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SUMMARY This paper describes a VLSI-oriented motion estimation
algorithm using a steepest descent method (SDM) applied to MPEG-4 vi-
sual communication with a mobile terminal. The SDM algorithm is opti-
mized for QCIF or CIF resolution video and VLSI implementation. The
SDM combined with a subblock search method is developed to enhance
picture quality. Simulation results show that a mean PSNR drop of the
SDM algorithm processing QCIF 15 fps resolution video in comparison
with a full search algorithm is −0.17 dB. Power consumption of a VLSI
based on the SDM algorithm assuming 0.18 µm CMOS technology is es-
timated at 2 mW. The VLSI attains higher picture quality than that based
on the other fast motion estimation algorithm, and is applicable to mobile
video applications.
key words: MPEG, motion estimation, gradient based method, steepest
descent method, low power, VLSI

1. Introduction

1.1 Background and Objectives

A mobile terminal by which people can visually communi-
cate with others continues to gain popularity. A low power
and high quality video terminal is a key to spreading the vi-
sual communication. To produce an ultra low power and
high quality MPEG-4 video codec in the terminal, a highly
efficient motion estimation processor is essential.

The motion estimator with a conventional full search
(FS) shares more than 70% of the total computational com-
plexity in the codec. The FS requires about 200 MOPS com-
putation power for QCIF 15 fps motion estimation. Power
Consumption of a 0.18 µm motion estimation processor us-
ing the method is about 20 mW. This power consumption is
prohibitively large for an IP core in the mobile terminal.

A low power motion estimator with a diamond search
algorithm (Cote) has been already reported [1]. Unfortu-
nately, the quality of a predicted picture for high motion
video is degraded because of a local minimum problem. An
algorithm implemented in a VLSI that yields high quality
video with low power consumption is expected.

This paper describes a gradient-based motion estima-
tion algorithm using a steepest descent method for MPEG-4
video encoding. A VLSI based on the algorithm will ex-
ecute motion estimation of QCIF 15 fps video with power
consumption at 1 mW, and give higher quality video than
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that based on the other fast motion estimation algorithm.

1.2 Motion Estimation Algorithm

In video encoding, the motion estimation is a process to
compare an encoding block (template block) in a current
frame with blocks in a search range (search window) of a
previous frame and find the block that has the smallest error
in the search window. Here, a block is a rectangular area
consisting of adjacent pixels in a frame. The criterion of a
distortion function is usually a mean square error (MSE) or
a mean absolute error (MAE) of a block.

A motion vector obtained by the motion estimation
is encoded along with the difference between the previous
block and the template block. Assuming that the difference
is small, the number of bits to code them is also small. A
precise motion estimation is essential to obtain high visual
quality at the same bit rate.

FS (Full Search) algorithm is well known as the motion
estimation algorithm. The FS algorithm evaluates all points
in the search range and select the point that has the smallest
prediction error. The FS algorithm always find the minimum
point in the search range, but the computational complexity
is extremely huge. The computational complexity required
by the FS algorithm for QCIF resolution video is

(16 ∗ 16) ∗ 2 ∗ (32 ∗ 32) ∗ ((176 ∗ 144)/(16 ∗ 16)) ∗ 15

= 779MOPS .

Two operations to calculate sum of absolute differences
(SAD), H:[−16,+15]/V:[−16,+15] of the search range, 176×
144 pixels resolution, 15 fps of the frame rate are assumed
in the equation. The computational complexity for search
range [−8,7] pel is 220 MOPS.

TSS (Three Step Search) algorithm is the most popular
one as a fast motion estimation algorithm. The TSS eval-
uates all points obtained by a 4:1 subsampling in the hori-
zontal and vertical direction of the search window (Step1.).
Then 8 points surrounding the minimum point in the previ-
ous step are evaluated (Step2.). The distance between the
search point and the center point is 2 pixels. Then 8 points
surrounding the minimum point in the previous step are
evaluated (Step3.). The distance between the search point
and the center point is 1 pixel this time. The minimum point
in the final step is a solution. Computational complexity re-
quired by the TSS is
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(16 ∗ 16) ∗ 2 ∗ ((32 ∗ 32)/(4 ∗ 4) + 8 + 8)

∗((176 ∗ 144)/(16 ∗ 16)) ∗ 15 = 61MOPS .

