
Hardware Implementation of Autoregressive Model
Estimation Using Burg’s Method
for Low-Energy Spectral Analysis

Koichi Kajihara, Shintaro Izumi, Seiya Yoshida, Yuji Yano, Hiroshi Kawaguchi and Masahiko Yoshimoto
Graduate School of System Informatics

Kobe University
Kobe, Japan

Email: kajihara.koichi@cs28.cs.kobe-u.ac.jp

Abstract— We present a hardware implementation of Burg’s
method, which is used for autoregressive (AR) model estimation.
The AR model is a linear predictive modeling technique. It
assumes that the current value of a signal can be described by a
finite linear aggregate of the previous values. The AR model can
be used for spectral analysis as an alternative to the Fourier
transform. This approach is a parametric method, and it can yield
higher resolutions than nonparametric methods in cases when the
signal length is short. Although Burg’s method requires a large
computational capacity, especially with higher model orders, a fast
Burg’s method has been proposed for improving this drawback.
In this study, we evaluate the influence of the order and the data
length of Burg’s method on the computational capacity. The
hardware implementation method of the fast Burg’s method
including a two-stage pipeline architecture and a parallelization
technique for autocorrelation calculations is proposed. The
proposed method is implemented using Verilog HDL and its
energy consumption is estimated with the 65-nm CMOS process.
The evaluation result shows that the proposed method achieves an
energy consumption of 21.6–361.4 nJ for the spectral estimation
with a data length of 128–2048 points when the model order is 5.

Keywords—AR model, Burg’s method, hardware
implementation, parametric method, spectral analysis

I. INTRODUCTION

Spectral analysis is widely used as digital signal processing
for time series data such as vital signal analysis and speech
analysis. Discrete Fourier transform (DFT) is generally used for
spectral analysis because the fast Fourier transform (FFT)
algorithm can obtain an accurate spectrum with a small amount
of calculation. Furthermore, as most of the calculation is
composed of multiplication and accumulation, it can be easily
implemented in a dedicated hardware.

However, the frequency resolution of the DFT depends on
the sampling rate and the number of input data length. A larger
number of input points is required to obtain a higher frequency
resolution. In actual applications, cases exist where the data
length cannot be increased. For example, in biological signal
measurement that requires real-time data analysis, the frequency
characteristics are required to be instantaneously extracted from
the measured data in a short time. The short data length is also
effective for reducing the energy consumption of the processor
and memory.

We herein focus on an autoregressive (AR) model to realize
an accurate and low-energy spectral analysis with short data
length. The AR model is a linear predictive modeling technique,
which assumes that the current value of a signal can be described
by a finite linear aggregate of the previous values. The AR
model can be used for spectral analysis as an alternative to the
Fourier transform [1].

In this method, the time series data is input and a specific
linear system called the AR model is output. Subsequently, we
obtain the frequency spectrum by comparing the AR model with
the variance of white noise. Using this method, the frequency
resolution can be arbitrarily determined. This approach is a
parametric method, and it can yield higher resolutions than
nonparametric methods such as DFT in cases when the data
length is short.

However, the AR-model-based spectral analysis requires a
larger number of calculations than FFT, especially with the
higher model order. Furthermore, in contrast with FFT, an
efficient hardware design of the AR model estimation has not
been studied. These drawbacks increase the energy consumption.
Therefore, this method is rarely used in systems requiring low
energy consumption such as wearable devices.

To overcome this problem, we propose an efficient hardware
implementation of the AR model estimation method, called
Burg’s method. The details of the AR model and Burg’s method
is introduced in section II. The computational amount of Burg’s
method is discussed and compared with FFT in section III. The
proposed architecture and its implementation result are
respectively described in sections IV and V.

II. AR MODEL AND SPECTRAL ESTIMATION

A. AR Model Overview
The AR model predicts the time series data at a certain time

from the linear sum of the previous data. Therefore, when the
time series data are input, the expression of the AR
model is defined as follows:

(1)

where is the AR coefficient; it is a weight that indicates how
much data of a certain time in the past influences the current data.

This paper is based on results obtained from a project commissioned by
the New Energy and Industrial Technology Development Organization
(NEDO).

 is the AR order, which is a parameter that determines the past
search period in the AR model. Further, indicates the
prediction error between the linear sum of the past data and the
actual current data.

At this time, the power spectral density (PSD) of the time
series data is obtained by the following calculation:

(2)

where Fs , represent the sampling frequency and
variance in prediction error , respectively. The variance in
prediction error is the normal white noise.

