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SUMMARY  This paper compares areas between a 6T and 8T SRAM
cells, in a dual-Vyg scheme and a dynamic voltage scaling (DVS) scheme.
In the dual-V44 scheme, we predict that the area of the 6T cell keep smaller
than that of the 8T cell, over feature technology nodes all down to 32 nm.
In contrast, in the DVS scheme, the 8T cell will becomes superior to the 6T
cell after the 32-nm node, in terms of the area.
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1. Introduction

As a CMOS process technology in an SoC is advanced,
its minimum feature size is scaled down, which enables
higher density and lower chip cost. Since a chip area of
80% or more is supposed to be occupied with memories
[1] like large-capacity SRAMs for storing data, smaller-area
SRAMs are required in terms of chip cost and yield. How-
ever, the technology scaling expands threshold-voltage (Vi)
variation in MOS transistors due to random dopant fluctua-
tions, and thus degrades operating (read and write) margins
in an SRAM cell. To suppress the Vy, variation, a larger-
size transistor is preferable because a standard deviation of
Vin (0oyw) 1s proportional to 1/ v/ LegWeg [2], where Leg and
Weg are an effective channel length and width of a MOS
transistor, respectively.

Figure 1 illustrates a schematic and layouts of the con-
ventional 6T SRAM cell with various 3 ratios (a size ratio
of a drive transistor to an access transistor) and vy ratios (a
size ratio of an access transistor to a load transistor). The
layout is designed with a 90-nm logic rule, and is arranged
in parallel, not symmetrically. Also, it is not rectangular in
shape, because the channel width of the drive transistor is
different from that of the access transistor. The read and
write margins in the 6T cell are improved by increasing 8
and v ratios, respectively. This fact implies that the drive
transistor is far larger than the load transistor to satisfy both
the read and write margins. In Fig. 1(c), the 8 and y ra-
tios are set to 2.5 and 1.0, respectively, in order to obtain
the read and write margins at an operating voltage of 1.0 V.
As threshold-voltage variation condition, we assume that, at
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Fig.1 (a) A schematic, and layouts of a 6T SRAM cell with (b) 8 = 1.5
andy = 1.0, (c)B=25andy = 1.0, and (d) 8 = 2.5 and y = 1.5. The
layouts are designed with a 90-nm logic rule.
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Fig.2 (a) A schematic and (b) layout of an 8T SRAM cell designed by
the same rule as Fig. 1(b)—(d).

the 90 nm node, the global (wafer-to-wafer/lot-to-lot) com-
ponent is three times of the standard deviation of the process
deviation and the local (random) component is 6 oyy,. In the
6T cell, the cell area turns out larger, as the local variation
(ovwm) is increased or a supply voltage (Vyq) is decreased.

In contrast, in an 8T SRAM cell shown in Fig. 2(a), the
B ratio does not need to be enlarged because the 8T cell has a
separate read port comprised of two transistors. The layout
in Fig. 2(b) is, however, still larger than that in Fig. 1(b) by
10% at the 90-nm node, which is due to the separate read
port. We have clarified that, in a single-Vy4 scheme, the area
of the 8T cell can be smaller than that of the 6T cell even if
the 8T cell is utilized as a single-port SRAM cell [3].

A low power is of importance as well as a small area.
Thus, a low Vg is required. In particular, in a dynamic
voltage scaling (DVS) scheme, the minimum operating volt-
age (Vmin) has to be reduced in order to achieve wide-range
power scaling on an SoC. For the 6T and 8T cells, we have
proposed voltage-control schemes for sufficient operating
margins at low Vg4 [4], [5]. In these schemes, two voltages
are supplied and selectively controlled in the SRAM cells.
The read and write margins become larger even at lower Vg,
which in turn allows smaller area. In this paper, we report
the area comparison between the 6T and 8T cells with the
voltage-control scheme. In addition to the DVS scheme, we
will focus on a dual-Vyy scheme.

The rest of this paper is organized as follows. The next
section describes the voltage-control schemes for the 6T and
8T cells from a viewpoint of operating margins. In Sects. 3
and 4, we make area and access time comparisons, respec-
tively. Section 5 summarizes this paper.
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Fig.3  Voltage controls in a 6T SRAM cell on a (a) read and (b) write
conditions.

2. Voltage-Control Schemes for 6T and 8T Cells
2.1 Dual-V44 Scheme

To improve the operating margins at low voltage, in this sub-
section, we apply the dual-Vyg scheme to both the 6T and
8T cells. Two fixed voltages (V, and Viax, Vinax > Va) are
provided to the SRAM cells, and the supply voltage in the
memory cells (Vy,c) and the wordline (WL) voltage (V) are
switched according to the read and write conditions. In this
paper, Vinax 1s set to 1.0 V as a nominal voltage.

