
Adaptive Learning Rate Adjustment with Short-Term

Pre-Training in Data-Parallel Deep Learning

Kazuki Yamada, Haruki Mori, Tetsuya Youkawa, Yuki Miyauchi, Shintaro Izumi,

Masahiko Yoshimoto, and Hiroshi Kawaguchi

Graduate School of System Informatics, Kobe University, Kobe, Japan

yamada.kazuki@cs28.cs.kobe-u.ac.jp

Abstract— This paper introduces a method to adaptively

choose a learning rate (LR) with short-term pre-training (STPT).

This is useful for quick model prototyping in data-parallel deep

learning. For unknown models, it is necessary to tune numerous

hyperparameters. The proposed method reduces computational

time and increases efficiency in finding an appropriate LR;

multiple LRs are evaluated by STPT in data-parallel deep learning.

STPT means training only with the beginning iterations in an

epoch. When eight LRs are evaluated using eight parallel workers,

the proposed method can easily reduce the computational time by

87.5% in comparison with the conventional method. The accuracy

is also improved by 4.8% in comparison with the conventional

method with a reference LR of 0.1; thus, no deterioration in

accuracy is observed. For an unknown model, this method shows

a better training curve trend than other cases with fixed LRs.

Keywords- Deep learning, learning rate, hyperparameter, data-

parallel

I. INTRODUCTION

The impact of deep learning has been expanded from an
object recognition competition, ImageNet Large-Scale Visual
Recognition Competition (ILSVRC) 2012 [1], with a dramatic
accuracy advantage; deep learning using convolutional neural
networks (CNNs) achieved a steep error rate improvement of
9.4 % in comparison with conventional methods [2]. These days,
deep learning is recognized as a significant algorithm. In January
2016, AlphaGo developed by DeepMind Ltd. competed with the
world’s Go champion. Deep learning proved that, even for the
most complex table game, the algorithm is able to acquire a
better solution than a human [3]. Moreover, deep learning is
expected to bring singularity in various fields. Researchers all
over the world exploit deep learning not only in computer
science but also for applications in medicine, finance,
agriculture, energy management, and other fields [4]. Deep
learning represents a breakthrough in the field of artificial
intelligence.

The CNN model imitates the visual cortex in the human
cerebrum. It is an extension of a multi-layer perceptron that
became most successful in image recognition [5]. Various
algorithms for deep learning using convolutional networks have
been proposed in the object recognition field [6] [7] [8]. Actually,
a CNN algorithm is already expected to be put into practical use
for security cameras and safety driving assistant applications [9].
The CNN algorithm achieves far superior recognition
performance in comparison to other algorithms [10].

Still, there are complex problems to be addressed for various
practical applications of CNNs in the future. One of the most
noteworthy issues is that a training model requires a huge
number of hyperparameters to achieve a high-accuracy
recognition rate. Generally, a learning (training) process requires
a large amount of training data and a deeper network to ensure
good recognition performance. Therefore, training a network
model requires enormous computational time even if state-of-
the-art processors are used. AlexNet takes about six days to learn
90 epochs of ImageNet data using two NVIDIA GTX 580 GPUs
[11]. Also, ResNet with 200 layers (ResNet-200) takes three
weeks for ImageNet learning, even using eight parallel GPGPUs
[12].

It is well known that ResNet shows better performance with
greater numbers of layers; accuracy improvement becomes
better even for networks with 1,000 or more layers [11].
Training such a deep network consumes much more time than
before. This long training time is a major barrier for the practical
application of deep learning. Parallel processing in deep learning
is necessary to shorten the training time. Parallel processing may
be divided into the following two types [13]:

 Data parallel: Every worker has a replica of the model,
and each worker processes different data and learns
from the data. The data parallel has a synchronous
mechanism in which parameter updating is
synchronized among all workers.

 Model parallel: One model is divided into parts, and
each worker is associated with a single part. As a result,
each worker has less memory capacitance and less
memory bandwidth than those in the data parallel.
However, it is more difficult to implement because
each worker has a different part of the model.