1.3 Gradient Based Methods

Gradient based methods are known as faster motion es-
timation algorithms than the TSS algorithm. The gradi-
ent based methods select an initial motion vector. The
next search point is selected according to a gradient of
the distortion function. OTS(One at a Time Search) [2],
BBGS(Block-Based Gradient descent Search) [3], Cote(5
region diamond search) [4], 1DGDS (1-Dimensional Gradi-
ent Descent Search) [5], SDM(gradient based method using
a Steepest Descent Method) [6] are known as gradient based
methods.

Table 1 summarizes characteristics of the gradi-
ent based algorithms. The OTS algorithm repeats 1-
dimensional search horizontally and vertically by turns until
a minimum is found. The initial point to start searching is
the original point (0 vector).

The BBGS algorithm repeats evaluating 8 points sur-
rounding the minimum point in the previous step until the
center point is the minimum. The initial point is the original
point.

The Cote algorithm repeats evaluating 4 points sur-
rounding the minimum point in the previous step until the
center point is the minimum. The initial point is calculated
by a median of predicted motion vectors. The search pattern
resembles a diamond shape, so it is called 5 region diamond
search.

The 1DGDS algorithm repeats 1-dimensional search
horizontally, vertically and diagonally (45, 135 degrees) by
turns until the minimum is found. The initial point is se-
lected among the five points indicated by the four predicted
vectors and 0 vector. The point with the best motion esti-
mation among the five points is the initial point. The initial
direction is the one of the four directions that is the clos-
est one to the direction from the originai point to the initial
point.

The SDM algorithm adopts a steepest descent method
to the motion estimation. The initial point is selected among
the four points indicated by the three predicted vectors and
0 vector. The point with the best motion estimation among
the four points is the initial point. The search direction is
calculated by the differential coefficients.

The gradient based method requires scene-adaptive
computational complexity. The complexity is quite low and
does not depend on the search window size. The method

Table 1 Characteristics of gradient based methods.

Algorithm Initial Vector Search Direction Search Dimension Step Size Distance Criteria
OTS the original point conjugate (2 directions) 1-D 1 MAE

BBGS the original point one of 8 surrounding points 2-D 1 MAE
Cote median of predicted MVs one of 4 surrounding points 2-D 1 MAE

1DGDS one of pred. MVs and orig. conjugate (4 directions) 1-D 2,1(variable) MSE
SDM one of pred. MVs and orig. by differential coefficients 1-D 1 MSE

also has a drawback that tends to fall into a local minimum.
To overcome the problem, the SDM algorithm introduces
an initial point selection, a hierarchical search method and
a lump search method. The SDM algorithm with these ad-
ditional methods will achieve high picture quality and low
computational complexity simultaneously.

2. SDM Algorithm Optimization

The SDM algorithm is optimized for QCIF or CIF resolution
video and VLSI implementation. This section describes the
SDM algorithm, optimization techniques and simulation re-
sults. It also describes the SDM algorithm combined with a
subblock search method to enhance picture quality.

2.1 SDM Algorithm

The SDM algorithm adopts a steepest descent method to
the motion estimation. Figure 1 shows an example of the
distortion function over the search area for the SDM algo-
rithm. The criterion of the function is the mean square error
of a macro block (MB) indicated by a motion vector. The
next search starts toward a direction that produces the steep-
est gradient of the function. The vector with the minimum
function value over the search area is the solution to the pro-
cedure.

Technical terms are defined here to describe the SDM
algorithm. “Template buffer” (TB) is a memory that stores a
MB pixel data in a current frame. “Search Window Buffer”
(SW) is a memory that stores pixel data in the previous
frame. Brightness of the pixel that is located in TB(i,j) is
described as T Bi, j. Brightness of the pixel that is located in

Fig. 1 Distortion function over the search area.
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Fig. 2 SDM algorithm.

SW(i,j) is described as S Wi, j. The search vector is described
as (x, y). The flowchart of the SDM algorithm is shown in
Fig. 2. The SDM algorithm is described as follows:

Step1. Decide an initial vector
Calculate MSE for the following four vectors. Start

searching from the vector that has the smallest MSE among
them.

1. 0 vector
2. The left MB motion vector
3. The upper MB motion vector
4. The motion vector of the MB that is located in the same

position of the previous frame

Here, a displaced prediction difference DPD and a distortion
function Edp are defined as:

DPD(x + i, y + j) = T Bi, j − S Wx+i,y+ j (1)

Edp(x, y) =
∑

i

∑

j

[DPD(x + i, y + j)]2. (2)

Step2. Decide a search direction
Calculate x and y differential coefficients of the distor-

tion function at the point indicated by the initial vector. Dif-
ferential coefficients of DPD approximate to the brightness
gradient between adjacent pixels.

