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Abstract— This paper introduces a method to adaptively 

choose a learning rate (LR) with short-term pre-training (STPT). 

This is useful for quick model prototyping in data-parallel deep 

learning. For unknown models, it is necessary to tune numerous 

hyperparameters. The proposed method reduces computational 

time and increases efficiency in finding an appropriate LR; 

multiple LRs are evaluated by STPT in data-parallel deep learning. 

STPT means training only with the beginning iterations in an 

epoch. When eight LRs are evaluated using eight parallel workers, 

the proposed method can easily reduce the computational time by 

87.5% in comparison with the conventional method. The accuracy 

is also improved by 4.8% in comparison with the conventional 

method with a reference LR of 0.1; thus, no deterioration in 

accuracy is observed. For an unknown model, this method shows 

a better training curve trend than other cases with fixed LRs. 

Keywords- Deep learning, learning rate, hyperparameter, data-

parallel 

I. INTRODUCTION 

The impact of deep learning has been expanded from an 
object recognition competition, ImageNet Large-Scale Visual 
Recognition Competition (ILSVRC) 2012 [1], with a dramatic 
accuracy advantage; deep learning using convolutional neural 
networks (CNNs) achieved a steep error rate improvement of 
9.4 % in comparison with conventional methods [2]. These days, 
deep learning is recognized as a significant algorithm. In January 
2016, AlphaGo developed by DeepMind Ltd. competed with the 
world’s Go champion. Deep learning proved that, even for the 
most complex table game, the algorithm is able to acquire a 
better solution than a human [3]. Moreover, deep learning is 
expected to bring singularity in various fields. Researchers all 
over the world exploit deep learning not only in computer 
science but also for applications in medicine, finance, 
agriculture, energy management, and other fields [4]. Deep 
learning represents a breakthrough in the field of artificial 
intelligence. 

The CNN model imitates the visual cortex in the human 
cerebrum. It is an extension of a multi-layer perceptron that 
became most successful in image recognition [5]. Various 
algorithms for deep learning using convolutional networks have 
been proposed in the object recognition field [6] [7] [8]. Actually, 
a CNN algorithm is already expected to be put into practical use 
for security cameras and safety driving assistant applications [9]. 
The CNN algorithm achieves far superior recognition 
performance in comparison to other algorithms [10]. 

Still, there are complex problems to be addressed for various 
practical applications of CNNs in the future. One of the most 
noteworthy issues is that a training model requires a huge 
number of hyperparameters to achieve a high-accuracy 
recognition rate. Generally, a learning (training) process requires 
a large amount of training data and a deeper network to ensure 
good recognition performance. Therefore, training a network 
model requires enormous computational time even if state-of-
the-art processors are used. AlexNet takes about six days to learn 
90 epochs of ImageNet data using two NVIDIA GTX 580 GPUs 
[11]. Also, ResNet with 200 layers (ResNet-200) takes three 
weeks for ImageNet learning, even using eight parallel GPGPUs 
[12]. 

It is well known that ResNet shows better performance with 
greater numbers of layers; accuracy improvement becomes 
better even for networks with 1,000 or more layers [11]. 
Training such a deep network consumes much more time than 
before. This long training time is a major barrier for the practical 
application of deep learning. Parallel processing in deep learning 
is necessary to shorten the training time. Parallel processing may 
be divided into the following two types [13]: 

 Data parallel: Every worker has a replica of the model, 
and each worker processes different data and learns 
from the data. The data parallel has a synchronous 
mechanism in which parameter updating is 
synchronized among all workers. 

 Model parallel: One model is divided into parts, and 
each worker is associated with a single part. As a result, 
each worker has less memory capacitance and less 
memory bandwidth than those in the data parallel. 
However, it is more difficult to implement because 
each worker has a different part of the model. 

 A deeper network requires enormous dimensions of 
hyperparameters. In this paper, we specifically focus on the 
learning rate (LR). It is not automatically determined by a neural 
network; thus, a designer has to select an appropriate LR for its 
network structure in advance. Although the LR has the greatest 
influence on accuracy among the hyperparameters, it is currently 
determined experimentally and empirically in many cases. The 
problem here is that it is difficult for a trial of parameter tuning 
to achieve a sufficient result in a single learning process; it is 
necessary to repeat multiple trials of learning processes. 