To perform spectral analysis using (2), two parameters: AR
order and AR coefficient must be accurately estimated. The
Akaike information criterion (AIC) [2] is a typical example of
the AR order determination method. However, even with such a
method, the unique AR order cannot be determined. In fact, it is
necessary to adjust the AR order according to input data. In this
research, the AR order was designed to be variable with values
up to 10 Many methods exist, such as the Yule–Walker method,
Burg’s method, and covariance and modified covariance
methods, to estimate the AR coefficient [3]. In this work, we
employed the Burg’s method because it has better accuracy and
stability. This method can detect clear peaks even with fine
frequency resolutions compared with other AR coefficient
estimation methods. In addition, it always generates a stable
model. Furthermore, a fast Burg’s method [4] is proposed to
reduce the computational amount. The details of these methods
are described in the following sections.

B. AR Coefficients Estimation Using Burg’s Method
Burg's method predicts the AR coefficient using the least-

squares method for the sum of the forward and backward linear
prediction error energies of the AR model. N and n respectively
represent the input data length and the order of the AR model.
The sum of the squares of the forward linear prediction error
energy and the backward prediction error energy is
expressed by the following equation.

(3)

Where

(4)

At this time, the AR coefficient is restricted by the
Levinson–Durbin recursion shown below:

(5)

By placing this constraint equation, if the AR coefficient of the
(n–1)-th order is known, the n-th order AR coefficient can also
be obtained. Using these processes, the value of AR coefficient

is determined by minimizing . Therefore, the coefficient is
determined by applying the reflection coefficient obtained
by differentiating to the following expression (6).

(6)

where

(7)

(8)

Here, represents an size matrix that inverts the matrix
of size vertically and horizontally.

C. Fast Burg’s Method
The fast Burg’s method, which reduces the computational

capacity required for the conventional Burg’s method, has been
proposed in [4]. In this method, without explicitly calculating
the forward prediction error energy and the backward
prediction error energy , the reflection coefficient is
derived using equation (9).

(9)

where

(10)

(11)

(12)

(13)

and represents autocorrelation

When the number of input data length is and the AR order
is , the number of calculations of Burg's method is ,
and the number of calculations of the fast Burg’s method is

. Therefore, when , the computational
capacity required for the fast Burg’s method is smaller than that
for Burg's method.

III. PERFORMANCE EVALUATION OF SPECTRAL ANALYSIS
COMPARED WITH FOURIER TRANSFORM

A. Data Length and Accuracy
First, the spectral analysis results of FFT and Burg’s method

with short input data length are evaluated. As the spectral
analysis accuracy of Burg's method and the fast Burg’s method
are the same, only Burg's method is evaluated in this section.
The AR order was set to eight. A composite of sine waves of 5
Hz and 30 Hz was used as the input data. Two input data lengths
of 1.0 s and 0.25 s were tested for each method. The sampling
frequency of the input data was set to 256 Hz.

Fig. 1 shows the PSD estimation result using FFT and Burg's
method. Although the FFT with 1-s data length accurately
estimates the PSD, the peaks of the PSD estimated by FFT with
0.25-s data length are unclear. Meanwhile, all peaks can be
identified regardless of the data length using Burg’s method.

The FFT peak is ambiguous because the frequency
resolution is determined by the relational expression between
the sampling frequency shown below and the sampling time of
the input data.

(14)

where denote the frequency resolution, input data
time, the sampling frequency, and the number of input data
length, respectively. When the input data time is set to 1.0 s and
0.25 s, the frequency resolution respectively becomes 1 Hz and
4 Hz. Therefore, it is impossible to detect the peak of an
appropriate frequency. However, when Burg's method is used,
the frequency resolution can be arbitrarily determined by the
user. In this experiment, the frequency resolution with Burg's
method is set to 1 Hz for any input data length. This result shows
that even if the input is short-term data, Burg's method can
maintain a high-frequency resolution compared to FFT. This
method is useful as a spectral analysis method for instantaneous
input data.

B. Computational Amount
The computational amounts of Burg's method and the fast

Burg’s method depend on the AR order. A larger AR order
increases the possibility of detecting more complicated
frequency peaks but increases the computational amount.
Further, if too large an AR order is used, the AR model
accurately reproduces the noise, such that only the frequency
peak cannot be detected clearly. Therefore, frequent cases exist
where the ideal AR order is small. In this section, the difference
in the computational amount between FFT and the AR method
at a low AR order is compared.