As shown in Fig. 3(a), in a read operation, Vi, is set to
Vmax that stabilizes a stored datum, which maximizes a read
margin. Alternatively in a write cycle, Vy, is set to Vi, as
illustrated in Fig. 3(b), which increases the conductance of
the access transistors. This operation makes a bitline datum
easily written, and thus improves the write margin.

On the other hand, in the 8T cell, the write-WL (WWL)
voltage (Vyw1) is merely set to Viax as shown in Fig. 4, since
we do not have to pay attention to the read margin.

2.2 DVS Scheme

Under the DVS environment depicted in Fig.5, the fixed
Vmax 18 applied externally, but V, is adaptively controlled
and varied with a DC/DC converter according to a clock fre-
quency. V, is between Vi, and Viax. In the DVS scheme,
both V, and V},,x are provided to the SRAM cell. Note that
V, is dynamically changed in operation unlike the dual-Vyy
scheme.
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Fig.5 Block diagram of DVS scheme.

In the DVS scheme, V.. and V,,; in the 6T cell and
Vww in the 8T cell are controlled as well as the dual-Vyy
scheme. Since V, is varied, we have to consider the worst-
case read margin where V, = Vp.x. Similarly, the worst-case
write margin takes place when V, = V.. In any event,
the worst-case operating voltage of V, is Vi.x, which means
that the DVS scheme is the same as the conventional single-
Vaa scheme at V, = Vi (1.0V) in terms of the operating
margins.

2.3 Improvement of Operating Margins

The improvement of the operating margins with the dual-
Vaa scheme is illustrated in Fig. 6 through Fig. 8 by means
of butterfly plots [6] and milky-way plots [7]. Figure 6 and
Fig. 7 correspond to the 6T-cell case, and Fig. 8 is the 8T-cell
case. The diamond shape in the milky-way plot indicates
the process corners (FF, FS, SF, SS, and CC corners), where
a global V4, variation of the triple standard deviation is re-
flected. As for the random Vy, variation, 6 o, 1s considered
in an SRAM cell. In the milky-way plots, the read margin
cannot be obtained on the left side from the read limit curve,
where a stored datum possibly flips in read operation. Simi-
larly, the write margin is not satisfied on the right side from
the write limit curve. In the 6T-cell case, the read and write
margins are both obtained in the region between the read
and write limit curves, which means that the 6T cell works
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Fig.7 Milky-way plots of a 6T cell in (a) the conventional single-Vyq

scheme and (b) dual-V4q scheme. A write-limit curve at V, = 0.8 V in the
dual-Vyq scheme is out of the graph.

correctly under the Vi, variation. On the other hand, in the
8T cell, the write operation curve is the only constraint, and
the write operation will pass in the region on the left side
from the write limit curve.

In the conventional single-Vyq scheme, Vi, is equal
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Fig.8 Milky-way plots of an 8T cell in (a) the conventional single-Vyq
scheme and (b) dual-V4q scheme.

to V,. Figure 6 illustrates the case that the channel-width
ratios of 8 = 2.5 and ¥y = 1.0 are the minimum values for
the schemes to satisfy both the read and write margins at
Vi = Vmax = 1.0V in the 6T cell. If V, = V. = 0.8V, there
is neither read margin nor write margin. Figure 7 explains
that the 1.0 V has the operating margins from another aspect.
The lines of the 0.8 V intersect the diamond shape, which
exhibits neither margin.

Figure 7(b) shows that, the region between the read and
write limits in the dual-Vy4 scheme becomes wider as V; is
reduced. This is because the dual-Vy4 scheme improves the
operating margins as described in Sect.2.1. In other words,
the dual-Vyg can have sufficient margins at a low V,, with
smaller § and vy values. This implies that the cell area in the
dual-Vg4q can be reduced if a low V, is given.

In the 8T cell, the read margin does not need to be con-
sidered. However, we have to pay attention to the write mar-
gin. Figure 8 illustrates that the single-Vyq scheme does not
have a write margin at V, of 0.8V, while the dual-Vy, has
one. Note that, in the single-Vyq scheme, the write margin
in the 8T cell becomes slightly larger than that in the 6T cell
(compare the write limit curves in Fig. 7(a) and Fig. 8(a)),
because the smaller S ratio in the 8T cell makes the logi-
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cal Vi, of the cell inverter higher and helps stable “H”-write
operation at the “L’-stored node.

