
Parallel-Processing VLSI Architecture
for Mixed Integer Linear Programming

Hiroki Noguchi, Junichi Tani, Yusuke Shimai, Hiroshi Kawaguchi, and Masahiko Yoshimoto

Kobe University, Kobe, 657-8501 Japan
Phone: +81-78-803-6234, E-mail: h-nog@cs28.cs.kobe-u.ac.jp

Abstract––This paper describes parallel processor

architecture for a mixed integer linear programming (MILP)
solver to realize motion planning and hybrid system control in
robot applications. It features pipeline architecture with an
MILP-specific configuration and two-port SRAM. Based on the
architecture, both FPGA and VLSI implementations have been
done to solve sample problems including 16 variables. The
FPGA implementation can reduce the power consumption to 13
W: an 85.4% reduction compared to a 3.0-GHz processor
(Pentium 4; Intel Corp.). The VLSI solver further reduces the
power to 6.4 W using 0.18-μm CMOS technology.

Index Terms––mixed integer linear programming problem,
hardware, low power

I. INTRODUCTION

In recent years, mobile robot technology has developed
remarkably. The progress of related technologies enables
robots to work in dangerous places instead of people and
supports comfortable human life. For instance, robots are
expected to be adapted for use as nursing-care robots in
societies with fewer children and more elderly people.
Several studies of robots have examined path optimization,
motion control, and hybrid systems [1–4]. The technologies
can be formulated as an integer programming (IP) or a mixed
integer programming (MIP) [5–6]. For this study, we
investigate mixed integer linear programming (MILP) in MIP.

In fact, MILP is an optimization technique using
maximizing or minimizing a linear function. A formulation
for a maximization problem (or a minimization problem) is
presented in (1), where x is a vector with variables, A is a
matrix, and b and c are vectors of coefficients. In MILP, some
variables are integers.

max or min z = cx
subject to A1x ≤ b1, A2x = b2, A3x ≥ b3 (1)

x ≥ 0
In fact, MILP is classified as an NP-hard problem because

the computing time to solve the problem increases
exponentially when the number of variables increases. The
path optimization problem and motion planning for robots
and most other applications are needed to solve MILP in real
time. Furthermore, power consumption is an important issue.
It is necessary to reduce the power consumption of the
calculation of the path planning, motion planning, and so on,
so that the robot might function for a longer time.
Implementing a solver not in a PC, but in an FPGA or VLSI
is effective in terms of speed and power efficiency.

II. MILP ALGORITHM

Figure 1 depicts a flowchart of an MILP solver using the
branch-and-bound method and the simplex method. The sub-
problem is solved using the simplex method (two-phased
method) and is generated recursively using the branch-and-
bound method [7].

Update
incumbent

solution

Solve the problem
by two phase method

Better than
incumbent solution?

Integer solution ?

Is there a pointer to
a right subproblem in

master problem ?

Is there a pointer
to master problem in

master problem ?

Add a left subproblem
and

add a right subproblem

Input data
of a problem

Best
solution

YES

YES

YES

YES

NO

NO

NO

NO

Branch-and-bound method

Simplex method

Fig. 1. Flowchart of MILP.

A. Branch-and-Bound Method Algorithm
The branch-and-bound method, which uses a bounding

operation and branching operation to solve MILP, is used to
derive the optimized solution. First, the simplex method
calculates the original problem using the simplex algorithm
(the two-phased method) [8–9]. Then, according to the results
from the simplex module, the branch-and-bound method
operates the branching operation as one of the non-integer
variables that should be an integer and generates a new LP
relaxation problem. An LP relaxation problem has the same
objective function and set of constraints as the original
problem; its integer variables are replaced by continuous
constraints. The simplex method recalculates the LP
relaxation problem until all variables become integers. The
branch-and-bound method also operates bounding operations
to reduce unnecessary calculations.

We use a depth-first rule as the mode of a sub-problem
selection in branch-and-bound method. The depth-first rule
spends fewer hardware resources, especially memory, than a
breadth-first rule. The way to select a non-integer variable,
which should be an integer, is to judge whether the variable is
an integer in turn from the variables with the smallest suffix.

