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Abstract— We present a hardware implementation of Burg’s 
method, which is used for autoregressive (AR) model estimation. 
The AR model is a linear predictive modeling technique. It 
assumes that the current value of a signal can be described by a 
finite linear aggregate of the previous values. The AR model can 
be used for spectral analysis as an alternative to the Fourier 
transform. This approach is a parametric method, and it can yield 
higher resolutions than nonparametric methods in cases when the 
signal length is short. Although Burg’s method requires a large 
computational capacity, especially with higher model orders, a fast 
Burg’s method has been proposed for improving this drawback. 
In this study, we evaluate the influence of the order and the data 
length of Burg’s method on the computational capacity. The 
hardware implementation method of the fast Burg’s method 
including a two-stage pipeline architecture and a parallelization 
technique for autocorrelation calculations is proposed. The 
proposed method is implemented using Verilog HDL and its 
energy consumption is estimated with the 65-nm CMOS process. 
The evaluation result shows that the proposed method achieves an 
energy consumption of 21.6–361.4 nJ for the spectral estimation 
with a data length of 128–2048 points when the model order is 5.

Keywords—AR model, Burg’s method, hardware 
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I. INTRODUCTION

Spectral analysis is widely used as digital signal processing 
for time series data such as vital signal analysis and speech 
analysis. Discrete Fourier transform (DFT) is generally used for 
spectral analysis because the fast Fourier transform (FFT) 
algorithm can obtain an accurate spectrum with a small amount 
of calculation. Furthermore, as most of the calculation is 
composed of multiplication and accumulation, it can be easily 
implemented in a dedicated hardware.  

However, the frequency resolution of the DFT depends on 
the sampling rate and the number of input data length. A larger 
number of input points is required to obtain a higher frequency 
resolution. In actual applications, cases exist where the data 
length cannot be increased. For example, in biological signal 
measurement that requires real-time data analysis, the frequency 
characteristics are required to be instantaneously extracted from 
the measured data in a short time. The short data length is also 
effective for reducing the energy consumption of the processor 
and memory. 

We herein focus on an autoregressive (AR) model to realize 
an accurate and low-energy spectral analysis with short data 
length. The AR model is a linear predictive modeling technique, 
which assumes that the current value of a signal can be described 
by a finite linear aggregate of the previous values. The AR 
model can be used for spectral analysis as an alternative to the 
Fourier transform [1]. 

In this method, the time series data is input and a specific 
linear system called the AR model is output. Subsequently, we 
obtain the frequency spectrum by comparing the AR model with 
the variance of white noise. Using this method, the frequency 
resolution can be arbitrarily determined. This approach is a 
parametric method, and it can yield higher resolutions than 
nonparametric methods such as DFT in cases when the data 
length is short. 

However, the AR-model-based spectral analysis requires a 
larger number of calculations than FFT, especially with the 
higher model order. Furthermore, in contrast with FFT, an 
efficient hardware design of the AR model estimation has not 
been studied. These drawbacks increase the energy consumption. 
Therefore, this method is rarely used in systems requiring low 
energy consumption such as wearable devices. 

To overcome this problem, we propose an efficient hardware 
implementation of the AR model estimation method, called 
Burg’s method. The details of the AR model and Burg’s method 
is introduced in section II. The computational amount of Burg’s 
method is discussed and compared with FFT in section III. The 
proposed architecture and its implementation result are 
respectively described in sections IV and V. 

II. AR MODEL AND SPECTRAL ESTIMATION

A. AR Model Overview 
The AR model predicts the time series data at a certain time 

from the linear sum of the previous data. Therefore, when the 
time series data are input, the expression of the AR 
model is defined as follows: 

(1)

where  is the AR coefficient; it is a weight that indicates how 
much data of a certain time in the past influences the current data. 
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 is the AR order, which is a parameter that determines the past 
search period in the AR model. Further,  indicates the 
prediction error between the linear sum of the past data and the 
actual current data. 

At this time, the power spectral density (PSD) of the time 
series data is obtained by the following calculation: 

(2)

where Fs , represent the sampling frequency and 
variance in prediction error , respectively. The variance in 
prediction error is the normal white noise. 