∂Edp

∂x
= 2
∑

i

∑

j

DPD
∂DPD
∂x

(3)

∂DPD
∂x

= −(S Wx+i+1,y+ j − S Wx+i−1,y+ j)/2 (4)

∂Edp

∂y
= 2
∑

i

∑

j

DPD
∂DPD
∂y

(5)

∂DPD
∂y

= −(S Wx+i,y+ j+1 − S Wx+i,y+ j−1)/2 (6)

tan θ =

∂Edp

∂y

∂Edp

∂x

(7)

Step3. One dimensional search

• Search vectors toward the direction corresponding to
the angle θ with step width λ.

Fig. 3 Sample pictures.

• The λ is 1 pixel.
• Continue to search vectors until MSE increase.
• The vector whose MSE is minimum is a temporary so-

lution.

Step4. Decide to repeat or not

• Calculate differential coefficients and new direction θ’
at the point obtained in Step3..
• If θ does not equal to θ’, then go to Step3., and search

in the new direction corresponding to the angle θ’.
• If θ equals to θ’, finish the procedure. The latest tem-

porary solution is taken as the final solution.

The SDM algorithm introduces a hierarchical search
method and a lump search method not to fall into a local
minimum. The hierarchical search method generates mul-
tiresolution images. It predicts a large-scale motion vec-
tor in a coarse resolution layer and to refine the vector in
a finer resolution layer. The lump search method evaluates
the fixed number of points in a search direction regardless of
the MSE increase. The algorithm evaluates 8 half-pel points
surrounding the minimum point in the previous integer-pel
search.

2.2 Optimization for QCIF and CIF Resolution Video

The SDM algorithm is optimized for QCIF and CIF resolu-
tion video about the following items:

• search range minimization
• the number of hierarchies
• repeat number minimization for 1-dimensional search
• search points minimization in a lump search

Search range should be minimized because Search
Window (SW) RAM accounts for a significant amount of
power consumption. The minimum search range that main-
tains picture quality within a mean PSNR drop of −0.1 dB is
obtained by simulation. The simulator is not an MPEG en-
coder. It executes motion estimation only. Simulation con-
ditions are summarized as:

• sample picture (Fig. 3)

– Salesman (sale)
– Susie (ssie)
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Fig. 4 Search range minimization.

Fig. 5 Number of hierarchies.

– Mobile and Calender (mbcl)
– Flower Garden (flow)
– Bus (bus1)

• resolution: QCIF(176x144), CIF(352x288)
• number of frames: 75 (15 fps), 150 (30 fps)
• frame rate: 15 fps, 30 fps
• forward prediction
• half pel prediction

Figure 4 shows the relation between the search range
and predicted picture quality. It represents that the minimum
search range degrading the quality within −0.1 dB PSNR in
regard to all cases is [−16:15.5] pixels.

The optimum number of hierarchies is obtained by
simulation. The simulated number of hierarchies is 1
(SDM mb h1), 2(SDM mb h2) and 3(SDM mb h3). The
initial vector calculations are executed in a layer from which
the search starts. The simulation results are summarized in
Fig. 5. They indicate that SDM mb h1 produces the best
predicted picture quality for all sequences. The simula-
tion results represent that QCIF and CIF resolution video
does not require a hierarchical search method to enhance
the quality.

It has been confirmed that the hierarchical method has
a good effect on the motion estimation using a CCIR601 pic-
ture [6]. The CCIR601 is an interlaced format that is con-
structed by even and odd fields. The surface of the distortion
function applied to the interlaced picture is like waves in ac-
cordance with even and odd fields. The search in a higher
layer avoids falling into the local minimum this time. The
hierarchical method for CIF and QCIF has no effect because

Fig. 6 Repeat number minimization for 1-DS.

Fig. 7 Search points minimization in a lump search.

they are non-interlaced formats.
The SDM mb h1 yields the best picture quality

even though the lowest computational complexity. The
SDM mb h1 algorithm does not require extra memory
space storing the hierarchical image nor circuits to gener-
ate low resolution images when implemented in a VLSI.

The number of cycles to estimate a motion vector for a
macroblock is usually fixed in an MPEG hardware encoder
because a unit of pipelined processing is a macroblock. In
such a situation, it is required to decide the upper limit num-
ber of search points, or to stop estimation at the time limit.
This study takes the former approach.

