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Abstract––This paper describes parallel processor 

architecture for a mixed integer linear programming (MILP) 
solver to realize motion planning and hybrid system control in 
robot applications. It features pipeline architecture with an 
MILP-specific configuration and two-port SRAM. Based on the 
architecture, both FPGA and VLSI implementations have been 
done to solve sample problems including 16 variables. The 
FPGA implementation can reduce the power consumption to 13 
W: an 85.4% reduction compared to a 3.0-GHz processor 
(Pentium 4; Intel Corp.). The VLSI solver further reduces the 
power to 6.4 W using 0.18-μm CMOS technology. 

Index Terms––mixed integer linear programming problem, 
hardware, low power 

I. INTRODUCTION 

In recent years, mobile robot technology has developed 
remarkably. The progress of related technologies enables 
robots to work in dangerous places instead of people and 
supports comfortable human life. For instance, robots are 
expected to be adapted for use as nursing-care robots in 
societies with fewer children and more elderly people. 
Several studies of robots have examined path optimization, 
motion control, and hybrid systems [1–4]. The technologies 
can be formulated as an integer programming (IP) or a mixed 
integer programming (MIP) [5–6]. For this study, we 
investigate mixed integer linear programming (MILP) in MIP. 

In fact, MILP is an optimization technique using 
maximizing or minimizing a linear function. A formulation 
for a maximization problem (or a minimization problem) is 
presented in (1), where x is a vector with variables, A is a 
matrix, and b and c are vectors of coefficients. In MILP, some 
variables are integers. 

max or min z = cx 
subject to A1x ≤ b1, A2x = b2, A3x ≥ b3 (1) 

x ≥ 0 
In fact, MILP is classified as an NP-hard problem because 

the computing time to solve the problem increases 
exponentially when the number of variables increases. The 
path optimization problem and motion planning for robots 
and most other applications are needed to solve MILP in real 
time. Furthermore, power consumption is an important issue. 
It is necessary to reduce the power consumption of the 
calculation of the path planning, motion planning, and so on, 
so that the robot might function for a longer time. 
Implementing a solver not in a PC, but in an FPGA or VLSI 
is effective in terms of speed and power efficiency. 

II. MILP ALGORITHM 

Figure 1 depicts a flowchart of an MILP solver using the 
branch-and-bound method and the simplex method. The sub-
problem is solved using the simplex method (two-phased 
method) and is generated recursively using the branch-and-
bound method [7]. 
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Fig. 1. Flowchart of MILP. 

A. Branch-and-Bound Method Algorithm 
The branch-and-bound method, which uses a bounding 

operation and branching operation to solve MILP, is used to 
derive the optimized solution. First, the simplex method 
calculates the original problem using the simplex algorithm 
(the two-phased method) [8–9]. Then, according to the results 
from the simplex module, the branch-and-bound method 
operates the branching operation as one of the non-integer 
variables that should be an integer and generates a new LP 
relaxation problem. An LP relaxation problem has the same 
objective function and set of constraints as the original 
problem; its integer variables are replaced by continuous 
constraints. The simplex method recalculates the LP 
relaxation problem until all variables become integers. The 
branch-and-bound method also operates bounding operations 
to reduce unnecessary calculations. 

We use a depth-first rule as the mode of a sub-problem 
selection in branch-and-bound method. The depth-first rule 
spends fewer hardware resources, especially memory, than a 
breadth-first rule. The way to select a non-integer variable, 
which should be an integer, is to judge whether the variable is 
an integer in turn from the variables with the smallest suffix. 
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B. Simplex Method Algorithm 
We use a two-phased method as the simplex algorithm. The 

simplex method requires a feasible solution as a starting point. 
At the first phase, we obtain the first feasible solution or 
information that the LP relaxation problem has no feasible 
solution. At the second phase, it advances from this starting 
point to the optimum solution. Alternatively, the information 
that the solution is unbounded is obtained. 

C. Analysis of Computation Amount Using Software Solver 
To clarify the computation amount in the algorithm, we 

analyzed it using a software solver with a PC (3.0-GHz 
Pentium 4; Intel Corp.). Figure 2 presents the computing time 
at each processing time when solving sample programs 
including 16 variables using the software solver. 

