state output probability of 

a HMM state s for feature vector Xt at time t; xd stands for 

the vector component of the feature vector Xt, D is the 

feature dimension, and Cm, µmd, md respectively denote the 

constant, the mean, and the standard deviation of Gaussian 

mixture model. 

The Viterbi search is divisible into two parts: internal 

word transition and cross-word transition. Dynamic 

programming (DP) recursion for the internal word 

transition is shown in Eq. (2). 
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(2) 

Where aij is the transition probability from state si to sj, and  

δt (sj; w) stands for the largest accumulated probability of  

the state sequence reaching state sj of word w at time t. 

Once an internal word transition reach a word-end state,   

cross-word transition will be treated, the n-gram model is 

used where the transition probability of a word depends on 

the n preceding words. We adopt both bigram and trigram 

for this chip. DP recursion for cross-word transition using 

bigram is shown in Eq. (3). 

)]}|(log[);({max);( 10 vwpvsws ft
v

t  
 

(3) 

Therein, p(w | v) stands for the bi-gram probability from 

word v to word w, s0 and sf respectively denote the start 

state of word w and the last state of word v.  
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3. ARCHITECTURE 

 

3.1. Speech recognition system 
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Fig. 3  Overall speech recognition system architecture. 

 

The overall speech recognition system architecture is 

depicted in Fig. 3, The MFCC feature vectors are extracted 

using a PC, we separate the feature extraction from the chip 

because the use of fixed-point computation in the feature 

extraction part would cause big degradation in recognition 

accuracy and the computation workload for feature 

extraction is small thus can be easily handled by PC or an 

embedded soft-core [4]. The input speech data can either be 

recorded as an audio stream or with real-time speaking. 

Before start working, the language and acoustic models are 

transferred from PC to SDRAM through USB to construct 

the database. The test chip accesses the DRAM through an 

on-board FPGA.  The data-path of the SDRAM is 64 bit, 

The data-path for GMM computation (32pin) and Viterbi 

search (32pin) is separated to support pipeline operation.  

    A two-level cache architecture is implemented to reduce 

the latency for accessing SDRAM. The Level-1 cache is the 

specialized caches we proposed in [9] which are 

implemented inside the chip and can offer a high hit-rate of 

75%.  However, when mis-hit occurs, the chip has to access 

the external SDRAM which causes long latency. As 

described herein, a Level-2 cache is created in the host 

FPGA as shown in Fig. 3 . The possible required data are 

loaded to the L2 Cache during processing.  If  the required 

data is found in L1 cache, it will not be transferred to the 

chip.  When the required data is not saved in L1 cache, 

There’s no need to access the SDRAM because the data can 

be read immediately from the L2 cache.  

 

3.2. 20-frame parallel GMM architecture 

We implement a 20-frame parallel architecture for GMM 

computation  to support 3× real-time processing (decided 

by Viterbi). The GMM core comprise a MFCC buffer for 

feature vectors, two GMM buffers for loading  parameters  

and 20 GMM computation processors as shown in Fig.4. 

The same parameters of one mixture are loaded to the 

registers, then each of the processors computes for one 

frame. Therefore the  parameters are reused by 20 times, 

which reduce the external memory bandwidth for GMM 

computation to 1/20. In the previous chip HMM2 [11], we 

suffered from the pin limitation that only 16 data-pin  are 

available for GMM part. We optimize the pin-placement in 

this chip by sharing the output pin with Viterbi part 

because we don’t need to output result in GMM 

computation  except the initial test.  Therefore the available 

data-pin for GMM is increased to 32 which is enough to 

support the required speed . There are two GMM result 

buffer to support the GMM-Viterbi pipeline operation, each 

of the result buffers will be accessed by GMM core and 

Viterbi core respectively during processing. 
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Fig. 4  20-frame parallel GMM architecture. 

 

3.3. 8-path Viterbi transition architecture 

 

The architecture of Viterbi core  is shown in Fig. 5. It 

comprises two active node workspace, an output buffer,  a 

threshold calculator, trellis & token write module and the 

specialized cache consist of   N-gram cache and active node 

map cache. During transition processing , the active node 

information and the GMM probabilities can be read from 

the on-chip memory immediately without miss-hit. 

However, the N-gram data and active node map  data may 

not be found in the caches. Even the hit-rate of the 

proposed cache reach 75% [9], the miss-hit still cause big 

latency because the Viterbi processing will have to stop to 

wait until the required data is read from the external data-

base, which strongly delays the Viterbi processing. 

Increasing the number of  transition-path can hide the 

miss-hit latency, which improve the processing speed of the 
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recognition system because the computation time for 

Viterbi transition is the bottle neck of the GMM-Viterbi 

pipeline operation [11]. To maximize the utilization ratio of 

the internal data-path to caches and the external data-path 

to the SDRAM data-base, we analyze the tradeoff between 

the number of gates,  the number of transition-path  and 

processing speed at 200MHz as presented in Fig. 6. 

200MHz is the maximum operating frequency of the test 

chip. Few speed improvement  can be achieved while  

increasing the number of paths from 8 to 10.  This means 

eight paths is enough to process most of the transitions in 

pipeline, as caches and external data-base has already been 

occupied, the extra paths will be in the waiting state most 

of the time during processing. Consquently, We choose to 

implement a 8-path Viterbi transition architecture, which 

offers a processing speed of 3.02×. 
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Fig. 5  8-path Viterbi transition architecture. 
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Fig. 6  # of paths versus # of logic elements versus 

processing speed at 200MHz 

 

Both bigram and trigram are available in this chip. The 

60k-word bigram language model consists of 60,001 

unigram and 4,000,273 bigram transitions while the 

trigram language model consists of 60,001 unigram, 2,420 

231 bigram and 8,368,507 trigram transitions. To adopt 

trigram transition, we need to treat much more transitions 

and remain a large network for the history of the two 

preceding words as shown in Fig. 7, which is too costly. 