The minimum number to repeat 1-dimensional search
and the minimum number of points in a lump search are in-
vestigated on the condition that the picture quality is main-
tained within a mean PSNR drop of −0.1 dB in regard to all
cases. The simulation results are summarized in Fig. 6 and
Fig. 7. The results show the number to repeat 1-dimensional
search is 2, and the number of points in a lump search is 4.

2.3 Optimization for VLSI Implementation

The SDM algorithm is optimized for VLSI implementation
about the following items.

• differential coefficients calculation
• search direction rounding

The differential coefficients calculation requires adja-
cent pixels to the edge of a reference block. These extra
pixels result in a complicated design of a VLSI datapath.
The calculations for the block edge are modified as:
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∂DPD(x + 0, y + j)
∂x

= −(S Wx+1,y+ j − S Wx+0,y+ j)/2 (8)

∂DPD(x + 15, y + j)
∂x

= −(S Wx+15,y+ j − S Wx+14,y+ j)/2 (9)

∂DPD(x + i, y + 0)
∂y

= −(S Wx+i,y+1 − S Wx+i,y+0)/2 (10)

∂DPD(x + i, y + 15)
∂y

= −(S Wx+i,y+15 − S Wx+i,y+14)/2. (11)

It is more appropriate to divide DPD by 1 in the above equa-
tions because the distance between pixels is 1. The dedi-
cated hardware for the differential coefficient has to choose
1 or 2 as the divisor in the case. It makes the hardware more
complicated, so the divisor is fixed at 2.

The search direction is rounded in 8 directions to sim-
plify the address generation. The rounding calculations can
be simplified by a boundary definition illustrated in Fig. 8.
By the definition, the rounding calculation becomes simpler,
so that the multiplication can be eliminated from the calcu-
lation and substituted by shift operation.

Figure 9 shows the relation between the rounding
methods and picture quality. Modification to the equations
to calculate differential coefficients causes almost no degra-
dation of the quality because only the ratio of y to x differ-

Fig. 8 Direction rounding.

Fig. 9 Rounding methods and picture quality.

ential coefficient is used. Rounding the search direction into
one of 8 directions upgrades the quality. The horizontal and
vertical motion is often the preferred motion direction. The
rounding operation probably prevents the algorithm from
choosing a wrong search direction. The boundary definition
illustrated in Fig. 9 also upgrades the quality. The definition
slightly prefers the horizontal and vertical direction to the
diagonal direction. It has a good effect on the quality.

A processor with a SIMD datapath that has 16 proces-
sor elements (PEs) corresponding to 16 pixels in a row of
a MB is a typical architecture to execute the SDM algo-
rithm efficiently. The processor consists of some process-
ing stages. They are vector generation, address generation,
read operation of image data, square difference calculation,
summation of the calculation results, and accumulation of
the summation. The processor needs an image data cache
that has 16 read ports to operate 16 PEs continuously. The
pipelined processor with 16 pipelined PEs can calculate 16
pixels per 1 clock cycle. It requires 16 clock cycles per 1 MB
calculation. Assuming that the number of pipeline stages is
8, the number of clock cycles to evaluate 4 points one by
one is as follows: (8 + 16) ∗ 4 = 96. In a lump search, the
next MB can start calculating before the completion of the
previous MB and the pipeline does not stall. The number
of clock cycles to evaluate 4 points in the lump search is as
follows: 8 + 16 ∗ 4 = 72. The lump search reduces clock
cycles by 25% this time. Introduction of the lump search
makes the pipeline more efficient.

2.4 Subblock Search Method

The SDM algorithm is combined with a subblock search
method (SDM-SB) to enhance picture quality. A flowchart
of the SDM-SB algorithm is depicted in Fig. 10. The SB
search method is described as follows:

Step1. Divide one MB into four SBs
A MB (16 × 16 pixels) indicated by the initial vector is

divided into 4 SBs (8 × 8 pixels).

Fig. 10 Subblock search method.
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Step2. One dimensional search for each SB
The differential coefficients are calculated for each SB

at the point indicated by the MB initial vector. Then, the
1-DS for each SB are executed toward a search direction
corresponding to the differential coefficients. The criterion
is the MSE of a SB constructed by 8 × 8 pixels. As a result
of 1-DS, four SB vectors are obtained as temporal solutions.

Step3. Expand into MB size
Four SBs indicated by SB vectors are expanded into

MB size in such a way as shown in Fig. 10. The MSE of
each expanded MB is calculated.