3. Area Comparison

In this section, we compare the areas of the 6T and 8T cells
in the dual-Vy4 scheme, the single-Vy4 scheme, and the DVS
scheme with a varied V,. The design conditions are as fol-
lows;

o The transistor length (L) of each transistor is set to the
minimum (Ly,;, = design rule).

e The load transistor has the minimum channel width
(Wmin)-

o Lin and Wy, are scaled by 0.7 time per generation.

e In the 6T cell, the channel width of the access transis-
tor (W,) is first optimized for the write margin, on the
condition of Wy = Wpin (Wy: the channel width of the
drive transistor). Then, Wy is optimized for the read
margin.

e In the 8T cell, we merely optimize W, for the write
margin. Wy is set to Wy, since the read margin can be
neglected.

e The global Vy, variation (the size of the diamond shape)
remains constant in any generation since the global Vi
is determined by manufacturing equipments and envi-
ronments.

e However, the process corners can be shifted in paral-
lel over a Vi, range of +0.1 V. Namely, we can set the
nominal Vi, (the CC corner) in the range of +0.1 V. The
Vi setting is optimized to minimize the area.

e The channel width of Na3 and Nd3 at the read port in
the 8T cell are set to 0.20 um and 0.40 ym in a 90-nm
node, respectively, and scaled down by 0.7 time per
generation.

The operating margins are verified by HSPICE DC
simulation. An industrial 90-nm model is utilized, and we
apply it to the simulations from the 65-nm to the 32-nm
technology nodes. The Vi, variations in the advanced tech-
nology nodes are illustrated in the Pelgrom plots in Fig. 9,
which are based on the ITRS Roadmap [1]. oy becomes
larger along with the process generations due to the smaller
channel area (Lqg - Wegr), although the oxide thickness (7ox)
is gradually thinned and the slopes of the Pelgrom plots get
gentler.

3.1 Single-V4q Scheme

Figure 10 and Fig. 11 illustrate the 8 and vy ratios and the cell
area dependencies on technology nodes, in the conventional
single-Vyq scheme. In the 8T cell, Wy and W, can be set
to Whin over all process nodes at 1.0 V, which demonstrates
that the 8T already achieves the minimum area. In the past,
the areas of both the 6T and 8T cells have been scaled down
almost by half, along with the technology nodes. However
in the future, the 8 and 7y ratios in the 6T cell should be larger
as the process is advanced. This makes the cell area larger
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in the 6T cell, resulting in the gentler slopes as illustrated in
Fig. 11.

In the 1.0-V operation, the curves of the memory-cell
area intersect at the 45-nm node and the area of the 8T cell
becomes smaller by 4.9% at the 32-nm node, as illustrated
in Fig. 11. If Vg4 is 0.8V, the 8T cell is further superior to
the 6T cell at the 65-nm node and later. The area of the 8T
cell is smaller by 29.4% at the 32-nm node. Note that, in the
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0.8-V operation at the 32-nm node, W, has to be increased
to obtain the write margin even in the 8T cell. Thus, the y
ratio is increased, but the S ratio is decreased.

We would like to mention the leakage currents of the
6T and 8T cells. Since the target Vi, values in the 6T and
8T cells are independently set for the minimum cell areas,
the leakage currents in the 6T and 8T cells are different. In
particular, in the 8T cell, a low nMOS Vy, (Vy,), and a low
pMOS Vi, (Vi) or a high absolute value of Vi, (|Vp|) are
optimum for the minimum cell area. On this condition, the
write margin is expanded, and thus W, or the y ratio can be
narrowed. As for the 6T cell, the optimum Vy, point is in
moderate Vy, setting. Consequently, the leakage current in
the 8T cell is 8.1 times as large as that in the 6T cell.

3.2 Dual-V44 Scheme

In the dual-Vy scheme, the 8 and +y ratios of the 6T and
8T cells can be smaller than those in the single-Vyy scheme
because the low V, improves the operating margin. Thus,
the dual-Vy4 scheme can potentially save the cell area. Fig-
ure 12 illustrates the 8 and +y ratios dependencies on tech-
nology nodes.

As shown in Fig. 13, the area of the 6T cell is always
smaller than that of the 8T cell at a V, of 0.9V since the 8
ratio in the 6T cell becomes much smaller than the single-
Vaa scheme case. Besides, we can make the 8 and vy ratios
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smaller as V, is reduced, which results in a smaller area than
that in the single-Vy4 scheme. For instance, at a V, of 0.8V,
the area of the 8T cell is larger than that of the 6T cell by
11.4%.

3.3 Area Dependency on Vg4

The area of the 6T and 8T cells dependencies on Vyq are
summarized in Fig. 14. The cell area in the DVS scheme is
the same as that at V, = 1.0[V], which is the worst-case Vyq
of operating margins as previously described. At the 90-nm
technology node, the areas of the 8T cell with dual-Vyg and
DVS schemes are always larger than those of the 6T cell.
On the other hand, at the 32-nm node, the 8T cell is superior
to the 6T cell when V; is around 1.0V and DVS scheme is
utilized. When the dual-V44 scheme is applied, the 6T cell
is still preferable at less than 0.9 V where operating margins
are larger than those in a 1.0-V operation.