978-1-4244-5309-2/10/$26.00 ©2010 IEEE 2362

B. Simplex Method Algorithm
We use a two-phased method as the simplex algorithm. The

simplex method requires a feasible solution as a starting point.
At the first phase, we obtain the first feasible solution or
information that the LP relaxation problem has no feasible
solution. At the second phase, it advances from this starting
point to the optimum solution. Alternatively, the information
that the solution is unbounded is obtained.

C. Analysis of Computation Amount Using Software Solver
To clarify the computation amount in the algorithm, we

analyzed it using a software solver with a PC (3.0-GHz
Pentium 4; Intel Corp.). Figure 2 presents the computing time
at each processing time when solving sample programs
including 16 variables using the software solver.

Because the simplex algorithm includes iterated operations,
it occupies 98% of all computing time. Therefore, the
reduction of the number of cycles of each simplex calculation
is effective in hastening the solver. Most cycle times in each
simplex calculation are occupied by the pivot function (40%)
and the tableau function (51%).

(a) The computing ratio of
all processes

(b) The computing ratio
using the simplex method

Others 2%

Simplex method
98%

Others 9%

Pivot
40%

Tableau
51%

Fig. 2. Computation time of the solver implemented with software.

III. HARDWARE ARCHITECTURE

A. Architecture Overview
Figure 3 portrays a block diagram of the proposed

architecture. We divide the solver into four modules: input,
output, simplex method, and branch-and-bound method
module. Problem data are stored in the embedded RAM.
Regarding implementation in the FPGA, we did not use
multi-port RAM but single-port RAM instead. Therefore, we
must bear in mind that more than two accesses to RAM
within one clock cycle are not allowed.

B. Applying Fixed-Point Variables
We use fixed-point processing for decimal calculations.

The fixed-point architecture uses fewer hardware resources
than the floating-point architecture does. Furthermore, the
calculation speed is higher in fixed-point mode. The word
length of each variable was set to 32 bits, including 16-bit
integer words and 16-bit fractional words because a solver
that has 15 or fewer bits per fractional word cannot solve an
LP relaxation problem. When decimal accuracy is more
necessary, it is possible to achieve it by raising the number of
fractional bits.

Simplex moduleBranch-and-bound
method module

SRAM 1:Original problem and
sub-problem

SRAM 2:
Problem index

SRAM 3: Optimal
solution

Output module

Address

Return signal

1bit
SRAM : Work
space

Simplex
calculate

Control
signal

1bit

Original
problem

Input module

Enable signal Main module

Optimal
solution

Local bus1

Local bus2

Fig. 3. Block diagram of FPGA implementation.

C. Parallel Computing
To reduce the computation time of the pivot function and

the tableau function, we implement pipeline processing in
these two functions [10]. The pipeline architecture enables us
to hide the process latency and achieve high throughput
because the pipelined implementation allows several
processes to operate simultaneously at different stages within
the hardware. The tableau module with the tableau function
has nine calculation steps:
Op. A: reading the fixed-point value and integer value from

SRAM.
Op. B: type conversion from the integer value to the fixed-

point value.
Op. C: multiplication by the two fractional values.
Op. D: removal of the fractional value from the fixed-point

value.
Op. E: rounding off of the fixed-point value.
Op. F: addition of the two fixed-point values.
Op. G: removal of the fractional value from the fixed-point

value.
Op. H: rounding off of the fixed-point value.
Op. I: renewal of the temporary fixed-point result.

Data dependency exists between Op. F and Op. I. It is
necessary to consider data dependency in implementing a
pipeline architecture. Figure 4 presents a pipeline process we
implemented without two-port SRAM in the tableau module.

i = 1

1 2 3 4 5 6 ・・・7

A B C D E G H

A B C D E G HF I

i = 2

D E G HF

H I

Cycle time
5N-1

A B C D E
・・・

F I

i = 3

i = N

8 9 10 11 12 13

I

Data dependency

Fig. 4. Pipelined process of a tableau function on FPGA without two-port
SRAM.