Because the simplex algorithm includes iterated operations, 
it occupies 98% of all computing time. Therefore, the 
reduction of the number of cycles of each simplex calculation 
is effective in hastening the solver. Most cycle times in each 
simplex calculation are occupied by the pivot function (40%) 
and the tableau function (51%). 
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Fig. 2. Computation time of the solver implemented with software. 
 

III. HARDWARE ARCHITECTURE 

A. Architecture Overview 
Figure 3 portrays a block diagram of the proposed 

architecture. We divide the solver into four modules: input, 
output, simplex method, and branch-and-bound method 
module. Problem data are stored in the embedded RAM. 
Regarding implementation in the FPGA, we did not use 
multi-port RAM but single-port RAM instead. Therefore, we 
must bear in mind that more than two accesses to RAM 
within one clock cycle are not allowed. 

B. Applying Fixed-Point Variables 
We use fixed-point processing for decimal calculations. 

The fixed-point architecture uses fewer hardware resources 
than the floating-point architecture does. Furthermore, the 
calculation speed is higher in fixed-point mode. The word 
length of each variable was set to 32 bits, including 16-bit 
integer words and 16-bit fractional words because a solver 
that has 15 or fewer bits per fractional word cannot solve an 
LP relaxation problem. When decimal accuracy is more 
necessary, it is possible to achieve it by raising the number of 
fractional bits. 
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Fig. 3. Block diagram of FPGA implementation. 

C. Parallel Computing 
To reduce the computation time of the pivot function and 

the tableau function, we implement pipeline processing in 
these two functions [10]. The pipeline architecture enables us 
to hide the process latency and achieve high throughput 
because the pipelined implementation allows several 
processes to operate simultaneously at different stages within 
the hardware. The tableau module with the tableau function 
has nine calculation steps: 
Op. A: reading the fixed-point value and integer value from 

SRAM. 
Op. B: type conversion from the integer value to the fixed-

point value. 
Op. C: multiplication by the two fractional values. 
Op. D: removal of the fractional value from the fixed-point 

value. 
Op. E: rounding off of the fixed-point value. 
Op. F: addition of the two fixed-point values. 
Op. G: removal of the fractional value from the fixed-point 

value. 
Op. H: rounding off of the fixed-point value. 
Op. I: renewal of the temporary fixed-point result. 

Data dependency exists between Op. F and Op. I. It is 
necessary to consider data dependency in implementing a 
pipeline architecture. Figure 4 presents a pipeline process we 
implemented without two-port SRAM in the tableau module. 
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Fig. 4. Pipelined process of a tableau function on FPGA without two-port 
SRAM. 
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The pivot module with the pivot function executes two 
loop calculations: 
Op. J: reading the fixed-point value and integer value from 

SRAM. 
Op. K: division of the fixed-point value by the other fixed-

point value. 
Op. L: removal of the fractional value. 
Op. M: rounding off of the fractional value. 
Op. N: writing the fixed-point value to SRAM. Here is the 

first loop. 
Op. O: reading the fixed-point value from SRAM. 
Op .P: multiplication by the two fractional values. 
Op. Q: removal of the fractional value. 
Op. R: rounding off of the fractional value. 
Op. S: reading the fixed-point value and integer value from 

SRAM. 
Op. T: subtraction of the fixed-point values. 
Op. U: removal of the fractional value. 
Op. V: rounding off of the fractional value. 
Op. W: writing the fixed-point value to SRAM. 

In implementing the FPGA solver, the pipeline architecture 
is constructed considering SRAM access. Figure 5 depicts the 
pipeline process we implemented without two-port SRAM in 
the pivot module. 
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Fig. 5 Pipelined process of pivot function on FPGA without two-port SRAM. 
 

IV. IMPLEMENTATIONS AND RESULTS 

A. FPGA 
We implemented the MILP solver on an FPGA board 

(RC250; Celoxica Ltd.) to evaluate the proposed architecture 
before designing the VLSI solver. Figure 6 portrays a picture 
of the FPGA board. The FPGA chip is a Stratix-II (Altera 
Corp.). 

