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Abstract—We propose a microphone array network that 
realizes ubiquitous sound acquisition. Several nodes with 16 
microphones are connected to form a novel huge sound 
acquisition system, which carries out voice activity detection 
(VAD), sound source localization, and separation. The three 
operations are distributed among nodes. Using the distributed 
network, we achieve a low-traffic data-intensive array 
network. To manage nodes’ power consumption, VAD is 
implemented. Consequently, the system uses little power when 
speech is not active. For sound localization, a network-
connected multiple signal classification (MUSIC) algorithm is 
used. The sound separation system can improve a signal-noise 
ratio (SNR) by 7.75 dB using 112 microphones. Network traffic 
is reduced by 99.11% when using 1024 microphones. 

Keywords—microphone array; ubiquitous sensing; sensor 
network; low-power system; perfect aggregation. 

I. INTRODUCTION 
In recent years, improvement in information processing 

technology has produced real-time sound processing systems 
using microphone arrays. A microphone array can localize 
sound sources and separate multiple sources using spatial 
information of the acquired sounds. The computational effort 
of these operations increases polynomially with the number 
of microphones, but the operating performance is known to 
increase as well [1]. To reduce the increased power of a 
microphone array and to satisfy recent demands for 
ubiquitous sound acquisition, it is necessary to realize a large 
sound processing system at low power. 

Huge microphone arrays have been widely investigated: 
arrays have been built at Tokyo University of Science (128 
ch) [2], the University of Electro-Communication (156 ch) 
[3], Brown University and Rutgers University (512 ch) [4], 
[5], and the Massachusetts Institute of Technology (1,020 
ch) [1]. However, the problems of increasing computation, 
power consumption, and cost make their practical use 
difficult, particularly in terms of sound-data acquisition. The 
main problem of conventional microphone array systems is 
that all the microphones are connected to a single base 
station (sound server). Reducing the amount of transmission 
should be accomplished by introducing multi-hop 
networking. 

To implement a microphone array as a real ubiquitous 
sound acquisition system, we have proposed division of the 
huge array into sub-arrays to produce a multi-hop network: 
an intelligent ubiquitous sensor network (IUSN) [6–8]. The 

sub-array nodes can be set up on the walls and ceiling of a 
room. Their performance can be improved easily merely by 
increasing the node number, but communication among 
nodes does not increase much in our system. 

If more than 1,000 microphones are used to collect the 
data, then the signal-noise ratio (SNR) can be improved 
remarkably, but the network traffic would burst out. 
Therefore, each relay node on a routing path must store all 
temporal multi-channel sound data that the node receives, 
but not send it. This engenders a large-size buffer memory 
and large total power dissipation in the system. For that 
reason, some breakthrough network solution is needed to 
reduce the network traffic, even in a large-scaled network. 

Some data aggregation techniques have been proposed to 
reduce network traffic for sensor networking. Fig. 1 presents 
network traffic with and without data aggregation. Without 
data aggregation, the network traffic is concentrated around 
the base station. An aggregation scheme should be chosen 
carefully according to the application. Data aggregation is 
classifiable as lossy and lossless [9]. Our aggregation method 
is chosen according to the former application. For 
applications such as reproduction of sound fields, lossless 
aggregation is suitable. However, irreversible aggregation is 
sufficient for applications such as ours, which are solely 
intended to improve the SNR of sound. Perfect aggregation 
[10] and beam forming [11] are lossy aggregations. With 
perfect aggregation, a sensor node aggregates the received 
data into one unit of data and then sends it to the next hop 
[12]. Therefore, perfect aggregation can reduce traffic on a 
grand scale. 

Vast traffic around 
base station

:Node
:Base station

Data aggregation
Relaxed traffic

(a) w/o data aggregation (b) w/ data aggregation

Lossless Lossy

 
Figure 1.  Network traffic with (a) lossless and (b) lossy multi-hop 

networks. 
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As described in this paper, we specifically examine 
microphone array networks to obtain high-SNR sound data. 
Then we produce it as a multi-hop network. We propose a 
perfect aggregation solution that is specialized for obtaining 
high-SNR sound data. We then demonstrate that the network 
traffic is reduced dramatically. Consequently, our proposed 
microphone array system is scalable. 

II. PROPOSED DATA AGGREGATION SCHEME 
In this section, we introduce the proposed perfect 

aggregation method. Fig. 2 presents an example of 
aggregation. In the figure, speech data acquired in nodes 1 
and 2 are aggregated to single enhanced speech data in the 
aggregation node. Then the speech data are sent to the next 
node. 