 A deeper network requires enormous dimensions of
hyperparameters. In this paper, we specifically focus on the
learning rate (LR). It is not automatically determined by a neural
network; thus, a designer has to select an appropriate LR for its
network structure in advance. Although the LR has the greatest
influence on accuracy among the hyperparameters, it is currently
determined experimentally and empirically in many cases. The
problem here is that it is difficult for a trial of parameter tuning
to achieve a sufficient result in a single learning process; it is
necessary to repeat multiple trials of learning processes.

As a prior work, the Hyperband [14], SMAC [15], and TPE
[16] are introduced for the automatic adjustment of
hyperparameters. The Hyperband formulates the hyper-
parameter optimization scheme as a pure-exploration non-
stochastic infinite-armed bandit problem. The predefined
resources such as iteration, data samples, and features are
allocated to randomly sampled configurations [14]. The tree-
structured Parzen estimator (TPE) models p(x|y) by
transforming a graph-structured generative process and
replacing the distributions of the configuration prior to a non-
parametric density[16].

Among them, Methods to algorithmically determine the LR
have been proposed. For the methods that adaptively determine
the LR, such as Adam [17], AdaGrad [18] and AdaDelta [19],
there are advantages and disadvantages; we currently have no
optimal method for every problem. To make matters worse, the
adaptive training methods increase the number of
hyperparameters. After all, it is necessary to try various methods
for a new network and to select an LR based on the experimental
results. In this paper, we propose an adaptive LR adjustment
method with STPT for quick model prototyping.

The remainder of this paper is organized as follows. Section
II presents a method for adaptive LR adjustment with STPT.
Software implementation of the proposed method and its
performance are explained in Section III. The final section
suggests directions for future work.

II. ADAPTIVE LR ADJUSTMENT WITH STPT

A. Algorithm

Even in the conventional method, training is performed while
the LR is changed, but it is changed every epoch. Then, as
mentioned in the previous section, it is necessary to carry out
various patterns, which is very time consuming. To solve these
problems, we propose an adaptive LR selection method that uses
synchronous data parallelism. An overview diagram of the
proposed method is shown in Fig. 1. A major feature of the
proposed method is that it uses multiple LRs and evaluates their
accuracy at the end of several iterations (within 1 epoch) in
training. This process is described in detail below.

In the proposed method, training for one epoch is divided into
two steps: Pre-train and Main-train. The first step is Pre-train.
In Pre-train, training is performed independently with m (≤ n)
kinds of LRs using n workers (in Fig. 1, m = n). The initial values
of parameters, such as the model at the time of starting Pre-train,
are unified for each worker. The important point is that Pre-train
trains only α iterations. We set α so that 𝛼 + 𝛽 ≤ 1 epoch,
where β is the number of iterations of Main-train. Only the α
iteration is trained using a different LR for each worker. The best
LR is selected as the bestLR based on the accuracy at the time of
the α iteration as the evaluation value. The second step is Main-
train. In Main-train, β iterations are trained using the bestLR
selected during the Pre-train stage and the model trained at the
α iteration. At this time, synchronous data-parallel of n parallel
is used.

The above is the training flow for 1 epoch (= 𝛼 + 𝛽
iretarions) in the proposed method. Training for the next epoch
uses this model for the start parameters of Pre-train. In this way,
training progresses. As a concept, Fig. 2 shows training courses
obtained when the proposed algorithm was executed using three
candidate LRs (LR set), 3.0, 1.0, and 0.5. The three short lines at
the beginning of each epoch represent the accuracy at the Pre-
train and the black line represents Main-train’s accuracy.
Focusing on the trend of accuracy, although the beginning of
each epoch greatly rises and falls, it seems that it quickly settles

Pre-train

Main-train

Select bestLR by accuracy

Data-parallel train with bestLR

Next epoch

Distributed

model

model

train

w/ LR1

train

w/ LR2

train

w/ LR3

train

w/ LRn

train

w/ bestLR

train

w/ bestLR

train

w/ bestLR

train

w/ bestLR

Worker 1 Worker 2 Worker 3 Worker n

α iterations

β iterations

Fig. 1 Overview of the proposed LR selection with STPT algorithm.

Fig. 2 Concept of the proposed STPT algorithm for LR selection: The best LR is chosen by comparison between the LR set: 3.0, 1.0, and 0.5.