2363

The pivot module with the pivot function executes two
loop calculations:
Op. J: reading the fixed-point value and integer value from

SRAM.
Op. K: division of the fixed-point value by the other fixed-

point value.
Op. L: removal of the fractional value.
Op. M: rounding off of the fractional value.
Op. N: writing the fixed-point value to SRAM. Here is the

first loop.
Op. O: reading the fixed-point value from SRAM.
Op .P: multiplication by the two fractional values.
Op. Q: removal of the fractional value.
Op. R: rounding off of the fractional value.
Op. S: reading the fixed-point value and integer value from

SRAM.
Op. T: subtraction of the fixed-point values.
Op. U: removal of the fractional value.
Op. V: rounding off of the fractional value.
Op. W: writing the fixed-point value to SRAM.

In implementing the FPGA solver, the pipeline architecture
is constructed considering SRAM access. Figure 5 depicts the
pipeline process we implemented without two-port SRAM in
the pivot module.

Cycle time

Ji = 1
i = 2

i = 3

Cycle time
1 2 3 4 5 6 ・・・

K L M N
J K L M N

J K L M N
i = 4 J K L M N

7 8

J K L M Ni = 5 ・・・

J K L M N
J K L M N

i = N-1
i = N

O
i = 2

i = 3

1 2 3 4 5 6 ・・・

P Q R S

i = 4

7 8

i = 5
・・・

i = 6

i = N

T U V W
O P Q R S T U V W

O P Q R S T U V W
O P Q R S T U V W

W O

W
V W
U V W

O

9 10 11 12

i = 1

3N

2N

Fig. 5 Pipelined process of pivot function on FPGA without two-port SRAM.

IV. IMPLEMENTATIONS AND RESULTS

A. FPGA
We implemented the MILP solver on an FPGA board

(RC250; Celoxica Ltd.) to evaluate the proposed architecture
before designing the VLSI solver. Figure 6 portrays a picture
of the FPGA board. The FPGA chip is a Stratix-II (Altera
Corp.).

The parallel architecture implemented in FPGA increases

hardware resources but it can reduce the operating frequency
compared with PC. Figure 7 presents the required frequency
on the condition that the FPGA terminates processes at the
same computation time as the PC. We conclude that the
proposed parallel computing reduces the required frequency
by 57.8% (202.5 MHz) on average compared to the
sequential computing (480.0 MHz). In comparison with a 3.0
GHz processor (Pentium 4; Intel Corp.), we can reduce
required frequency by 93.3% using parallel processing.

Fig. 6. Photograph of the FPGA board.

0

200

400

600

1 2 3 4 5 6 7
Sample problems

R
eq

ui
re

d
fr

eq
ue

nc
y

[M
H

z]

Sequential

Parallel

480.0
MHz

202.5
MHz

Frequency
-57.8%

3000

Pentium 4 Frequency
-93.3%

3.0
GHz

Fig. 7. Required frequencies: PC, FPGA sequential processing, and FPGA
parallel processing.

B. VLSI Implementation
By implementing the FPGA solver, we clarify that the

composition which implements pipeline architecture into the
pivot module and tableau module considering the increase of
hardware resource but the reduction of cycle number
improves efficiency. Therefore, we designed the VLSI solver
using CMOS 180-nm process technology for receiving the
advantage of implementing hardware. Figure 8 portrays the
designed VLSI solver. The core size is 3.5 × 3.5 mm2. The
VLSI integrates all modules and SRAMs shown in Fig. 3.

The VLSI implementation enables lower power
consumption than the FPGA solver. The VLSI solver can
mount two-port SRAMs, which improves the pipeline
architecture’s efficiency. Figure 9 portrays the pipeline
process using a two-port SRAM in a pivot module.
Consequently, the VLSI solver can reduce the cycle number.
Figure 10 shows that the VLSI solver can further lower the
frequency by introducing the two-port RAM. Results show
that the required frequency can be lowered to as little as
16.8% of that of a sequential processing FPGA. When the
VLSI solver operates at 100 MHz: it achieves a 1.24-times
faster computation time than that of a Pentium 4 processor.

2364

SRAM

SRAM

SRAM

SRAM

MILP solver

Fig. 8. VLSI MILP solver. The nominal supply voltage is 1.8 V.