Therefore we utilize a simplified trigram transition [7] 

which only consider the best predecessor word. After 

bigram transition is applied, the best predecessor word can 

be decided, then the trigram transition from this word is 

treated. In case of Fig.7, after treating the bi-gram 

transitions, word B1 is chosen as the best word. Therefore 

only the tri-gram transitions from B1 is applied, the other 

tri-gram are not considered. The recognition accuracy for 

our test patterns is improved by 1.4% when the trigram 

restrict is added. In that case, the processing speed is 

decreased to 2.25× (Fig. 8). 
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Fig. 7  Cross-word transition using bi-gram and tri-gram. 
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Fig. 8  Performance and recognition accuracy for bigram 

and trigram (Test speech pattern: 172 Japanese setences ). 
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4. IMPLEMENTATION 

 

We implement a software prototype profiling with 

Microsoft Visual C++ and a referential hardware using 

hardware description language (HDL) to check the required 

memory bandwidth and operating frequency for real-time 

operation. The required frequency reduction for real-time 

processing is reduced by 88.9% compared to the base-line 

system and 25%  compared to our previous work HMM2 as 

shown in Fig. 9.  

The layout of the chip, which was fabricated in 40 nm 

CMOS technology is shown in Fig. 10. It occupies 

1.77×2.18 2mm  containing 2.98 M transistors for Logic and 

4.29 Mbit on-chip SRAM. The logic part is placed in the 

center area and the cache memory is placed around. We 

evaluated the test chip with a logic tester. The generated 

Shmoo plot is presented in Fig. 11. The green area of the 

Shmoo plot  shows the available frequency and operation  

voltage with which the chip can function correctly. 

200MHz is the maximum operation frequency of the test 

chip under the standard operating voltage (1.1V).  

Processing speed versus required frequency and the 

measured power are presented in Fig. 12 and Fig. 13. This 

chip can process real-time 60-kWord  continuous speech 

recognition with bi-gram model at 62.5 MHz while 

consumes  54.8 mW and maximally function 3.02× faster 

than real-time at 200MHz while consumes 177.4 mW. 26% 

power consumption reduction for real-time processing is 

achieved compared to HMM2. When tri-gram is used, 

HMM3 can process real-time operation at 88.9 MHz with 

power consumption of 76.7 mW and maximally function 

2.25× faster than real-time at 200 MHz with power 

consumption of 165 mW. Table 1 presents a comparison 

between this chip and some recently announced works in 

terms of the vocabulary size, GMM model, language model, 

beam-width, real-time factor, operation frequency, external 

memory bandwidth , area , logic element and power 

consumption.  

 

0

100

200

300

400

500

600

Base-line HMM1 [9] HMM2 [11]

R
e
q

u
ir

e
d

 f
re

q
u

e
n

c
y

fo
r 

re
a

l-
ti

m
e

 [
M

H
z
]

Sort

Viterbi

GMM-77.7%

-85.3%

567.46

126.5

83.33

This work (HMM3)

-88.9%

62.5

 
Fig. 9  Required frequency reduction for real-time 60 k-

Word real-time continuous speech recognition. 

 

 
Fig. 10 Chip layout. 
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Fig. 11  Shmoo plot generated by a logic tester. 
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 Fig. 13 Processing speed versus Power consumption.  

151



Table 1 Comparison with recently reported works 
HMM1 [9]

60
VLSI  (40 nm)

 # of states 2,000
 # of distributions 16
 # of dimensions 25
 # of unigram 60,001
 # of bigram 4,000,273
 # of trigram NA

3000 3000 3000
1 1 0.42 1 0.33 0.44

126.5 83.3 200 62.5 200 200
70.86 82.6 198 82.6 250 264
144 74.14 168 54.8 177 165
5.5

  1.9 MTr. 
975

This work
60

VLSI  (40 nm)
2,000
16

88.9

4,000,273
NA

3000

2,420,231
8,368,507

3000

25
60,001

536

60,001
4,000,273

NA

3.86
  2.52 MTr. 

3.86
  2.98 MTr. 

536

117

25
60,001

76.7

1

HMM2 [11]
60

VLSI  (40 nm)
2,000
16

NACore area (mm2) 15.47

100
External memory BW (MB/s) NA 800
Internal Frequency (MHz)

Power consumption (mW) NA NA

13,835 slices
Internal memory (KB) 140.1 416
Logic elements NA

1,402,259
5000

LM
NA

100

500
Real-time factor 0.42 0.66
Viterbi beam width NA

3,617,327
835,000

19,771

[8]

  GMM Model
3,001 3,001

 Technology VLSI  (0.18 um)

16 16
39 39

FPGA
5Vocabulary (k) 20

[7]

 
 

5. SUMMARY 

 

We have developed a low-power VLSI chip for 60 k-Word 

real-time continuous speech recognition. We implement 

parallel and pipelined architecture for GMM computation 

and Viterbi processing. It includes 8-path Viterbi transition 

units and adopts tri-gram search  . A two-level cache 

architecture is implemented for the overall speech 

recognition system. The measured results show that our 

implementation achieves 25% required frequency reduction 

(62.5 MHz) and 26% power consumption reduction (54.8 

mW) for 60 k-Word real-time continuous speech 

recognition compared to the previous work. This chip can 

maximally process 3.02× and 2.25× times faster than real-

time at 200 MHz using the bigram and trigram language 

models, respectively. 
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