0

0.02

0.04

0.06

0.08

0.1 main train 3 1 0.5

T
ra

in
 a

c
c
u

ra
c

y

0 1 2 3 4

Main-train

(β iterations)

Training epoch

Pre-train

(α iterations)

Worker 1

w/ LR 1

commander

M
o

d
e
l
d

ra
w

T
ra

in
 a

c
c
u

ra
c

y

Worker 2

w/ LR 2

Worker 3

w/ LR 3

Worker n

w/ LR n

T
ra

in
 a

c
c
u

ra
c

y

T
ra

in
 a

c
c
u

ra
c

y

T
ra

in
 a

c
c
u

ra
c

y

M
o

d
e
l
p

u
s
h

M
o

d
e
l
d

ra
w

M
o

d
e
l
d

ra
w

M
o

d
e
l
d

ra
w

LR 1

Process 1

Process 1

LR 2

Process 2

LR 3

Process 3

LR n

Process n

Proposed

Conventional

Fig. 3 Comparison of conventional and proposed methods

and slowly improves. In the proposed method, we use this
phenomenon to learn only a number of iterations until the
accuracy of each epoch settles. Then, we evaluate each LR based
on the accuracy during the settled period; the number of
iterations can be reduced. In fact, Main-train traces the line of
best accuracy in Pre-train, which shows that training progresses
when the bestLR is chosen.

Fig. 3 compares the processes of the conventional and
proposed methods. The experimental results are obtained using
one LR for one process, but in the proposed method, training is
conducting using multiple LRs in one process. Therefore, it is
possible to drastically reduce the time spent on experiments. For
an experiment with eight LRs and eight workers, Fig. 4 compares
the number of iterations when each LR is used for learning for 1
epoch and using the proposed method setting α as 200 iterations.
By using the proposed method, it is possible to reduce the
number of iterations by 87.5 % in comparison with the
conventional method.

III. EXPERIMENT RESULTS

In this work, we conducted an image recognition experiment

to evaluate the performance of the proposed method.

A. Implementation

Data set used in ILSVRC2012 of ImageNet [20] was used as
the data set. In this data set, RGB images of 1,000 categories of
general objects having different sizes were prepared with
1,280,000 images of learning data, 50,000 images of verification
data, and 100,000 images of test data. We conducted the
experiment with a consistent image size of 256 × 256. We used
ResNet [11]. ResNet learns including the residuals, and it
becomes possible to avoid the gradient elimination problem;
thus, it is possible to deepen the layer. Momentum SGD [21] was
used for the optimization function, and the LR was multiplied
for each epoch. In early epoch training, we used a method called

2,500 x 8 (= 20,000)

iterations

2,500

LR 1

LR 7

LR 8

LR 6

LR 5

LR 4

LR 3

LR 2

87.5% reduced

8
 d

a
ta

-p
a

ll
a

le
l
tr

a
in

 w
/

b
e

s
tL

R

Worker 1

w/ LR 1

Worker 7

w/ LR 7

Worker 8

w/ LR 8

Worker 6

w/ LR 6

Worker 5

w/ LR 5
Worker 4

w/ LR 4

Worker 3

w/ LR 3
Worker 2

w/ LR 2

20,000 iterations

2,500 iterations

2,500

Continue train model

/w bestLR

reduces computation time

Proposed

Conventional

Fig. 4 In comparison with the conventional method, the proposed algorithm

can reduce the number of iterations by 87.5%.

Warmup [11] [22], in which a few epochs are used for training
with a small LR at the beginning of learning. As a reference, we
set the initial value of the LR to 0.1 and divide it by 10 when the
accuracy saturates according to a paper on ResNet [11]. Also,
when Warmup is applied to the reference, accuracy deteriorates,
so reference don’t use Warmup.

TABLE 1 shows the parameters used in this experiment. In this
experiment, a software simulation was performed using
synchronous eight-parallel data parallelism in one processor.
The pseudo code for implementing the proposed algorithm is
shown in Algorithm 1. Also, as seen in Algorithm 1, for Pre-train,
simulation was performed using eight-parallel data parallelism.
Chainer [23] was used as a framework for implementation.