Fig. 2 shows how the number of multiplications in the three
methods: FFT, Burg's method, and the fast Burg’s method
changes with the AR order as a variable. The AR order is
changed between 2 and 10. The number of input data length is
set to 256 points or 1024 points. When Burg's method is used,
the number of calculations becomes larger than that of FFT
regardless of the AR order. However, when the fast Burg’s
method is used, for an input data length is 256 points, the number
of calculations becomes smaller than that of FFT when the AR
order is set to seven or less. For 1024 points, when the AR order
is set to nine or less, the number of calculations becomes smaller
than that of FFT. From this experimental result, if the spectral
analysis of the input data can be executed with a low AR order,
the fast Burg’s method can reduce the number of calculations
from the FFT. Moreover, the longer the input data length, the

Fig. 1. Comparison of estimated PSD with 5-Hz and 30-Hz sin wave
input.

0 5 10 15 20 25 30 35 40
f (Hz)

-400

-300

-200

-100

0

PS
D

(d
B

)

FFT with 1.0-s window length
FFT with 0.25-s window length
Burg’s method with 1.0-s window length
Burg’s method with 0.25-s window length

(a)

(b)

Fig. 2. Relationship between computational amount and AR order (a) with
256 points (b) with 1024 points.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

2 3 4 5 6 7 8 9 10

M
ul

tip
lic

at
io

n
co

un
t

AR order

Burg's method
Fast Burg's method
FFT

0

5000

10000

15000

20000

25000

30000

35000

2 3 4 5 6 7 8 9 10

M
ul

tip
lic

at
io

n
co

un
t

AR order

Burg's method
Fast Burg's method
FFT

closer the number of calculations of the fast Burg’s method is to
FFT.

IV. SIGNAL PROCESSING FLOW AND HARDWARE
ARCHITECTURE OF THE FAST BURG’S METHOD

In this section, we describe the implementation method of
the fast Burg’s method including the AR model estimation.

Fig. 3 shows the signal processing flow of the hardware-
implemented fast Burg’s method. The calculation process is
primarily divided into two stages. The first involves calculating
the autocorrelations (AC stage). The calculation in this stage
increases in proportion to the input data length. The second
involves estimating the AR model (AR stage). The number of
calculations in this stage increases in proportion to the AR order.

The calculation result of the AC stage depends only on the
input data. Therefore, the waiting time for the AR stage
processing can be eliminated. It is effective to implement the fast
Burg’s method using a pipeline structure.

As an architecture acceleration method, a parallel execution
architecture of the AC stage is introduced. In the -th update, the
calculation of the AC stage requires (cycles. Meanwhile,
the AR stage requires only approximately cycles. Therefore,
in the case of N > i / 6, the AC stage can be completed in a
shorter cycle than the AR stage. When the AR order is
sufficiently smaller than the input data length, waiting occurs in
the AR stage. By implementing the AC stage in a parallel
architecture, the number of cycles required for the entire flow

can be reduced. Therefore, in the case of , the AC stage
ends in a shorter number of cycles than the AR stage. If the AR
order is sufficiently smaller than the input data length, a wait
state occurs in the AR stage. By implementing the AC stage in
a parallel architecture, this wait state can be eliminated and the
number of cycles required for the entire flow can be reduced.

 Each time the AC stage updates, this hardware requests
approximately 2N reads to the input data RAM. Therefore, the
energy consumption of the RAM is very large. However, this
problem can be greatly alleviated by the AC stage parallelization
method. Fig. 4 shows a sample architecture incorporating two-
parallel AC stage. By sharing the input of AC stage 1 with AC

Fig. 3. Signal processing flow of the fast Burg’s method.

START

Input
N points data

Initialization
i = 0 , a0 = 0

Compute the
reflection coefficient

Update the prediction
coefficient

i == m

Increment the iteration counter
i = i+1

Update Ri+1 , ri+1

Update gi

END

Yes

Calculate
the autocorrelation

No

AR model
prediction stage

(AR stage)

Autocorrelation
calculation stage

(AC stage)

Fig. 6. Comparison of latency for AR model estimation.

Sequential
Pipeline AR model prediction
Pararell autocorrelation calculation
+ AR model prediction

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5 6 7 8 9 10

La
te

nc
y(

cy
cl

e)

AR order

Fig. 5. Timing chart of parallel execution.

