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Abstract— In this paper, a method for the improvement of the 

relationship between calculation time and recognition accuracy in 

deep learning is proposed. A major problem with respect to deep 

learning is that a large calculation time is required for higher 

recognition accuracy. Because of this problem, the implementation 

of deep learning in hardware and its application to real problems 

are limited. In this study, layer-wise adaptive rate scaling (LARS) 

variables are adopted to evaluate the necessity of the learning of 

each layer. When the variable of a certain convolution layer 

exceeds the threshold value, the learning for that layer is 

considered unnecessary; thus, the layer is skipped. When a layer 

recognized as the layer that does not require learning, only the 

lower layers below than that layer are learned in the next epoch. 

By adaptively skipping the layer, the calculation time is reduced. 

Furthermore, the recognition accuracy is improved. Consequently, 

the proposed methods accelerate the calculation time in VGG-F to 

achieve the highest accuracy for the top1 and top5 test accuracy 

by a speed up factor of 2.14, and 2.25, respectively. Moreover, the 

respective top1 and top5 test accuracy was improved by 3.0 %, and 

2.8% which obtained as the final accuracy. In addition, the 

operation process was reduced by approximately 39.0 %, and 

required bandwidth was reduced by 38.9 %, when compared with 

the case of conventional full layer learning. 
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I.  INTRODUCTION  

With the rapid advancement in computer performance, 
significant progress has been made in deep learning, especially 
in the field of image recognition. Deep learning is therefore 
expected to be used for the solution of advanced problems, 
which could not previously be solved using computers. At the 
ImageNet Large Scale Visual Recognition Competition 
(ILSVRC) in 2012, the image recognition accuracy using the 
deep learning method developed by the University of Toronto 
improved by approximately 10%, when compared with the 
conventional method [1]. In 2016, AlphaGo won the award for 
the top player in the world for the Go board game [2]. Deep 
learning is expected to be utilized in fields that have presented 
problems that were previously considered impossible. Moreover, 
deep learning algorithms are expected to be used in practical 
applications, and whether they should be installed in safety 
security systems such as automobile-mounted cameras and 
surveillance cameras is a topic of debate. Furthermore, the fields 
of application with respect to deep learning are diverse, and 
include the financial, medical, bioengineering, and Internet of 

Things (IoT) industries [3]. The development of deep learning 
technologies is expected to contribute significantly to the 
progress of a wide range of industrial fields. Moreover, to learn 
a network that consists of a large amount of data, a large learning 
time is required, even if current high-speed computing resources 
are used. A network called FaceNet, which recognizes images 
of human faces and was reported by Google, achieved a high 
accuracy of 99.63%. However, the learning of the network 
required 1000–2000 hours [4]. If the problems become more 
advanced, and further accuracy is required, it is predicted that a 
deeper and larger network will be required. The number of layers 
of the residual network (ResNet), which won the ILSVRC 2015 
competition, was 152 [5]. In the future, as the complexity of 
problems increase, the scale of the required network will 
increase accordingly; thus, a reduction of the calculation load is 
essential.  

This paper examines a method to improve the relationship 
between calculation time and recognition accuracy. We prepared 
unique variable which evaluates the necessity of the learning for 
each layer. When this variable corresponding to each 
convolution layer exceeds the specified threshold value, that 
layer is recognized as an unnecessary layer for the learning. In 
the next epoch, only the lower layers below than that layer are 
learned at backpropagation. By adaptively skipping the layer 
learning process in backpropagation, the improved calculation 
time and the higher recognition accuracy are realized. 

II. RELATED WORK 

In the field of neural networks, studies have been conducted
on the improvement of the learning efficiency by shortening the 
calculation time while improving the generalization 
performance. Dropout is a useful technique that is used to 
achieve this [6]. Moreover, it is a method that involves the 
stochastic deactivation of nodes of the hidden layer, to achieve 
learning when updating. This method makes it possible to 
forcibly reduce the flexibility of the network, to increase the 
generalization performance and avoid overfitting. It refers to a 
state that is learned with respect to the training data; however, it 
is not adaptable to unknown data. Given that neural networks are 
complex models, it is prone to overfitting. Although Dropout 
was originally applied to the fully connected layer, it was 
confirmed that the performance was improved when applied to 
a convolution layer. In addition, deep networks with stochastic 
depth can be cited as another method to probabilistically skip 
learning [7]. It involves stochastic changes to the layer depth 