TABLE 1 PARAMETERS

Network ResNet50

Number of workers 8

Batch size (per worker) 512 (64)

Training max epoch 40

Pre-train (α) iterations 200, 600, 1,250, 2,500

Weight initializations He’s initialization [18]

Momentum cofficient 0.9

Initial LR 0.1

LR set TABLE 2, TABLE 3

Warmup epoch 4

Warmup LR 0.005

B. α iterations in Pre-train

In this section, we present an experiment that was conducted

with α iterations in Pre-train. Since the batch size was set at 512

(= 64 * 8) in this experiment, 2,500 iterations were required to

learn 12.8 million training data for one turn. Therefore, the

maximum value of α was 2,500 iterations. For implementation

TABLE 2 LR SET FOR PRE-TRAIN LENGTH SET UP

LR set #1 #2 #3 #4 #5 #6 #7 #8

LRs 10.0 5.0 3.0 1.5 1.0 0.9 0.5 0.4

reasons, the minimum value was 200 iterations. Therefore, α

had a value in the range of 200 to 2,500 iterations. The larger α

is better for the more, the more reliability is, but the

computation time increases. Conversely, as α decreases, the

computation time becomes shorter, but the evaluation of the LR

at the stage where learning cannot be sufficiently done may

reduce the reliability. In this experiment, we examined how the

α value affects accuracy. The experiment was conducted at four

points of 200, 625, 1,250 and 2,500. Also, the LR set values

used for experiment are shown in TABLE 2.

A
c

c
u

ra
c

y

0.600

0.605

0.610

0.615

0.620

0.625

0.630

0.635

0.640

0.645

0 5 10 15 20 25 30 35 40

(A)

Training epoch

Ref. (init LR = 0.1: divided by 10 every 16epochs)

200 625 1250 2500

0.00001

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30 35 40

Training epoch

L
e

a
rn

in
g

 R
a

te

(B)

Ref. (init LR = 0.1: divided 10 every 16epochs)

200 625 1250 2500

Fig. 5 Reference and proposed method when α is 200, 625, 1,250 and 2,500

(A) accuracy and (B) LR.

0.620

0.622

0.624

0.626

0.628

0.630

0.632

0.634

0.636

0.638

0.640

1250 2500625200

200 iterations is best accuracy

Training iterations

M
a

x
im

u
m

 a
c

c
u

ra
c

y

Fig. 6 Maximum accuracy when α is 200, 625, 1,250, and 2,500

Fig. 5 shows the transition of accuracy and LR when 40 epoch

training was performed using each α value. Also, Fig. 6 shows

maximum accuracies for various α values. Accuracies achieved

with 200 iterations and 1,250 iterations shows that the

difference is 1.6 %, which indicates that the number of

iterations does not significantly affect the accuracy. Therefore,

in this work α was set to 200 iterations.

The best accuracy of 0.639 is observed when α is 200. When

α is 625 or 1,250, a smaller accuracy of 0.628 or 0.622 is

exhibited; in this case, the accuracies among the LR candidates

become closer and averaged out due to the larger iteration. So,

they are susceptible to random noises. When α is much larger

such as 2,500, the impact of the random noise is mitigated, but

the distribution of the accuracies among the LR candidates is

narrowed. Namely, the smaller value of α (α = 200) is the best;.

it is effective to take the suitable LR value for training the

network model better.
TABLE 3 LR SETS

Values (a) Narrow set (b) Middle set (c) Wide set

#1 1.25 2.50 5.00

#2 1.17 2.00 3.67

#3 1.08 1.50 2.33

#4 1.00 1.00 1.00

#5 0.95 0.85 0.80

#6 0.90 0.70 0.60

#7 0.85 0.55 0.40

#8 0.80 0.40 0.20

Algorithm 1 SOFTWARE IMPLEMENTATION OF THE PROPOSED METHOD

for epoch in range(max_epoch + warmup_epoch)

 if epoch < warmup_epoch

 run warmup train with warmup_LR using data parallel

 else

 #initialization

 best_accuracy = 0.0

 bestLR = 0.0

##--Pre-train---------------------------------------##

 for LR_index in range(len(LR_set))

 new_accuracy = run pre_train with LR_set[LR_index] using data parallel

 if new_accuracy > best_accuracy

 bestLR = LR_set[LR_index]

 best_accuracy = new_accuracy

##---------------------------------------Main-train--------------------------------------##

 run main_train with bestLR using data parallel

TABLE 4 SCHEDULE TO CHANGE LR SET

Epoch 1–4 5–19 20–29 30–40

LR set Warmup (a) Narrow (b) Middle (c) Wide

C. LR set

A LR set with multiple values is an important point in the
proposed algorithm. In this section, we will examine the method
of determining the LR set. Three sets of (a) Narrow set, (b)
Middle set, and (c) Wide set are prepared for convergence
comparison, as shown in TABLE 3.