As a prior work, the Hyperband [14], SMAC [15], and TPE 
[16] are introduced for the automatic adjustment of 
hyperparameters. The Hyperband formulates the hyper-
parameter optimization scheme as a pure-exploration non-
stochastic infinite-armed bandit problem. The predefined 
resources such as iteration, data samples, and features are 
allocated to randomly sampled configurations [14]. The tree-
structured Parzen estimator (TPE) models p(x|y) by 
transforming a graph-structured generative process and 
replacing the distributions of the configuration prior to a non-
parametric density[16]. 

Among them, Methods to algorithmically determine the LR 
have been proposed. For the methods that adaptively determine 
the LR, such as Adam [17], AdaGrad [18]  and AdaDelta [19], 
there are advantages and disadvantages; we currently have no 
optimal method for every problem. To make matters worse, the 
adaptive training methods increase the number of 
hyperparameters. After all, it is necessary to try various methods 
for a new network and to select an LR based on the experimental 
results. In this paper, we propose an adaptive LR adjustment 
method with STPT for quick model prototyping.  

The remainder of this paper is organized as follows. Section 
II presents a method for adaptive LR adjustment with STPT. 
Software implementation of the proposed method and its 
performance are explained in Section III. The final section 
suggests directions for future work. 

II. ADAPTIVE LR ADJUSTMENT WITH STPT 

A. Algorithm 

Even in the conventional method, training is performed while 
the LR is changed, but it is changed every epoch. Then, as 
mentioned in the previous section, it is necessary to carry out 
various patterns, which is very time consuming. To solve these 
problems, we propose an adaptive LR selection method that uses 
synchronous data parallelism. An overview diagram of the 
proposed method is shown in Fig. 1. A major feature of the 
proposed method is that it uses multiple LRs and evaluates their 
accuracy at the end of several iterations (within 1 epoch) in 
training. This process is described in detail below. 

In the proposed method, training for one epoch is divided into 
two steps: Pre-train and Main-train. The first step is Pre-train. 
In Pre-train, training is performed independently with m (≤ n) 
kinds of LRs using n workers (in Fig. 1, m = n). The initial values 
of parameters, such as the model at the time of starting Pre-train, 
are unified for each worker. The important point is that Pre-train 
trains only α iterations. We set α so that 𝛼 + 𝛽 ≤  1 epoch, 
where β is the number of iterations of Main-train. Only the α 
iteration is trained using a different LR for each worker. The best 
LR is selected as the bestLR based on the accuracy at the time of 
the α iteration as the evaluation value. The second step is Main-
train. In Main-train, β iterations are trained using the bestLR 
selected during the Pre-train stage and the model trained at the 
α iteration. At this time, synchronous data-parallel of n parallel 
is used. 

The above is the training flow for 1 epoch ( = 𝛼 + 𝛽 
iretarions) in the proposed method. Training for the next epoch 
uses this model for the start parameters of Pre-train. In this way, 
training progresses. As a concept, Fig. 2 shows training courses 
obtained when the proposed algorithm was executed using three 
candidate LRs (LR set), 3.0, 1.0, and 0.5. The three short lines at 
the beginning of each epoch represent the accuracy at the Pre-
train and the black line represents Main-train’s accuracy. 
Focusing on the trend of accuracy, although the beginning of 
each epoch greatly rises and falls, it seems that it quickly settles 
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Fig. 1 Overview of the proposed LR selection with STPT algorithm. 

 

 
Fig. 2 Concept of the proposed STPT algorithm for LR selection: The best LR is chosen by comparison between the LR set: 3.0, 1.0, and 0.5. 
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Fig. 3 Comparison of conventional and proposed methods 

and slowly improves. In the proposed method, we use this 
phenomenon to learn only a number of iterations until the 
accuracy of each epoch settles. Then, we evaluate each LR based 
on the accuracy during the settled period; the number of 
iterations can be reduced. In fact, Main-train traces the line of 
best accuracy in Pre-train, which shows that training progresses 
when the bestLR is chosen. 

Fig. 3 compares the processes of the conventional and 
proposed methods. The experimental results are obtained using 
one LR for one process, but in the proposed method, training is 
conducting using multiple LRs in one process. Therefore, it is 
possible to drastically reduce the time spent on experiments. For 
an experiment with eight LRs and eight workers, Fig. 4 compares 
the number of iterations when each LR is used for learning for 1 
epoch and using the proposed method setting α as 200 iterations. 
By using the proposed method, it is possible to reduce the 
number of iterations by 87.5 % in comparison with the 
conventional method. 