Ai = 1
i = 2

i = 3

Cycle time
1 2 3 4 5 6 ・・・

B C D E
A B C D E

A B C D E
i = 4 A B C D E

7 8

A B C D Ei = 5 ・・・

A B C D E
A B C D E

i = N-1
i = N

F
i = 2

i = 3

1 2 3 4 5 6 ・・・

G H I J

i = 4

7 8

i = 5
・・・

i = 6

i = N

K L M N
F G H I J K L M N

F G H I J K L M N
F G H I J K L M N

N
M N

9 1011 12

i = 1

Cycle time

F G H I J K L M N
F G H I J K L M N

N+4

N+11

Fig. 9. Pipelined process of pivot function with two-port SRAM.

Frequency
-83.2%

Pivot FPGA (Seq) FPGA (Par) VLSI
Tableau FPGA (Seq) FPGA (Par) VLSI

480.0

202.5

80.4

R
eq

ui
re

d
fr

eq
ue

nc
y

[M
H

z]

0

100

200

300

400

500

Fig. 10. Required frequencies: FPGA sequential processing, FPGA parallel
processing and VLSI.

C. Power Comparisons
The FPGA solver and the VLSI solver can achieve low

power consumption by the effect of the frequency reduction.
Figure 11 presents a power comparison among the

following four cases: a PC with a Pentium 4 processor, an

FPGA with sequential processing, an FPGA with parallel
processing, and VLSI. Although the hardware is larger with
parallel processing, average power consumption in the
parallel processing is smaller because of the reduction of the
required frequency. As a result, the total power consumption
can be reduced by 85.4% compared to that of a PC with a
Pentium 4 processor. Furthermore, the VLSI solver reduced
the power consumption to 50.8% in comparison to the FPGA
parallel solver.

0

30

60

90

PC
(Pentium 4)

FPGA
(Sequential) (Parallel)Av

er
ag

e
po

w
er

 c
on

su
m

pt
io

n
[W

]

VLSI

85.4% power
reduction

50.8% power
reduction

89

30
13

6.4

Fig. 11. Power comparison: PC, FPGA, and VLSI.

V. SUMMARY AND DISCUSSION

This paper presented the FPGA and VLSI implementation
of a solver using the simplex algorithm and the branch-and-
bound method. In the VLSI solver, the required frequency for
16-variable MILP is 80.4 MHz, which achieves a frequency
reduction of 83.2% compared to results obtained using
sequential computing in FPGA. The power of the VLSI is 6.4
W, which is almost half that of the FPGA.

In this study, only one simplex module was mounted, but
parallelism can be raised by increasing the module number.
We will continue to improve the hardware solver to realize a
robot that can operate as a hybrid system or which can plan
an optimum path to support the comfortable life of people
everywhere.

REFERENCES
[1] E. Masehian, G. Habibi, “Motion Planning and Control of Mobile

Robot Using Linear Matrix Inequalities (LMIs),” 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 4277–
4282, Feb. 2007.

[2] M. G. Earl, R. D’Andrea “Iterative MILP Methods for Vehicle Control
Problems,” 43rd IEEE Conference on Decision and Control, December
14–17, 2004.

[3] C. S. Ma, R. H. Miller, “MILP Optimal Path Planning for Real-Time
Applications,” Proceedings of the 2006 American Control Conference,
June 14–16, 2006.

[4] J. Lygeros, D. N. Godbole, S. Sastry “Verified hybrid controllers for
automated vehicles,” IEEE Transactions Automation Contribution, vol.
43, no. 4, pp. 509–521, 1998.

[5] Wolsey, L. “Integer Programming,” John Wiley & Sons, 1998.
[6] A. Schrijver, “Theory of Linear and Integer Programming,” Wiley and

Sons, 1972.
[7] M. Sakawa, “Optimization of discrete systems,” 2000.
[8] M. Sakawa, “Optimization of linear systems,” 1984.
[9] S. S. Morgan, “A comparison of simplex method algorithms,” Master’s

thesis, University of Florida, 1997.
[10] C. V. Ramamoorthy, H. F. Li, “Pipeline Architecture,” ACM

Computing Surveys (CSUR), vol. 9, no. 1, pp. 61–102, March 1977.

2365