Node 2

Node 1 Next node

Aggregation

Enhanced 
speech

Speech

Speech  
Figure 2.  Example of perfect aggregation among neighboring nodes. 

To obtain high-SNR speech data, the aggregation 
algorithm must be eligible for a chosen sound-source 
separation method that lowers the noise signal level. Two 
types of major sound-source separation methods are 
geometric techniques, which use position information, and 
statistical techniques, which use no position information. For 
the proposed system, delay-and-sum beam forming, which is 
categorized as a geometric method, is chosen because the 
node positions in the network are known. This method 
produces less distortion than statistical techniques do. 
Fortunately, it requires only a small amount of computation. 
For distributed processing in sound source separation, it can 
be applied easily because it is based on summations (Fig. 3). 
The key point for delay-and-sum beam forming among 
distributed nodes is how to obtain time differences (Wi: 
phase differences in sound waves) among neighboring 
nodes. 
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Figure 3.  Delay-and-sum beam-forming mechanism. 

Time differences among neighboring nodes are 
calculable from header information in a packet, which 

comprises a sound-source coordinate and a coordinate of 
each node. As a matter of course, the coordinate origin must 
be calibrated to a unique point. In aggregation using the 
timing data described above, all temporal speech data are 
adjusted by adding time differences and summing them to a 
single speech datum for uploading the signal. Consequently, 
high-SNR speech data can be acquired at the base station. 

However, without a precise sound source coordinate, the 
delay-and-sum beam-forming method does not operate 
effectively. For this reason, a basic sound-source localization 
algorithm with a high degree of accuracy is important to 
produce a perfect aggregation scheme. To achieve highly 
accurate sound source localization, we have already 
proposed a hierarchical sound-source localization method [7] 
based on the multiple signal classification (MUSIC) 
algorithm [13–15]. 

As described herein, we will divide the localization into 
two layers: 1) relative direction estimation within a node, and 
2) absolute location estimation by exchanging the results 
through the network. The MUSIC algorithm for the relative 
direction estimation is based on subspace techniques for 
estimating the directions of arrival (DOAs) of multiple signal 
sources. We assume an array comprising N microphones that 
receive signals from L (L < N) sources. The N × 1 array 
output at time t can be modeled as 

)()()()( ttt nsθAx += , (1) 
where [ ]TLθθ ,,1=θ is the DOA vector, s(t) is the L × 1 
vector of signal waveforms, n(t) is the N × 1 vector of noise 
and interference, and 

[ ])(,),()( 1 Lθθ aaθA = , (2) 
is the N × L signal steering matrix [14, 15]. We presume that 
no coherent signals exist and that the noise is spatially white. 
Consequently, the N ×N array covariance matrix can be 
written as 

{ } IAARxxR sx
2)()(E σ+== HH tt , (3) 

where { })()(E tt HssRs =  is the source covariance matrix, σ2 
is the sensor noise variance, and I is the identity matrix [16, 
17]. Using a unitary matrix E, the Rx can be transformed 
orthogonally as 

[ ] IERE x
2

1 0,,0,,,diag σλλ += L
H , (4) 

where Lλλ ,,1  are eigenvalues of Rx. The unitary matrix E 
can be represented as [ ]NeeE ,,1= , where Nee ,,1  are 
eigenvectors of Rx. Thereby, eq. (4) can be expressed as 
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using the relation IEEEE == HH . Between (3) and (5), 
)(,),( 1 Lθθ aa  and NL ee ,,1+  are orthogonal. 

Consequently, the source location can be found by plotting 
the following quantity as a function of θ: 
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Fig. 4 presents an example of the result: P(θ). 
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Figure 4.  Example of the result from one-dimensional sound source 

localization. 

We adopt the above MUSIC algorithm as the perfect 
aggregation method. The MUSIC algorithm is chosen for 
direction estimation within a node because the number of 
microphones and their buffer memory on a node is limited; 
the MUSIC algorithm can achieve higher resolution using 
fewer microphones. To find a relative direction, the sound 
source probability P(θ, φ) must be calculated on each node. 
Once the relative direction to the sound source is obtained, 
its information is transferred to neighboring nodes to proceed 
to the next step. 