III. EXPERIMENT RESULTS 

In this work, we conducted an image recognition experiment 

to evaluate the performance of the proposed method. 

A. Implementation 

Data set used in ILSVRC2012 of ImageNet [20] was used as 
the data set. In this data set, RGB images of 1,000 categories of 
general objects having different sizes were prepared with 
1,280,000 images of learning data, 50,000 images of verification 
data, and 100,000 images of test data. We conducted the 
experiment with a consistent image size of 256 × 256. We used 
ResNet [11]. ResNet learns including the residuals, and it 
becomes possible to avoid the gradient elimination problem; 
thus, it is possible to deepen the layer. Momentum SGD [21] was 
used for the optimization function, and the LR was multiplied 
for each epoch. In early epoch training, we used a method called  
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Fig. 4 In comparison with the conventional method, the proposed algorithm 

can reduce the number of iterations by 87.5%. 

Warmup [11] [22], in which a few epochs are used for training 
with a small LR at the beginning of learning. As a reference, we 
set the initial value of the LR to 0.1 and divide it by 10 when the 
accuracy saturates according to a paper on ResNet [11]. Also, 
when Warmup is applied to the reference, accuracy deteriorates, 
so reference don’t use Warmup. 

TABLE 1 shows the parameters used in this experiment. In this 
experiment, a software simulation was performed using 
synchronous eight-parallel data parallelism in one processor. 
The pseudo code for implementing the proposed algorithm is 
shown in Algorithm 1. Also, as seen in Algorithm 1, for Pre-train, 
simulation was performed using eight-parallel data parallelism. 
Chainer [23] was used as a framework for implementation. 

TABLE 1  PARAMETERS 

Network ResNet50 

Number of workers 8 

Batch size (per worker) 512 (64) 

Training max epoch 40 

Pre-train (α) iterations 200, 600, 1,250, 2,500 

Weight initializations He’s initialization [18] 

Momentum cofficient 0.9 

Initial LR 0.1 

LR set TABLE 2, TABLE 3 

Warmup epoch 4 

Warmup LR 0.005 

 

B. α iterations in Pre-train 

In this section, we present an experiment that was conducted 

with α iterations in Pre-train. Since the batch size was set at 512 

(= 64 * 8) in this experiment, 2,500 iterations were required to 

learn 12.8 million training data for one turn. Therefore, the 

maximum value of α was 2,500 iterations. For implementation 



TABLE 2 LR SET FOR PRE-TRAIN LENGTH SET UP 

LR set #1 #2 #3 #4 #5 #6 #7 #8 

LRs 10.0 5.0 3.0 1.5 1.0 0.9 0.5 0.4 

 

reasons, the minimum value was 200 iterations. Therefore, α 

had a value in the range of 200 to 2,500 iterations. The larger α 

is better for the more, the more reliability is, but the 

computation time increases. Conversely, as α decreases, the 

computation time becomes shorter, but the evaluation of the LR 

at the stage where learning cannot be sufficiently done may 

reduce the reliability. In this experiment, we examined how the 

α value affects accuracy. The experiment was conducted at four 

points of 200, 625, 1,250 and 2,500. Also, the LR set values 

used for experiment are shown in TABLE 2. 
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Fig. 5 Reference and proposed method when α is 200, 625, 1,250 and 2,500 

(A) accuracy and (B) LR. 
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Fig. 6 Maximum accuracy when α is 200, 625, 1,250, and 2,500 

Fig. 5 shows the transition of accuracy and LR when 40 epoch 

training was performed using each α value. Also, Fig. 6 shows 

maximum accuracies for various α values. Accuracies achieved 

with 200 iterations and 1,250 iterations shows that the 

difference is 1.6 %, which indicates that the number of 

iterations does not significantly affect the accuracy. Therefore, 

in this work α was set to 200 iterations. 