To perform spectral analysis using (2), two parameters: AR 
order and AR coefficient must be accurately estimated. The 
Akaike information criterion (AIC) [2] is a typical example of 
the AR order determination method. However, even with such a 
method, the unique AR order cannot be determined. In fact, it is 
necessary to adjust the AR order according to input data. In this 
research, the AR order was designed to be variable with values 
up to 10 Many methods exist, such as the Yule–Walker method, 
Burg’s method, and covariance and modified covariance 
methods, to estimate the AR coefficient [3]. In this work, we 
employed the Burg’s method because it has better accuracy and 
stability. This method can detect clear peaks even with fine 
frequency resolutions compared with other AR coefficient 
estimation methods. In addition, it always generates a stable 
model. Furthermore, a fast Burg’s method [4] is proposed to 
reduce the computational amount. The details of these methods 
are described in the following sections. 

B. AR Coefficients Estimation Using Burg’s Method 
Burg's method predicts the AR coefficient using the least-

squares method for the sum of the forward and backward linear 
prediction error energies of the AR model. N and n respectively 
represent the input data length and the order of the AR model. 
The sum of the squares of the forward linear prediction error 
energy  and the backward prediction error energy  is 
expressed by the following equation. 

(3)

Where  

(4)

At this time, the AR coefficient  is restricted by the 
Levinson–Durbin recursion shown below: 

(5)

By placing this constraint equation, if the AR coefficient of the 
(n–1)-th order is known, the n-th order AR coefficient can also 
be obtained. Using these processes, the value of AR coefficient 

is determined by minimizing . Therefore, the coefficient is 
determined by applying the reflection coefficient  obtained 
by differentiating  to the following expression (6).  

(6)

where  

(7)

(8)

Here,  represents an  size matrix that inverts the matrix 
of  size vertically and horizontally.  

C. Fast Burg’s Method 
The fast Burg’s method, which reduces the computational 

capacity required for the conventional Burg’s method, has been 
proposed in [4]. In this method, without explicitly calculating 
the forward prediction error energy  and the backward 
prediction error energy , the reflection coefficient  is 
derived using equation (9). 

(9)

where 

(10)

(11)

(12)

(13)

and  represents autocorrelation

When the number of input data length is  and the AR order 
is , the number of calculations of Burg's method is ,
and the number of calculations of the fast Burg’s method is 

. Therefore, when , the computational 
capacity required for the fast Burg’s method is smaller than that 
for Burg's method. 



III. PERFORMANCE EVALUATION OF SPECTRAL ANALYSIS 
COMPARED WITH FOURIER TRANSFORM

A. Data Length and Accuracy 
First, the spectral analysis results of FFT and Burg’s method 

with short input data length are evaluated. As the spectral 
analysis accuracy of Burg's method and the fast Burg’s method 
are the same, only Burg's method is evaluated in this section. 
The AR order was set to eight. A composite of sine waves of 5 
Hz and 30 Hz was used as the input data. Two input data lengths 
of 1.0 s and 0.25 s were tested for each method. The sampling 
frequency of the input data was set to 256 Hz.  

Fig. 1 shows the PSD estimation result using FFT and Burg's 
method. Although the FFT with 1-s data length accurately 
estimates the PSD, the peaks of the PSD estimated by FFT with 
0.25-s data length are unclear. Meanwhile, all peaks can be 
identified regardless of the data length using Burg’s method. 

The FFT peak is ambiguous because the frequency 
resolution is determined by the relational expression between 
the sampling frequency shown below and the sampling time of 
the input data.  

(14)

where  denote the frequency resolution, input data 
time, the sampling frequency, and the number of input data 
length, respectively. When the input data time is set to 1.0 s and 
0.25 s, the frequency resolution respectively becomes 1 Hz and 
4 Hz. Therefore, it is impossible to detect the peak of an 
appropriate frequency. However, when Burg's method is used, 
the frequency resolution can be arbitrarily determined by the 
user. In this experiment, the frequency resolution with Burg's 
method is set to 1 Hz for any input data length. This result shows 
that even if the input is short-term data, Burg's method can 
maintain a high-frequency resolution compared to FFT. This 
method is useful as a spectral analysis method for instantaneous 
input data.  

B. Computational Amount 
The computational amounts of Burg's method and the fast 

Burg’s method depend on the AR order. A larger AR order 
increases the possibility of detecting more complicated 
frequency peaks but increases the computational amount. 
Further, if too large an AR order is used, the AR model 
accurately reproduces the noise, such that only the frequency 
peak cannot be detected clearly. Therefore, frequent cases exist 
where the ideal AR order is small. In this section, the difference 
in the computational amount between FFT and the AR method 
at a low AR order is compared. 