We will localize the absolute sound source location in the 
network layer. The authors have already proposed a 
calibration method with a three-dimensional coordinate of 
the sound source, as presented briefly in Fig. 5 [7]. First, the 
maximum P(θ, φ) and corresponding θ and φ are calculated 
on each node using the MUSIC algorithm. We alternatively 
adopt the shortest line segment connecting two lines because 
we can usually find no exact intersection in the three-
dimensional space. We presume a point that divides the 
shortest line segment by the ratios of P(θ, φ) as an 
intersection. The sound source is localized by calculating the 
center of gravity as well, with the obtained intersections. 

We verified the hierarchical localization by simulation, 
assuming that an estimation result has a variation on every 
node. Fig. 6 presents an example of the experiments. The 
localization accuracy is portrayed in Fig. 7. The localization 
error is smaller when the number of arrays is large and the 
direction estimation is precise. Results show that the 
effective means to make the localization accurate is to 
minimize the direction error. However, the number of sub-
arrays does not give much impact. (The number of sub-
arrays does strongly affect sound separation, as described 
later.) 

Although the coordinate data can be calibrated with 
nodes, the time stamp of each speech cannot be calibrated in 
this scheme. Time synchronization is an important issue for 
the delay-and-sum beam-forming method. Timers of each 
sensor node, even among neighboring nodes, have dispersion 
by various environmental and device-origin effects. For that 
reason, the time synchronization method among nodes in 
sensor networks is important for the perfect aggregation 
scheme. Various means of time synchronization for a sensor 
network have been examined: Reference Broadcast 
Synchronization (RBS) [18], Timing-sync Protocol for 
Sensor Networks (TPSN) [19], and Flooding Time 

Synchronization Protocol (FTSP) [20]. Using a time 
synchronization protocol, infection to the SNR by the timer 
variation can be disregarded. For low-power multi-hop 
sensor networks such as microphone array networks, FTSP is 
the most suitable in terms of power consumption. 
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sound source

 
Figure 5.  Three-dimensional sound source localization. 

-6 
-4 

-2 
0 

2 
4 

6 
-6 

-4 
-2 

0 
2 

4 
6 

-1 
0 
1 

Y [m] 
X [m] 

Z 
[m

] 

True position  
Estimated result  

 
Figure 6.  Sound source localization experiment. 
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Figure 7.  Sound source localization accuracy. 
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III. INTELLIGENT UBIQUITOUS SENSOR NETWORK AND 
ITS NODE 

This section describes implementation of the proposed 
perfect aggregation scheme to a microphone array system. 
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Figure 8.  Intelligent ubiquitous sensor network (IUSN) and block diagram 

of a sub-array node. 

Fig. 8 shows a brief description of the proposed IUSN 
and a functional block diagram of a sub-array node. Sixteen-
microphone inputs are digitized with A/D converters; the 
sound information is stored in SRAM. Then, the information 
is used for sound source localization and sound source 
separation. The sound-processing unit including them is 
activated by the power manager and voice activity detection 
(VAD) module to conserve power: the sound processing unit 
is turned off if no sound exists around the microphone array. 
The power management is fundamentally required because 
enormous microphones waste much power whereas they are 
not in use. In our VAD, the sampling frequency can be 
reduced to 2 kHz and the number of bits per sample can be 
set to 10 bits. These values are sufficient to detect human 
speech, in which case only 3.49 μW is dissipated on a 0.18-
μm CMOS process [6]. By separating the low-power VAD 
module from the sound processing unit, it can turn off the 
sound processing unit using the power manager. A single 
microphone is sufficient to detect a signal: the remaining 15 
microphones are tuned off as well. Furthermore, not all VAD 
modules in all nodes need operate. The VAD modules in a 
limited number of nodes are merely activated in the system. 

Fig. 9 portrays a flow chart of our system. The salient 
features of the system are: 1) low-power voice activity 
detection to activate the entire node, 2) sound-source 
localization to find sound sources, and 3) sound-source 
separation to enhance the sound. The sub-array nodes are 
connected to support their mutual communication. Therefore, 
the sound gained by each node can be gathered to improve 
the sound source’s SNR further. The system achieves a huge 

microphone array through interaction with surrounding 
nodes. Therefore, the computations can be distributed among 
nodes. The system has scalability in terms of the number of 
microphones. Each node preprocesses acquired sound data; 
then only compressed data––localized and separated sound–
–are communicated. 
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Figure 9.  Flow chart of intelligent ubiquitous sensor nodes. 

As a real design, we implemented the intelligent 
ubiquitous sensor node on a field-programmable gate array 
board (FPGA, SZ410, Suzaku; Atmark Techno Inc.) and 
microphones (ECM-C10; Sony Corp.). Fig. 10 portrays 
photographs of the prototype system. 

