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Abstract: In this paper, in order to realize 0.4 V operation of STT-MRAM, we propose the counter base read circuit.
The proposed read circuit has tolerance for process variation and temperature fluctuation by changing dynamically
the load curve in a time-axis at the read operation. We confirmed that the proposed read circuit can operate at the
conditions of five process corners (TT, FF, FS, SF, and SS) and three temperatures (−20◦C, 25◦C, and 100◦C) by
HSPICE simulations. At the condition of TT corner and 25◦C, read time of the proposed circuit is 271 ns, and energy
consumption is 1.05 pJ at “1” read operation and 1.23 pJ at “0” read operation.
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1. Introduction

The capacity of embedded memory on a chip has kept increas-
ing. It is important to reduce the leakage power of embedded
memory for low-power LSIs. In fact, the ITRS predicts that the
leakage power in embedded memory will account for 40% of all
power consumption by 2024 [1]. A spin transfer torque magneto-
resistance random access memory (STT-MRAM) is promising for
use as non-volatile memory to reduce the leakage power. It is use-
ful because it can function at low voltages and has a lifetime of
over 1016 write cycles [2]. In addition, making STT-MRAM suit-
able for use in high-density products [3], [4], [5], [6], [7]. STT-
MRAM uses magnetic tunnel junction (MTJ) device. MTJ has
magnetoresistance and that value can be changed by MTJ’s state.
The state of MTJ determined by the magnetization direction of
the fire layer which is one of the layers consisting the MTJ. The
MTJ has two states, parallel and anti-parallel states. In the paral-
lel state, the magnetoresistance value of the MTJ becomes higher
than that of anti-parallel state.

2. Conventional Read Circuit

Figure 1 shows the conventional read circuit schematic [8].
The node “S” is the input of the sense amplifier. The voltage
of the node “S” determined by the balance between load current
(Iload) and read out current (IP, IAP). The resistance value of bit
cell is dependent on the datum. Therefore, the cell current has
two patterns. Figure 2 presents current characteristics of the con-
ventional circuit at TT and FS corners, 0.4 V VDD.

1 Kobe University, Kobe, Hyogo 657–8501, Japan
2 Osaka University, Osaka 565–0871, Japan
3 Low-Power Electronics Association and Project (LEAP), Tsukuba,

Ibaraki 305–8569, Japan
a) umeki@cs28.cs.kobe-u.ac.jp

This conventional circuit makes the 130-mV difference be-
tween the parallel and anti-parallel states at TT corner.

However, at the FS corner, there is only 40-mV difference be-
tween the two states. This voltage difference is too small to be
read out for a sense amplifier. As well, it is difficult to make an
appropriate reference voltage for every process corner. This is
the reason the conventional circuit cannot operate correctly in the
low voltage area.

3. Proposed Read Circuit

Figure 3 shows the 1-Mb STT-MRAM macro with the pro-
posed bitline digitize circuit. The proposed read circuit converts
a bitline voltage, which depends on a target cell datum, to a digital
value. To compare with the cell data, two reference cell columns
is further added. All cells in the reference “0” column have data
“0” whereas all data are “1” in the reference “1” column. In
read operation, both are read out at the same time, and they are
changed to digital values in the proposed read circuit. Then, the
reference value is determined as an average of their digital values.
After that, the target cell’s bitline voltage is changed to digital
value and compared with the reference value. The output data are
decided by comparing the digital values.

Figure 4 shows the dynamic load circuit. The dynamic load
circuit consists of negative resistance circuit and four boosting
nMOSes. These four boosting nMOSes have different current
driving capabilities. When the minimum is set to 1, the ratio of
the current drive capabilities is 1:2:4:8. The dynamic load circuit
has a characteristic that the load curve changes over time dynam-
ically. The voltage of node “S” is changed by the dynamic load
circuit. It means the input of the ring oscillator changes dynami-
cally. In addition, the bitline voltage can be digitized by counting
number of oscillations, because the frequency of the ring oscil-
lator depends on the voltage of node “S”. Therefore, the data of
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Fig. 1 Conventional read circuit.