The best accuracy of 0.639 is observed when α is 200. When 

α is 625 or 1,250, a smaller accuracy of 0.628 or 0.622 is 

exhibited; in this case, the accuracies among the LR candidates 

become closer and averaged out due to the larger iteration. So, 

they are susceptible to random noises. When α is much larger 

such as 2,500, the impact of the random noise is mitigated, but 

the distribution of the accuracies among the LR candidates is 

narrowed. Namely, the smaller value of α (α = 200) is the best;. 

it is effective to take the suitable LR value for training the 

network model better. 
TABLE 3 LR SETS 

Values (a) Narrow set (b) Middle set (c) Wide set 

#1 1.25  2.50  5.00 

#2 1.17  2.00  3.67 

#3 1.08  1.50  2.33 

#4 1.00  1.00  1.00 

#5 0.95  0.85  0.80 

#6 0.90  0.70  0.60 

#7 0.85  0.55  0.40 

#8 0.80  0.40  0.20 

Algorithm 1 SOFTWARE IMPLEMENTATION OF THE PROPOSED METHOD 

for epoch in range(max_epoch + warmup_epoch) 

 if epoch < warmup_epoch 

  run warmup train with warmup_LR using data parallel 

 else  

  #initialization 

  best_accuracy = 0.0 

  bestLR = 0.0 

##----------------------------------------Pre-train---------------------------------------## 

  for LR_index in range( len( LR_set ) ) 

   new_accuracy = run pre_train with LR_set[ LR_index ] using data parallel 

   if new_accuracy > best_accuracy 

    bestLR = LR_set[ LR_index ] 

    best_accuracy = new_accuracy 

##---------------------------------------Main-train--------------------------------------## 

  run main_train with bestLR using data parallel 



TABLE 4 SCHEDULE TO CHANGE LR SET 

Epoch 1–4 5–19 20–29 30–40 

LR set Warmup (a) Narrow (b) Middle (c) Wide 

C. LR set 

A LR set with multiple values is an important point in the 
proposed algorithm. In this section, we will examine the method 
of determining the LR set. Three sets of (a) Narrow set, (b) 
Middle set, and (c) Wide set are prepared for convergence 
comparison, as shown in TABLE 3. 

The number LRs of each LR set is eight. The maximum value 
and the minimum value are determined for each, and the others 
are set to be evenly spaced around 1.0. Other parameters are the 
same as those in TABLE 1. Fig. 7 and Fig. 8 show the accuracy and 
LR transition results of 40-epoch learning using (a), (b), and (c).  

(a) Narrow set: Accuracy is 65.0 %. Although the final 
accuracy is relatively good, the accuracy slightly declines 
after epoch 25. As seen in Fig. 8, there are variations in the 
transition of the LR after epoch 25. This is due to the fact 
that the difference between the LRs becomes small and it 
loses the noise generated at the time of GPGPU computing. 
As a result, this variation adversely affects the accuracy. 

(b) Middle set: Accuracy is 63.4 %. The final accuracy is 
second, but learning has saturated. 

(c) Wide set: Accuracy is 61.4 %. The final accuracy is the 
lowest. However, although training is slow, it has advanced 
even at epoch 40. Fig. 8 suggests that the reason is that the LR 
is too small at the beginning. However, since the difference 
between epochs is large, LR can be selected rationally 
without influence noise even in later epochs. 
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Fig. 7 Accuracy transition using (a) Narrow set, (b) Middle set, and (c) Wide 

set 
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Fig. 8 LR transition using (a) Narrow set, (b) Middle set, and (c) Wide set. 

Based on the above results, we combine each LR set and 
execute with the schedule shown in TABLE 4. We call this LR set 
“Mix”. When executed according to the schedule in TABLE 4, the 
shaded area in Fig. 9 becomes the search area of the LR. The 
upper limit to 1.0 or less is necessary because the simulation will 
not operate if the LR becomes too large. Fig. 10 and Fig. 11 show 
the transitions of the accuracy and LR of the execution result. 
Mix improves by 1.2 % in comparison with (a), which was the 
most accurate in the LR sets. In (a), deterioration of accuracy 
was seen after 25 epochs, but Mix was able to prevent it. By 
changing the LR set in this schedule, we were able to 
compensate for each disadvantage. Also, Mix is 4.8% better than 
the reference. Therefore, the proposed adaptive LR adjustment 
with STPT can improve the accuracy over the conventional 
method although the computational time of 87.5 % is reduced.
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Fig. 10 Accuracy transition of reference and proposed method using Narrow 

set 
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Fig. 11 LR transition of reference and proposed method using Narrow set 

 
Fig. 9 Search area of the LR when executed according to the schedule in 

TABLE 4. 
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Those results show our proposed LR adaptation method is 

suitable for unknown problems that has been taking much 

computational time. 

IV. FUTURE WORK 

In future work, we believe that the proposed method can be 

combined with others methods, such as Adam and AdaGrad. 

Furthermore, we would like to adapt our algorithm to LARS 

[21], which make it possible to conduct data parallelism even 

with a huge batch size. 
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