The number LRs of each LR set is eight. The maximum value
and the minimum value are determined for each, and the others
are set to be evenly spaced around 1.0. Other parameters are the
same as those in TABLE 1. Fig. 7 and Fig. 8 show the accuracy and
LR transition results of 40-epoch learning using (a), (b), and (c).

(a) Narrow set: Accuracy is 65.0 %. Although the final
accuracy is relatively good, the accuracy slightly declines
after epoch 25. As seen in Fig. 8, there are variations in the
transition of the LR after epoch 25. This is due to the fact
that the difference between the LRs becomes small and it
loses the noise generated at the time of GPGPU computing.
As a result, this variation adversely affects the accuracy.

(b) Middle set: Accuracy is 63.4 %. The final accuracy is
second, but learning has saturated.

(c) Wide set: Accuracy is 61.4 %. The final accuracy is the
lowest. However, although training is slow, it has advanced
even at epoch 40. Fig. 8 suggests that the reason is that the LR
is too small at the beginning. However, since the difference
between epochs is large, LR can be selected rationally
without influence noise even in later epochs.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30 35 40

A
c

c
u

ra
c

y

Training epoch

Wide

Middle

Narrow

Fig. 7 Accuracy transition using (a) Narrow set, (b) Middle set, and (c) Wide

set

0.00001

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30 35 40

L
e

a
rn

in
g

 R
a
te

Training epoch

Wide

Middle

Narrow

Fig. 8 LR transition using (a) Narrow set, (b) Middle set, and (c) Wide set.

Based on the above results, we combine each LR set and
execute with the schedule shown in TABLE 4. We call this LR set
“Mix”. When executed according to the schedule in TABLE 4, the
shaded area in Fig. 9 becomes the search area of the LR. The
upper limit to 1.0 or less is necessary because the simulation will
not operate if the LR becomes too large. Fig. 10 and Fig. 11 show
the transitions of the accuracy and LR of the execution result.
Mix improves by 1.2 % in comparison with (a), which was the
most accurate in the LR sets. In (a), deterioration of accuracy
was seen after 25 epochs, but Mix was able to prevent it. By
changing the LR set in this schedule, we were able to
compensate for each disadvantage. Also, Mix is 4.8% better than
the reference. Therefore, the proposed adaptive LR adjustment
with STPT can improve the accuracy over the conventional
method although the computational time of 87.5 % is reduced.

0.60

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0 5 10 15 20 25 30 35 40

A
c

c
u

ra
c

y

Training epoch

Ref. (init LR = 0.1: divided by 10 every 16epochs)

NarrowMix

1.2%

4.8%

Fig. 10 Accuracy transition of reference and proposed method using Narrow

set

0.00001

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30 35 40

Training epoch

L
e

a
rn

in
g

 R
a

te

Ref. (init LR = 0.1: divided by 10 every 16epochs)

NarrowMix

Fig. 11 LR transition of reference and proposed method using Narrow set

Fig. 9 Search area of the LR when executed according to the schedule in

TABLE 4.

Training epoch

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1E+11

1E+12

1E+13

Maximum

Minimum

(a) Narrow (b) Middle (c) Wide

401 5 3510 3015 2520

Upper limit

L
e

a
rn

in
g

 R
a

te

Warmup

Those results show our proposed LR adaptation method is

suitable for unknown problems that has been taking much

computational time.

IV. FUTURE WORK

In future work, we believe that the proposed method can be

combined with others methods, such as Adam and AdaGrad.

Furthermore, we would like to adapt our algorithm to LARS

[21], which make it possible to conduct data parallelism even

with a huge batch size.

ACKNOWLEDGEMENT

 This paper is based on results obtained from a project

commissioned by the New Energy and Industrial Technology

Development Organization (NEDO).