AR0

AC0

AC1 AC3

AC2 AC4

AC5

…

…

…AR1 AR2
AR model

prediction stage

Autocorrelation
calculation stage0

Autocorrelation
calculation stage1

AR3

N cycle
N+1 cycle

ARi : i-th AR model prediction stage
ACi : i-th autocorrelation calculation stage

5 i cycle

Fig. 4. Block diagram of the fast Burg’s method hardware.

Autocorrelation
calculation

stage0

REG

Input buffer

AR model
prediction

stage

Fast Burg’s method processor core controller

RAM

Autocorrelation
calculation stage

Autocorrelation
calculation

stage1

stage 0, the number of reads from the input data RAM can be
reduced to approximately one-half.

Fig. 5 shows the timing diagram of the architecture
incorporating the two-parallel AC stage. Fig. 6 shows the effect
of reducing the number of cycles by the proposed method. When
the AR order is 10, the number of cycles can be reduced by
29.7% through the pipeline implementation, as compared with
the case where all calculations are executed sequentially.
Furthermore, by implementing the two-parallel AC stage, we
achieved 58.8% reduction in the number of cycles compared
with the sequential execution.

V. IMPLEMENTATION RESULT AND PERFORMANCE
COMPARISON

First, we implemented the proposed architecture of the
pipelined AR stage and the sequential AC stage using Verilog-
HDL. For the synthesis and energy evaluation, Synopsis Design
Compiler version 2017.09 was used. Fig. 7(a) shows the
calculated energy consumption with 65-nm CMOS process
libraries. The AR order is set to 10. The other parameters are
summarized in Table I. Fig. 7(b) shows the estimated energy
consumption with the two-parallel AC stage. This result is
estimated from the result shown in Fig. 7(a). From these results
and the RAM values, we observe that 86.3% of the energy is
consumed. Moreover, we estimate that 32% reduction in energy
consumption can be achieved by implementing the two-parallel
AC stage.

Next, the energy consumption of the proposed hardware is
compared with prior works. Numerous processors for spectral
analysis using FFT have been developed [6–8]. We introduce
the following equation, which is defined from the literature [7]
as an evaluation index.

(15)

This formula explains the energy consumed by each PSD
estimation. This formula can correct the differences in
technology nodes and supply voltages. Although the proposed
hardware only assumes real number spectral analysis, the
comparison target [6–8] is implemented for complex FFT. The
energy consumption can be reduced by up to 50% when
handling real data using the complex FFT processor operation
[9]. Therefore, we assumed that the energy to be compared is
half of the value shown in [6–8].

Fig. 8 shows the figure of merit (FoM) in the case of 512
input data length. The AR order is set from 5 to 10. This result
shows that the proposed hardware can be executed with almost
the same computation energy as conventional processors when
operated at a low order. When the AR order is eight, it can
operate with approximately the same energy consumption as
that used in the case in [8].

Fig. 9 shows the FoM when the AR order is fixed to 5. The
number of input data length is set from 128 points to 2048
points. This result shows that the proposed hardware can
operate with a lower energy than the conventional processor if
it has a lower AR order and a longer input data point. For
example, when the AR order is 5 and the number of input data
length is 2048 points, it can operate with 2% less energy
consumption than [6].

Finally, we compare the proposed hardware with the
estimated PSD using FFT. We assume the heart rate variability
analysis (HRVA) as an application herein. This application
enables the monitoring of cardiac diseases and stress conditions
by the spectral analysis of the heart beat interval [5]. The
proposed hardware renders two advantages for this application.
First, a stable high-frequency resolution can be obtained. In
HRVA, it is necessary to acquire the PSD of a frequency
component of 0.04 Hz to 0.4 Hz. When using the fast Burg’s
method, the resolution can be determined irrespective of the
collected data. Therefore, a smooth frequency peak can be
obtained even in the low-frequency region. Second, this method
eliminates low-frequency noise. Fig. 10 (a) shows an example
of the heart rate variation data. This data was obtained by
converting the ECG data acquired in 128 s at a sampling rate of
1024 Hz into 128 heart rate variability data. Fig. 10 (b) shows
the result of the spectral analysis of this data by the proposed
hardware. The AR order was set to 10. In both methods, the
results show a large peak between 0.05 Hz and 0.1 Hz. However,
the PSD using FFT was significantly influenced by the DC
component noise in the low-frequency region. Meanwhile, we

TABLE I. SPECIFICATIONS FOR ENERGY ESTIMATION.