Step4. Decide a motion vector
A final motion vector is decided from 5 vectors ob-

tained by a MB search (V) and four SB searches (Va, Vb,
Vc, Vd). The SDM algorithm with the SB search decides a
motion vector that indicates a MB having the smallest MSE
during the MB search and the SB search. Therefore, the al-
gorithm always attains higher or equal picture quality com-
paring with the original algorithm.

3. Simulation Results

The SDM algorithm and the other algorithms are simulated
to analyze computational complexity and picture quality.
The algorithms simulated here are as follows:

• FS
• TSS
• Cote
• SDM mb h1
• SDM sb h1 (SDM mb h1 combined with a subblock

method).

The FS, TSS and Cote algorithms search integer-pel
points first, then 8 half-pel points surrounding the minimum
integer-pel point. The distortion function of the FS, TSS and
Cote algorithm is a mean absolute error. The VLSI based on
each algorithm usually adopts these search methods. The
simulation conditions are the same as the previous section
except the resolution and the frame rate are QCIF 15 fps and
CIF 30 fps only, which are our targets. The parameters for
the SDM algorithm are the same as the previous section ex-
cept the number of points in a lump search is 3.

Tables 2 and 3 list average PSNRs of the predicted pic-
ture generated by the algorithms for each sequence. The
TSS algorithm results in a mean PSNR drop of −0.52 dB

Table 2 Simulation results (QCIF 15 fps, PSNR (dB)).

algorithm bus1 flow mbcl sale ssie mean diff.
FS 23.89 24.34 25.58 36.62 35.60 0

TSS 23.00 23.05 25.52 36.57 35.28 −0.52
Cote 21.99 23.78 25.51 36.57 35.27 −0.58

SDM mb h1 23.17 23.64 25.59 36.82 35.33 −0.30
SDM sb h1 23.34 23.91 25.59 36.86 35.49 −0.17

for QCIF and −0.74 dB for CIF resolution video in compar-
ison with the FS algorithm. The Cote algorithm results in
a mean PSNR drop of −0.58 dB for QCIF and −0.57 dB for
CIF. The TSS and Cote algorithms have sequences with a
mean PSNR drop of −1 dB or less (“Bus” or “Flower Gar-
den”).

The SDM mb h1 and SDM sb h1 algorithms have no
such sequence with significantly degrading quality. They
yield good results for all sequences. The SDM mb h1 algo-
rithm results in a mean PSNR drop of −0.30 dB for QCIF
and −0.16 dB for CIF. The SDM sb h1 algorithm results in
a mean PSNR drop of −0.17 dB for QCIF and −0.05 dB for
CIF.

Figures 11 and 12 show PSNR comparison on predic-
tion errors for the algorithms using the sequence “Bus.” The
SDM mb h1 and SDM sb h1 algorithms attains higher pic-
ture quality than the TSS and Cote algorithm, especially in
the case of CIF 30 fps. The SDM sb h1 algorithm enhances
the quality of the SDM mb h1 algorithm. In addition, there
are frames that the PSNR of the SDM algorithm is higher
than that of the FS algorithm because of the MSE error cri-
terion for a block matching.

In this simulation, FS algorithm evaluates all points
in the search range using the MAE criterion as described
above. The SDM algorithm evaluates some points in the
search range using the MSE criterion. The MSE is preferred

Table 3 Simulation results (CIF 30 fps, PSNR (dB)).

algorithm bus1 flow mbcl sale ssie mean diff.
FS 27.55 28.08 25.71 35.98 39.52 0

TSS 26.19 27.21 25.11 35.73 38.90 −0.74
Cote 25.35 27.81 25.71 35.95 39.15 −0.57

SDM mb h1 27.19 27.75 25.74 36.05 39.31 −0.16
SDM sb h1 27.44 27.83 25.77 36.07 39.47 −0.05

Fig. 11 Simulation results (QCIF 15 fps, Bus).

Fig. 12 Simulation results (CIF 30 fps, Bus).
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than the MAE to choose the best motion vector because sum
of square differences is used in the PSNR calculation. It is
possible that the SDM algorithm has higher picture quality
than the FS algorithm.

4. Analysis

4.1 Computational Complexity Analysis

Computational complexitiy for each algorithm is analyzed.
The FS and TSS complexities can be calculated as above.
The FS complexity is 779 MOPS for QCIF and 6229 MOPS
for CIF resolution video. The TSS complexity is 67 MOPS
for QCIF and 535 MOPS for CIF. The average and worst
complexities are equal here.