during learning. In a short network, data transmission is 
performed efficiently, and learning can be conducted within a 
practical time period. However, the ability of expression is 
insufficient for complex problems. Conversely, deep networks 
can add complexity to the structure; however, learning is very 
difficult, and requires a large amount of time. The aim of deep 
networks with stochastic depth was to shorten the network 
during learning. This method is very simple because only one 
hyper parameter decides whether to skip layers. Experiments 
with VGG-F convolutional neural network (CNN) [8] revealed 
that the recognition accuracy was improved, in addition to the 
shortening of the calculation time. VGG-F network architecture 
has five CNN layers and three fully connected (FC) layers, as 
presented in Fig. 1 (a). Even in this case, the recognition 
accuracy was improved. Dropout reduces the network in the 
horizontal direction by the deactivation of nodes in the hidden 
layer, but deep networks with stochastic depth reduces the 
network in the vertical direction by changing the number of 
learning layers. 

III. PROPOSED METHOD 

In this study, the focus is on the weight of each convolution 
layer. !"#$%&' for each layer is obtained by the ratio of norm 

value of the latest weight and the norm of delta weight. In our 
implementation, the delta weight at each layer are obtained by 
taking the difference between the first and last weight in an 
epoch, as shown in the equation (1), (2), and (3) [9]. The variable 
m means the number of elements of the weight. Fig. 1 (a)-(b) 
portrays the architecture model of the proposed layer skip 
learning. As shown in Fig. 1 (a), deep learning is carried out in 
all the layers with the conventional method. In addition, the 
method of stochastically skipping learning do not consider the 
state of each layer. !"#$%&' is considered to be able to determine 

the necessity of learning with respect to each convolution layer, 
and to determine whether or not it occurs. As illustrated in Fig. 
1 (b), when !"#$%&' of a certain convolution layer l exceeds the 

set threshold value α at N epoch, it is determined that learning is 
not necessary for that layer. In (N+1) epoch, only layers below 
that layer are learned in a backward process. The efficiency is 
improved by adaptively learning only the layers that require 
learning, and by shortening the calculation time to reach a 
certain accuracy. This method has two advantages for the 
improvement of the generalization ability. 

· It is easy to tune parameters, given that the judgment 
criteria for the existence of learning involves only one 
variable. 

· A framework is not chosen, as it is a variable contained 
in the formula used for learning. 

As α is increased, the skip layer decreases. Moreover, if a 
significantly large α is set, full layer learning is conducted. 
Algorithm 1 shows a pseudo code of the proposed layer skip 
learning. Given that VGG-F has large calculation in the first and 
second convolution layers, it is necessary to set α so as to skip 
the learning of these two layers as much as possible. Referring 
to Figs. 2 and 3, the first layer and the second layer occupy 
58.4% of multiply-accumulate (MAC) operations and 
bandwidth. Because the MAC operations in the fully connected 

layers are much smaller than the convolution layers, these are 
excluded from the target of the skipping layer. 
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Fig. 1. Architecture of the proposed layer skip learning; (a) VGG-F network 

architecture, (b) An example of adaptive layer skipping. 

 

Fig. 2. The number of MAC operations of each layer. 
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Fig. 3. Memory bandwidth of each layer. 

Algorithm 1. Training l layers in the proposed method.  

IV. EXPERIMETAL RESULTS 

The dataset used in this paper is ImageNet [1], and it has 1.28 
million images for training, and 50,000 images for validation. A 
mini-batch size of 32, learning rate of 0.001, weight decay of 
0.0005, momentum of 0.9, and threshold value α of 2 were 

used. Figs. 4 and 5 present the results of the verification of the 
transition of the recognition accuracy on a graphics processing 
unit (GPU). Table Ⅰ presents the recognition accuracy and 
calculation time at the end of 20 epochs. Table Ⅱ presents the 
calculation time until the proposed method reached the 
maximum accuracy of the conventional method. The calculation 
time reached by the proposed method to the highest accuracy of 
the conventional method was higher for the top1 test accuracy 
by approximately 2.14, and higher for the top5 test accuracy by 
approximately 2.25. For the final accuracy as well, the top1 test 
accuracy was improved by approximately 3.0%, and the top5 
test accuracy was improved by approximately 2.8%. By 
adaptively skip the unnecessary layer for the learning, the 
proposed method eliminates unnecessary machine time, and 