At the 32-nm process node, in the DVS scheme, the
area of the 8T cell can be smaller by 4.9% than that of the
6T cell. In contrast, in the dual-Vyq, the 8T-cell area is larger
than the 6T-cell area by 26.0% in the 0.7-V operation.

IEICE TRANS. FUNDAMENTALS, VOL.E90-A, NO.12 DECEMBER 2007

Compared to the 6T cell with the conventional single-
Vaa scheme, the 6T cell with the dual-Vy4q scheme reduces
the area of 64.4%, and the 8T cell with the DVS scheme
achieves the area saving of 55.2% in the 0.7-V operation
and at the 32-nm technology node.

4. Access Time Tradeoff

This section compares an access time and total area in
a whole SRAM macro comprised of a 6T-cell array (6T-
SRAM macro) and an 8T-cell array (§T-SRAM macro). The
6T-SRAM and 8T-SRAM macros have peripheral circuitry,
such as address decoders, read/write circuitry, and so on.
For the dual-Vyy and DVS schemes, the WL level shifters
are also introduced just after X decoders in order to amplify
the WL voltage in the 6T-SRAM macro or the WWL voltage
in the 8T-SRAM macro.

In our cell design, the channel widths of all the transis-
tors are optimized only by the operating margins under the
Vin variation in order to obtain the stable read/write opera-
tions, as previously mentioned. Considering the access time
of the SRAM macro, the 6T cell can read out faster thanks to
the differential bitlines, while the 8T cell has a longer access
time due to the single-ended read bitline (RBL in Fig. 4). To
fasten the read access in the §ST-SRAM macro, we adopt the
hierarchical-bitline structure [8] that hierarchically accesses
with a local RBL (LRBL) and a global RBL (GRBL). How-
ever, it causes an area penalty in the 8T-SRAM macro. Note
that a single-bitline structure is sufficient for the 6T-SRAM
macro.

Figure 15 illustrates the area and access time ratios of
the 8T-SRAM macro to the 6T-SRAM macro, in a 128-
kb (128 bits x 1024 words) memory, where the single-Vyq,
dual-Vyq, and DVS schemes are considered. In the simu-
lation, the access time is defined as the period, from the
time when the wordline is asserted, to the time when the dif-
ferential bitline voltage becomes 100 mV in the 6T-SRAM
macro, or to the time when the GRBL voltage is dropped by
a half of the operating voltage in the 8ST-SRAM macro. The
process corner is set to SS corner and the local Vy, variation
of 6 oy, is reflected to the 6T and 8T cells as the worst-
case access time. The horizontal axis in the figure is the
number of memory cells connected to the LRBL in the 8T-
SRAM macro (Np). As Ny is increased, the access time of
the 8T-SRAM macro is longer, while the area overhead of
it becomes smaller and the area ratio of the macro becomes
almost equal to that of the cell.

As shown in Fig. 15(a), the access time of the 8T-
SRAM macro can be shorter than that of the 6T-SRAM
macro in the single-Vy4 scheme, if Ny, is set to a smaller
value. Even when N, is set to 128 and the operating volt-
age is 1.0V, for example, we can obtain both the shorter
access time and smaller macro area by 3.2% and 2.9%, re-
spectively.

In the dual-Vgg and DVS schemes shown in the
Fig. 15(b)(c), the access-time ratio is always smaller than
one. This is because the access time in the 8T cell is gov-
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Fig.15  The access time and area comparisons between the 128-kb 6T-

and 8T-SRAM macros in the (a) single-Vgyq4, (b) dual-Vg4, and (c) DVS

schemes. The technology node is 32 nm.

erned by the separate read port, although the S ratio or Wy
value in the 6T cell is set to a small value. In the dual-Vyq4
scheme, the § ratio is smaller as V, is decreased as previ-
ously mentioned in Fig. 12. Also, the worst-case operating
voltage in the DVS scheme is 1.0V, and, even if V, is lower
than 1.0V, the B ratio is set to a value at V, = 1.0V, which is
smaller than that in the single-Vyy scheme. The access time
of the 6T-SRAM macro with the dual-Vy4 or DVS scheme is
thus longer.
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5. Conclusions

In this paper, we clarified that, in the dual-V44 scheme, the
area of the 6T SRAM cell keeps the area smaller than that of
the 8T SRAM cell, over feature process nodes. In contrast,
in the DVS scheme, the 8T cell is preferable in a 32-nm
process technology. The DVS scheme saves the 8T cell area
by 4.9% compared with the 6T-cell case in the 32-nm node.

Considering a 0.7-V operation at the 32-nm node, the
area of the 6T cell is smaller by 64.4% in the dual-Vgq
scheme than the single-Vyq scheme. The DVS scheme
achieves the area saving of 55.2% with the 8T cell, com-
pared with the 6T cell in the single-Vyq scheme.
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