Fig. 2 shows how the number of multiplications in the three 
methods: FFT, Burg's method, and the fast Burg’s method 
changes with the AR order as a variable. The AR order is 
changed between 2 and 10. The number of input data length is 
set to 256 points or 1024 points. When Burg's method is used, 
the number of calculations becomes larger than that of FFT 
regardless of the AR order. However, when the fast Burg’s 
method is used, for an input data length is 256 points, the number 
of calculations becomes smaller than that of FFT when the AR 
order is set to seven or less. For 1024 points, when the AR order 
is set to nine or less, the number of calculations becomes smaller 
than that of FFT. From this experimental result, if the spectral 
analysis of the input data can be executed with a low AR order, 
the fast Burg’s method can reduce the number of calculations 
from the FFT. Moreover, the longer the input data length, the 

Fig. 1. Comparison of estimated PSD with 5-Hz and 30-Hz sin wave 
input. 
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Fig. 2. Relationship between computational amount and AR order (a) with 
256 points (b) with 1024 points. 
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closer the number of calculations of the fast Burg’s method is to 
FFT.

IV. SIGNAL PROCESSING FLOW AND HARDWARE 
ARCHITECTURE OF THE FAST BURG’S METHOD

In this section, we describe the implementation method of 
the fast Burg’s method including the AR model estimation. 

Fig. 3 shows the signal processing flow of the hardware-
implemented fast Burg’s method. The calculation process is 
primarily divided into two stages. The first involves calculating 
the autocorrelations (AC stage). The calculation in this stage 
increases in proportion to the input data length. The second 
involves estimating the AR model (AR stage). The number of 
calculations in this stage increases in proportion to the AR order. 

The calculation result of the AC stage depends only on the 
input data. Therefore, the waiting time for the AR stage 
processing can be eliminated. It is effective to implement the fast 
Burg’s method using a pipeline structure. 

As an architecture acceleration method, a parallel execution 
architecture of the AC stage is introduced. In the -th update, the 
calculation of the AC stage requires (  cycles. Meanwhile, 
the AR stage requires only approximately  cycles. Therefore, 
in the case of N > i / 6, the AC stage can be completed in a 
shorter cycle than the AR stage. When the AR order is 
sufficiently smaller than the input data length, waiting occurs in 
the AR stage. By implementing the AC stage in a parallel 
architecture, the number of cycles required for the entire flow 

can be reduced. Therefore, in the case of , the AC stage 
ends in a shorter number of cycles than the AR stage. If the AR 
order is sufficiently smaller than the input data length, a wait 
state occurs in the AR stage. By implementing the AC stage in 
a parallel architecture, this wait state can be eliminated and the 
number of cycles required for the entire flow can be reduced. 

 Each time the AC stage updates, this hardware requests 
approximately 2N reads to the input data RAM. Therefore, the 
energy consumption of the RAM is very large. However, this 
problem can be greatly alleviated by the AC stage parallelization 
method. Fig. 4 shows a sample architecture incorporating two-
parallel AC stage. By sharing the input of AC stage 1 with AC 

Fig. 3. Signal processing flow of the fast Burg’s method. 
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stage 0, the number of reads from the input data RAM can be 
reduced to approximately one-half. 

Fig. 5 shows the timing diagram of the architecture 
incorporating the two-parallel AC stage. Fig. 6 shows the effect 
of reducing the number of cycles by the proposed method. When 
the AR order is 10, the number of cycles can be reduced by 
29.7% through the pipeline implementation, as compared with 
the case where all calculations are executed sequentially. 
Furthermore, by implementing the two-parallel AC stage, we 
achieved 58.8% reduction in the number of cycles compared 
with the sequential execution. 

V. IMPLEMENTATION RESULT AND PERFORMANCE 
COMPARISON

First, we implemented the proposed architecture of the 
pipelined AR stage and the sequential AC stage using Verilog-
HDL. For the synthesis and energy evaluation, Synopsis Design 
Compiler version 2017.09 was used. Fig. 7(a) shows the 
calculated energy consumption with 65-nm CMOS process 
libraries. The AR order is set to 10. The other parameters are 
summarized in Table I. Fig. 7(b) shows the estimated energy 
consumption with the two-parallel AC stage. This result is 
estimated from the result shown in Fig. 7(a). From these results 
and the RAM values, we observe that 86.3% of the energy is 
consumed. Moreover, we estimate that 32% reduction in energy 
consumption can be achieved by implementing the two-parallel 
AC stage.