The average complexity of the Cote is measured by
simulation. The average complexity of the Cote is 9 MOPS
for QCIF and 83 MOPS for CIF. Two operations to calculate
sum of absolute differences are assumed here. The max-
imum number of block-matching iterations per 1 MB ob-
tained by simulation is 72 for QCIF and 88 for CIF. The
worst complexity of the Cote is 55 MOPS for QCIF and 535
MOPS for CIF.

The average complexity of the SDM is also measured
by simulation. The average complexity of the SDM mb h1
is 15 MOPS for QCIF and 131 MOPS for CIF. The aver-
age complexity of the SDM sb h1 is 27 MOPS at QCIF and
268 MOPS for CIF. The worst complexity of the SDM can
be calculated from the maximum number of points to eval-
uate. The number is fixed in the algorithm. The worst com-
plexity of the SDM mb h1 is 27 MOPS for QCIF and 213
MOPS for CIF. The worst complexity of the SDM sb h1 is
53 MOPS for QCIF and 423 MOPS for CIF. One operation
for an addition, subtraction, and multiplication is assumed
here.

Figures 13 and 14 illustrate the relation between the
complexity and PSNR. They represent that the SDM algo-
rithm attains both higher picture quality and lower complex-
ity than the TSS algorithm. The SDM algorithm also attains
higher picture quality than the Cote algorithm, and the av-
erage complexity is a little bit higher than that of the Cote
algorithm. The worst complexity is lower than that of the
Cote.

4.2 Power Consumption Analysis

Power consumption of a VLSI based on each algorithm is
analyzed next. It is assumed that the VLSI is fabricated by
0.18 µm CMOS process technology and the power supply
voltage is 1.8 V. Power consumption can be derived from
that of the existing VLSI with modifications according to
the assumption. Modifications to operating frequency, ca-
pacitance and supply voltage are necessary to calculate the
power consumption. Search range, picture resolution and
frame rate have to be considered in the modification to the
operating frequency. Search range and process technology
have to be considered in the modification to the capacitance.

Fig. 13 ME algorithms comparison (QCIF 15 fps).

Fig. 14 ME algorithms comparison (CIF 30 fps).

Fig. 15 ME algorithms comparison (QCIF 15 fps).

Power consumption of a VLSI based on the FS algorithm
is derived from that of [7]. The power consumption is esti-
mated at 19 mW for QCIF and 155 mW for CIF resolution
video. Power consumption of a VLSI based on the TSS al-
gorithm is also derived from that of [7]. The power con-
sumption is estimated at 5 mW for QCIF and 40 mW for
CIF resolution video. Power consumption of a VLSI based
on the Cote algorithm is derived from that of [1]. The power
consumption is estimated at 1 mW for QCIF and 10 mW for
CIF resolution video. Power consumption of a VLSI based
on the SDM algorithm is derived from [8]. The power con-
sumption of a VLSI based on the SDM mb h1 algorithm
is estimated at 1 mW for QCIF and 10 mW for CIF resolu-
tion video. The power consumption of a VLSI based on the
SDM sb h1 algorithm is estimated at 2 mW for QCIF and
20 mW for CIF resolution video.

Figures 15 and 16 show the relation between power
consumption and picture quality of a VLSI based on each
algorithm. They represent that the SDM algorithm attains
higher picture qualiy than the TSS algorithm, and the VLSI
based on the SDM algorithm consumes lower power than
that based on the TSS algorithm. The SDM algorithm also
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Fig. 16 ME algorithms comparison (CIF 30 fps).

attains higher picture quality than the Cote algorithm, and
the VLSI based on the SDM algorithm consumes almost
equal or a little bit higher power than that based on the Cote
algorithm.

5. Conclusion

A highly efficient motion estimation algorithm is essential to
produce a low power MPEG-4 video codec with superior vi-
sual quality. A VLSI-oriented motion estimation algorithm
using a steepest descent method (SDM) is studied for this
purpose. The SDM algorithm is optimized for QCIF or CIF
resolution video and VLSI implementation. The SDM com-
bined with a subblock search method is developed to en-
hance picture quality. Simulation results show that a mean
PSNR drop of the SDM algorithm processing QCIF 15 fps
resolution video in comparison with the FS algorithm is
−0.17 dB. Power consumption of a VLSI based on the SDM
algorithm assuming 0.18 µm CMOS process technology is
estimated at 2 mW. The VLSI outperforms others based on
the TSS or Cote algorithm from a view point of picture
quality, and is applicable to mobile video applications. The
VLSI using 0.18 µm process is now under development.
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