The next section presents discussion of the performances 
and accuracies of the sound-source localization and sound-
source separation in our system using measured data. For the 
system, gathering and processing localization data are 
important to improve the localization accuracy. Distributed 
localization data obtained with the MUSIC algorithm can be 
processed using a communication network in our system. 
Regarding the sound-source separation, we use basic delay-
and-sum beam forming both within a node and among nodes 
[21]. Therefore, the time accuracy between nodes strongly 
affects the final SNR of the sound source collected with the 
network. 

IV. IMPLEMENTATION OF THE MICROPHONE ARRAY 
SYSTEM WITH THE PROPOSED AGGREGATION SCHEME 
We implement the proposed perfect aggregation scheme 

to an actual sensor network with microphone arrays to verify 
the SNR performance. Each node operates the sound source 
localization with its 16 microphones. Consequently, each 
node aggregates 16 sounds to a single sound using delay-
and-sum beam-forming enhancing the objective sound. Then 
the sound is transmitted to neighboring nodes. In this 
experimentation, seven nodes are connected linearly, as 
illustrated in Fig. 11. Then they aggregate the data of one 
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side to the other side. One aggregated audio datum, which 
has higher SNR, is obtained at the last node. All sounds from 
all 112 microphones are aggregated to one channel. 

 

 
Figure 10.  System photographs: intelligent ubiquitous sensor node and 

microphone array comprising sub-arrays. 

Enhanced 
speech

Aggregation among nodes
2ch->1ch

1ch 1ch 1ch
Node 1 Node 2 Node 3 Node 8

Sound 
source

16 microphones

Aggregation internal nodes
16ch->1ch

 
Figure 11.  Experiment diagrams. 

Fig. 12 shows that the SNR improvement of 7.75 dB was 
gained with 122 microphones. We expect to achieve 15 dB 
or greater improvement using several tens of sub-arrays and 
hundreds of microphones. 

Next, we compared network-traffic costs with the 
proposed perfect aggregation and without data aggregation. 
Fig. 13 shows examples of the traffic data sizes with and 
without proposed perfect data aggregations. The network 

traffic is increased by 16 channels on every node if without 
the data aggregation. This enables lossless sound acquisition 
and realizes applications such as the reproduction of sound 
fields, but results in heavy traffic (Fig. 13(a)). On the other 
hand, using the proposed perfect aggregation, the network 
traffic is always 1 channel (Fig. 13(b)). This small-channel 
network means a lossy sound source acquisition. However, 
the sound-source localization algorithm and the sound-
source separation algorithm achieve high SNR sound 
acquisition for an intended sound source. 
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Figure 12.  SNR improvements vs. the number of microphones. 
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Figure 13.  Examples of traffic data sizes: (a) without and (b) with the 

proposed perfect data aggregations. 

Fig. 14 shows normalized (the criterion for normalization 
is the network cost in the proposed 32-ch perfect data 
aggregation) network costs with and without the proposed 
perfect data aggregations. For 1024-ch microphones, the 
proposed perfect aggregation achieves 99.11% network 
traffic reduction, which demonstrates that the proposed 
scheme keeps the network traffic cost low consistently. It is 
applicable to a future larger-scale microphone array for a 
sound acquisition system. 
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Figure 14.  Normalized traffic cost vs. the number of microphones. 

V. CONCLUSION 
As described in this paper, we propose a novel perfect 

aggregation scheme that is specialized for sound acquisition 
systems comprising numerous microphones. The 
microphone array network using 16-microphone sub-arrays 
performed the following three operations in a node and a 
network: 1) low-power VAD to activate the entire node, 2) 
sound-source localization to find sound sources, and 3) 
sound-source separation to enhance the sound. We 
implemented an actual microphone array network that 
realizes the ubiquitous sound acquisition system, and verified 
that the proposed scheme reduces the network traffic and 
saves resources such as power and memory size. 

Low-power VAD was implemented to manage the 
node’s power consumption. The system achieves low power 
when speech is not active. The VAD module dissipates only 
3.49 μW on a 0.18-μm CMOS process. Sound-source 
localization is processed with the distributed nodes. The 
proposed sound-source localization scheme uses a two-
layered hierarchical algorithm. The experimental result of the 
sound-source separation shows SNR improvement of 7.75 
dB using 112 microphones. We confirmed that the system 
achieves a 99.11% traffic amount reduction when using 1024 
microphones. 
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