Fig. 2 Current characteristics of the conventional circuit.

Fig. 3 Bitline voltage digitizing circuit.

Fig. 4 Schematic of dynamic load circuit.

the target cell can be determined by combining with the bitline
digitize circuits.

The left side of Fig. 5 shows the current characteristics in the
case of LE<3:0>=“1001”. In this proposed circuit, the supply
current from the negative resistance circuit (Ineg) will not decrease
uniformly. Ineg has a characteristic that decreases once it has in-
creased as the voltage of the node “S” increases. This proposed
circuit can make the larger voltage difference between the low
and high states by summing up the input current from the nega-
tive resistance circuit and the NMOS load circuit. This proposed
circuit corresponds to the variation of characteristics by sequen-
tially switching the LE signal from LE<3:0>=“0000” to “1111”.
The right side of Fig. 5 shows the current characteristics of dy-
namic load current at all steps.

Figure 6 shows transient simulation results of the proposed
circuit at TT corner, 25◦C. In this simulation, the LE signal is
switched from “0000” to “1111” in every 100 ns. In this case,

Fig. 5 Current characteristics of proposed read circuit.

Fig. 6 Transient simulations of proposed circuit at TT corner.

Table 1 Counts of ring oscillator.

if the target cell datum is 1 (=AP state), the oscillator stops in
LE<3:0>=“0000” because the input voltage becomes higher than
their threshold voltage. But if the target cell datum is 0 (=P state),
the oscillation continues until LE<3:0>=“1011”. Though, the
data can distinguish by counting the number of oscillations.

4. Simulation Results

We simulated the proposed circuit in the all process corners
(TT, FF, FS, SF, SS). Temperature conditions are −20◦C, 25◦C
and 100◦C. The operating voltage setting is 0.4 V. As the char-
acteristics of the MTJ, we configured the MR ratio is 100%. The
resistance values are 3.5 kΩ in the parallel state, and 7 kΩ in the
anti-parallel state. We evaluated the bitline digitize circuit with
dynamic load circuit for accuracy, readout time and energy con-
sumption.

Table 1 show the count of the ring oscillator in each condition.
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Table 2 Read time and energy.

Fig. 7 Chip photograph and TEM micrograph of the MTJ.

This result shows the proposed circuit is possible to distinguish
between the P and AP states at 0.4 V VDD. However, in particu-
lar at the SS corner, the number in the count difference between
the P and AP is small. This result implies that the proposed cir-
cuit needs more than 100 ns in switching time of the LE signal.
Table 2 shows the energy consumption and cycle time in the read
operation. In this simulation, we assumed the read operation is
finished when the difference of the count between the two states
becomes 10. In the case of TT corner, 25◦C, the readout time is
271 ns. The energy consumptions of “0” read is 1.23 pJ and “1”
read is 1.05 pJ respectively. In the −20◦C cases, the readout time
becomes longer than the other temperature cases. It degrades the
energy consumptions to the other temperature conditions.

5. Chip Implementation and Conclusion

We fabricated a 4-Mb STT-MRAM using a 65-nm process
technology. The left side of Fig. 7 shows the layout of test chip
and the right side shows TEM micrograph of the MTJ. The area
of proposed circuit is 180 µm2. It means that the area overhead of
1-Mb macro is 0.53%. In this test chip, the charge pump circuit
provides a 1.6-V boosted voltage to a gate of an access transis-
tor, which suppresses effects of a threshold voltage variation of
the access transistor and a cell current variation, thus draws more
readout current. In the TEM micrograph, thin and white area is
tunnel insulating film. The free layer and pinned layer are com-
posed almost entirely of CoFeB.

In this paper, we proposed the counter base read circuit for 0.4-
V operating STT-MRAM. The proposed circuit is confirmed that
operates in all process corners and three temperature conditions
at 0.4-V VDD by the simulation. In the case of TT, 25◦C, the

cycle time is 271 ns and energy consumptions are 1.23 pJ in “0”
read operation and 1.05 pJ in “1” read operation.
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