The parallel architecture implemented in FPGA increases 

hardware resources but it can reduce the operating frequency 
compared with PC. Figure 7 presents the required frequency 
on the condition that the FPGA terminates processes at the 
same computation time as the PC. We conclude that the 
proposed parallel computing reduces the required frequency 
by 57.8% (202.5 MHz) on average compared to the 
sequential computing (480.0 MHz). In comparison with a 3.0 
GHz processor (Pentium 4; Intel Corp.), we can reduce 
required frequency by 93.3% using parallel processing. 

 
Fig. 6. Photograph of the FPGA board. 
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Fig. 7. Required frequencies: PC, FPGA sequential processing, and FPGA 
parallel processing. 

B. VLSI Implementation 
By implementing the FPGA solver, we clarify that the 

composition which implements pipeline architecture into the 
pivot module and tableau module considering the increase of 
hardware resource but the reduction of cycle number 
improves efficiency. Therefore, we designed the VLSI solver 
using CMOS 180-nm process technology for receiving the 
advantage of implementing hardware. Figure 8 portrays the 
designed VLSI solver. The core size is 3.5 × 3.5 mm2. The 
VLSI integrates all modules and SRAMs shown in Fig. 3. 

The VLSI implementation enables lower power 
consumption than the FPGA solver. The VLSI solver can 
mount two-port SRAMs, which improves the pipeline 
architecture’s efficiency. Figure 9 portrays the pipeline 
process using a two-port SRAM in a pivot module. 
Consequently, the VLSI solver can reduce the cycle number. 
Figure 10 shows that the VLSI solver can further lower the 
frequency by introducing the two-port RAM. Results show 
that the required frequency can be lowered to as little as 
16.8% of that of a sequential processing FPGA. When the 
VLSI solver operates at 100 MHz: it achieves a 1.24-times 
faster computation time than that of a Pentium 4 processor. 
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Fig. 8. VLSI MILP solver. The nominal supply voltage is 1.8 V. 

Ai = 1
i = 2

i = 3

Cycle time
1 2 3 4 5 6 ・・・

B C D E
A B C D E

A B C D E
i = 4 A B C D E

7 8

A B C D Ei = 5 ・・・

A B C D E
A B C D E

i = N-1
i = N

F
i = 2

i = 3

1 2 3 4 5 6 ・・・

G H I J

i = 4

7 8

i = 5
・・・

i = 6

i = N

K L M N
F G H I J K L M N

F G H I J K L M N
F G H I J K L M N

N
M N

9 1011 12

i = 1

Cycle time

F G H I J K L M N
F G H I J K L M N

N+4

N+11

 
Fig. 9. Pipelined process of pivot function with two-port SRAM. 
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Fig. 10. Required frequencies: FPGA sequential processing, FPGA parallel 
processing and VLSI. 

C. Power Comparisons 
The FPGA solver and the VLSI solver can achieve low 

power consumption by the effect of the frequency reduction. 
Figure 11 presents a power comparison among the 

following four cases: a PC with a Pentium 4 processor, an 

FPGA with sequential processing, an FPGA with parallel 
processing, and VLSI. Although the hardware is larger with 
parallel processing, average power consumption in the 
parallel processing is smaller because of the reduction of the 
required frequency. As a result, the total power consumption 
can be reduced by 85.4% compared to that of a PC with a 
Pentium 4 processor. Furthermore, the VLSI solver reduced 
the power consumption to 50.8% in comparison to the FPGA 
parallel solver. 
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Fig. 11. Power comparison: PC, FPGA, and VLSI. 
 

V. SUMMARY AND DISCUSSION 

This paper presented the FPGA and VLSI implementation 
of a solver using the simplex algorithm and the branch-and-
bound method. In the VLSI solver, the required frequency for 
16-variable MILP is 80.4 MHz, which achieves a frequency 
reduction of 83.2% compared to results obtained using 
sequential computing in FPGA. The power of the VLSI is 6.4 
W, which is almost half that of the FPGA. 

In this study, only one simplex module was mounted, but 
parallelism can be raised by increasing the module number. 
We will continue to improve the hardware solver to realize a 
robot that can operate as a hybrid system or which can plan 
an optimum path to support the comfortable life of people 
everywhere. 
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