REFERENCES

[1] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.
Huang, A. Karpathy, A. Khosla, M. Bernstein, L. Fei-Fei and A. C.

Berg, “ImageNet Large Scale Visual Recognition Challenge, ” IJCV,

vol. 115, pp. 211–252, Dec. 2015.

[2] A. Krizhevsky, I. Sutskerver and G. E. Hinton, “ImageNet

Classification with Deep Convolutional Neural Networks, ” Neural

Information Processing Systems Conference, pp. 1097–1105, Dec.
2012.

[3] “Mastering the game of Go with deep neural networks and tree

search, ” Nature, vol. 529, pp. 484–489, Jan. 2016.

[4] L. Yann, Y. Bengio and G. Hinton, “Deep learning”, nature, no. 512,

pp. 436–444, May 2015.

[5] M. D. Zeiler and R. Fergus, “Visualizing and Understanding
Convolutional Networks”, ECCV, pp. 818–833, Nov. 2014.

[6] D. G. Lowe, “Distinctive Image Features, ” International Journal of

Computer Vision, vol. 60, Nov. 2004.

[7] Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J.

Dean and A. Y. Ng, “Building High-level Features, ” arXiv:
1112.6209v5, Jul. 2012.

[8] H. Lee, R. Grosse, R. Ranganth , A. Y. Ng, “Convolutional Deep

Belief Networks, ” ICML, pp. 609–616, June 2009.

[9] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Fleep, P.

Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang , J.

Zhao, “End to End Learning for Self-Driving Cars,” arXiv:

1604.07316v1, Apr. 2016.

[10] T. Okatani, “Deep Learning for Image Recognition, ” Journal of

Japanese Artificial Intelligence Society, vol. 28, no. 6, pp. 962–974,

Nov. 2013.

[11] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for

Image recognition," Microsoft Research, CVPR, pp. 770–778, June

2015.

[12] K. He, X. Zhang, S. Ren and J. Sun, “Identity Mappings in Deep

Residual Networks, ” arXiv: 1603.05027, July 2016.

[13] H. Mori, T. Youkawa, S. Izumi, M. Yoshimoto, H. Kawaguchi, A.
Inoue, “A LAYER-BLOCK-WISE PIPELINE, ” IEEE International

Workshop on Machine Learing for Signal Processing, pp. 1–6, Dec.

2017.

[14] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh and A. Talwalkar,

“Hyperband: A Novel Bandit-Based Approach to Hyperparameter

Optimization,” arXiv: 1603.06560, 18 Jun. 2018 .

[15] F. Hutter, H. H. Hoos and K. Leyton-Brown, “Sequential Model-

Based Optimization for General Algorithm Configuration,” LION,

vol. 6683, pp. 507-523, 2011.

[16] J. Bergstra, R. Bardenet, Y. Bengio and B. Kegl, “Algorithms for

hyper-parameter optimization,” Neural Information Processing

Systems Conference, Dec. 2011.

[17] D. Kingma , J. Ba, “Adam A Method for Stochastic Optimization,”

ICLR, Dec. 2014.

[18] J. Duchi, E. Hazan , Y. Singer, “Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization,”, JMLR, pp2121–2159,

July 2011.

[19] M. D.Zeoler, “AdaDelta: An Adaptive Learning Rate Method,”,
arXiv:1212.5701, Dec. 2012.

[20] NVIDIA, “cuDNN, ” [Online]. Available:

https://developer.nvidia.com/cudnn.

[21] “IMAGENET, ” [Online]. Available: http://www.image-net.org/.

[22] N. Qian, “On the momentum term in gradient descent learning

algorithms, ” Neural Networks : The Official Journal of the
International Neural Network Society, vol. 12, no. 1, p. 145–151, Jan.

1999.

[23] P. Goyal, P. Dollar, R. Girshick , P. Noordhuis, “Accurate, Large
Minibatch SGD: Training ImageNet in 1 Hour,” arXiv:1706.02677,

June 2017.

[24] P. Networks, “Chainer, ” [Online]. Available: https://chainer.org/.

[25] Y. Yang, G. Igor and G. Boris, “LARGE BATCH TRAINING OF

CONVOLUTIONAL NETWORKS, ” arXiv:1708.03888, Aug. 2017.