CMOS Technology 65 nm
Supply Voltage 1.2 V

Frequency 1 MHz
bit width(input/output) 12 bit / 18 bit

Input buffer size

RAM size

Data length 256
Supporting AR order 5–10

Fig. 7. Estimated energy consumption of the proposed hardware
implementation. (a) with pipelined AR stage and sequential AC stage (b)
with pipelined AR stage and parallel AC stage.

0
10
20
30
40
50
60
70
80
90

100
110

(a) (b)

RAM(static) RAM(dynamic)
Logic(static) Logic(dynamic)

En
er

gy
(n

J)

found that a clear frequency peak can be obtained even in the
low-frequency region using the proposed hardware.

VI. CONCLUSION

We implemented the fast Burg’s method for an AR model
based on spectral analysis. The proposed hardware is
implemented using Verilog-HDL and its energy consumption is
estimated using the 65-nm CMOS process. Compared with FFT,
the fast Burg’s method can analyze with high-frequency
resolutions even when using shorter input data length. When the
AR order is set to 10 and the number of input data length is set
to 256 points, the implemented hardware can operate with 99 nJ
Furthermore, using the two-parallel autocorrelation stage, the
energy consumption can be reduced to 66 nJ, which is nearly the
same energy consumption as that of the FFT processor.
Therefore, the proposed processor is capable of performing
spectral analysis with a higher resolution than the conventional
FFT processor with the same energy consumption.

REFERENCES

[1] H. Akaike, “Power spectrum estimation through autoregression model
fitting,” Ann. Inst. Statist. Math., vol. 21, pp. 407–419, 1969.

[2] T. Y. Kim, Y. H. Noh, D. U. Jeong, “On the use of the Akaike Information
Criterion in AR spectral analysis of cardiovascular variability signals: a
case report study,” Proc. of Computers in Cardiology, pp. 471–474, Sep.
1993.

[3] D. Chakraborty, S.K. Sanyal, “Performance Analysis of Different
Autoregressive Methods for Spectrum Estimation along with their Real
Time Implementations,” ICRCICN2016 IEEE International Conference,
September, pp. 141–146, 2016.

[4] K. Vos, “A Fast Implementation of Burg’s Method,”,
www.opuscodec.org/docs/vos_fastburg.pdf, August 2013.

[5] M. V. Kamath, M. A. Watanabe, A.R.M. Upton, “Heart Rate Variability
(HRV) Signal Analysis” CLINICAL APPLICATIONS, CRC Press, 2012.

[6] C.-H. Yang, T.-H. Yu, D. Markovic, “Power and area minimization of
reconfigurable FFT processors: A 3GPP-LTE example”, IEEE J. Solid-
State Circuits, vol. 47, no. 3, pp. 757–768, Mar. 2012.

[7] G. Zhong, F. Xu, A. N. Willson, “A power-scalable reconfigurable
FFT/IFFT IC based on multi-processor ring,” IEEE J. Solid-State Circuits,
vol. 41, no. 2, pp. 483–495, Feb. 2006.

[8] A. Wang, A. Chandrakasan, “A 180-mV subthreshold FFT processor
using a minimum energy design methodology”, IEEE J. Solid-State
Circuits, vol. 40, no. 1, pp. 310–319, Jan. 2005.

[9] M. Garrido, K. K. Parhi, J. Grajal, “A pipelined FFT architecture for real-
valued signals”, IEEE Trans. Circuits Syst. I Reg. Papers, vol. 56, no. 12,
pp. 2634–2643, Dec. 2009.

Fig. 8. FoM comparison with prior work of FFT hardware
implementation. Input data length is fixed to 512 points. AR order is set
from 5 to 10.

0

20

40

60

80

100

120

140

160

180

5 6 7 8 9 10

Fo
M

AR order

Proposed [6] [7] [8]

(a)

(b)

Fig. 10. Example of heart rate variability analysis using FFT and proposed
technique (a)input : heart rate (b) output : PSD of 0 Hz to 0.45 Hz

20 40 60 80 100 120
Time(s)

0.5

0.6

0.7

0.8

0.9

R
R

I(s
)

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Frequency (Hz)

0

1

2

3

4

5

6

PS
D

(s
 /H

z)

10-3

PSD using FFT
PSD using AR model

-2

Fig. 9. FoM comparison with prior work of FFT hardware
implementation. AR order is set to 5. Input data length is set from 128
points to 2048 points.

0

100

200

300

400

500

600

700

800

900

128 256 512 1024 2048

Fo
M

Input Data length

Proposed [6] [7] [8]