Next, the energy consumption of the proposed hardware is 
compared with prior works. Numerous processors for spectral 
analysis using FFT have been developed [6–8]. We introduce 
the following equation, which is defined from the literature [7] 
as an evaluation index. 

(15)

This formula explains the energy consumed by each PSD 
estimation. This formula can correct the differences in 
technology nodes and supply voltages. Although the proposed 
hardware only assumes real number spectral analysis, the 
comparison target [6–8] is implemented for complex FFT. The 
energy consumption can be reduced by up to 50% when 
handling real data using the complex FFT processor operation 
[9]. Therefore, we assumed that the energy to be compared is 
half of the value shown in [6–8]. 

Fig. 8 shows the figure of merit (FoM) in the case of 512 
input data length. The AR order is set from 5 to 10. This result 
shows that the proposed hardware can be executed with almost 
the same computation energy as conventional processors when 
operated at a low order. When the AR order is eight, it can 
operate with approximately the same energy consumption as 
that used in the case in [8]. 

Fig. 9 shows the FoM when the AR order is fixed to 5. The 
number of input data length is set from 128 points to 2048 
points. This result shows that the proposed hardware can 
operate with a lower energy than the conventional processor if 
it has a lower AR order and a longer input data point. For 
example, when the AR order is 5 and the number of input data 
length is 2048 points, it can operate with 2% less energy 
consumption than [6]. 

Finally, we compare the proposed hardware with the 
estimated PSD using FFT. We assume the heart rate variability 
analysis (HRVA) as an application herein. This application 
enables the monitoring of cardiac diseases and stress conditions 
by the spectral analysis of the heart beat interval [5]. The 
proposed hardware renders two advantages for this application. 
First, a stable high-frequency resolution can be obtained. In 
HRVA, it is necessary to acquire the PSD of a frequency 
component of 0.04 Hz to 0.4 Hz. When using the fast Burg’s 
method, the resolution can be determined irrespective of the 
collected data. Therefore, a smooth frequency peak can be 
obtained even in the low-frequency region. Second, this method 
eliminates low-frequency noise. Fig. 10 (a) shows an example 
of the heart rate variation data. This data was obtained by 
converting the ECG data acquired in 128 s at a sampling rate of 
1024 Hz into 128 heart rate variability data. Fig. 10 (b) shows 
the result of the spectral analysis of this data by the proposed 
hardware. The AR order was set to 10. In both methods, the 
results show a large peak between 0.05 Hz and 0.1 Hz. However, 
the PSD using FFT was significantly influenced by the DC 
component noise in the low-frequency region. Meanwhile, we 

TABLE I. SPECIFICATIONS FOR ENERGY ESTIMATION.

CMOS Technology 65 nm 
Supply Voltage 1.2 V 

Frequency 1 MHz 
bit width(input/output) 12 bit / 18 bit 

Input buffer size 

RAM size 

Data length 256 
Supporting AR order 5–10 

Fig. 7. Estimated energy consumption of the proposed hardware 
implementation. (a) with pipelined AR stage and sequential AC stage (b) 
with pipelined AR stage and parallel AC stage. 
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found that a clear frequency peak can be obtained even in the 
low-frequency region using the proposed hardware. 

VI. CONCLUSION

We implemented the fast Burg’s method for an AR model 
based on spectral analysis. The proposed hardware is 
implemented using Verilog-HDL and its energy consumption is 
estimated using the 65-nm CMOS process. Compared with FFT, 
the fast Burg’s method can analyze with high-frequency 
resolutions even when using shorter input data length. When the 
AR order is set to 10 and the number of input data length is set 
to 256 points, the implemented hardware can operate with 99 nJ 
Furthermore, using the two-parallel autocorrelation stage, the 
energy consumption can be reduced to 66 nJ, which is nearly the 
same energy consumption as that of the FFT processor. 
Therefore, the proposed processor is capable of performing 
spectral analysis with a higher resolution than the conventional 
FFT processor with the same energy consumption. 
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Fig. 8. FoM comparison with prior work of FFT hardware 
implementation. Input data length is fixed to 512 points. AR order is set 
from 5 to 10. 

0

20

40

60

80

100

120

140

160

180

5 6 7 8 9 10

Fo
M

AR order

Proposed [6] [7] [8]

(a) 

(b) 

Fig. 10. Example of heart rate variability analysis using FFT and proposed 
technique (a)input : heart rate (b) output : PSD of 0 Hz to 0.45 Hz 
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