avoid falling into local minima and the overfitting. Moreover, 
while the recognition accuracy monotonically increased with the 
conventional method, the recognition accuracy of the proposed 
method sometimes deteriorated gradually. In the epochs wherein 
the accuracy was degraded, full layer learning was conducted 
without layer skipping. Skipping layers that do not require 
learning improves the accuracy over a short time period; 
however, if the skipping is continued, it adversely affects the 
final accuracy. For example, if several layers are skipped, the 
computation time will be shorter; however, the final accuracy 
will be lower than that for full layer learning. To prevent this, 
full layer learning is conducted every few epochs. The variables 
automatically determine whether or not to switch to full-layer 
learning. By this operation, the reduction of the calculation time 
and the improvement of the final accuracy are considered as 
compatible. By skipping layers, the operation can also be 
reduced. Fig. 6 presents comparison of the number of MAC 
operations. The operation was successfully reduced by 
approximately 39.0% using the proposed method, when 
compared with the case of full layer learning. Moreover, in Fig. 
7, the bandwidth is similarly considered. With the proposed 
method, the bandwidth was reduced by approximately 38.9%, 
when compared with that of full layer learning.  

 
Fig. 4. Learning convergence curve of top1 test accuracy. 

 

Fig. 5. Top5 learning convergence curve of top5 test accuracy. 
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Input: A minibatch of inputs, a vector of activation ;F7  ,  
current weight G7, value that determine the necessity 

of learning;!"#$%&', and threshold value α 

Output: updated weight G7H: 

1:for epoch=1 to N do //N: the number of epochs 

2:  for i=1 to L do // L : the number of layers 

3:      if layer type is “conv” do 

4:        if ;!"#$%&'>: of l layer>α do 

5:              if i<=l do 

6:                 return 

7:              else  

8:                  [IF7, IG7];=Backward(IF7H:,;F7  G7)] 

9:                  G7H:=UpdateParameters(G7,IG7) 

10:              end if 

11:        end if 

12:      end if 

13:  end for 
14:endfor 



TABLE I.  RECOGNITION ACCURACY AND CALCULATION TIME  
AT THE END OF 20 EPOCH.  

 Top1 test 

accuracy 

Top5 test 

accuracy 
Time[s] 

Conventional 

method 

0.405 0.663 111386[s] 

Proposed 
method 

0.435 0.691 103460[s] 

TABLE II.  CALCULATION TIME TO REACH THE HIGHEST ACCURACY. 

 Top1 test accuracy Top5 test accuracy 

Conventional 

method 

105836.2[s] 105836.2[s] 

Proposed 
 method 

49463.3[s] 47081.8[s] 

 

Fig. 6. Comparison of the number of MAC operations. 

 

Fig. 7. Comparison of bandwidth.  

V. CONCULUSIONS AND FUTURE RESEARCH 

To solve real problems, a recognition with a high accuracy 
beyond that of human recognition is required. However, a large 
amount of time is required for the construction of a network that 
can achieve the required accuracy. In addition, the network is 
expected to become deeper in the future, to achieve the required 
accuracy. Moreover, the calculation time and hardware load will 
increase accordingly. Therefore, although it is theoretically 
possible, its implementation in hardware is difficult. Thus, such 
systems may not be able to be used for real problems. This study 
is not from a perspective of software to improve the recognition 
accuracy, but from a hardware perspective to improve the cost-

performance of the recognition accuracy and calculation time. 
The proposed method improved the relationship between the 
calculation time and recognition accuracy by adaptively 
skipping layers that did not require learning. This was achieved 
by the introduction of variables to determine the necessity of 
learning. The study simplifies the process of implementation of 
deep learning in hardware, and can contribute to the solution of 
real problems. However, a limitation of the proposed method is 
that it is necessary to set thresholds in a trial and error manner to 
achieve compatibility between the recognition accuracy and 
calculation time. Therefore, further research is required to verify 
the method of setting the threshold, which is robust against the 
network change. In the VGG-F, the operation of the convolution 
layer in the upper layer is required more than that in the other 
layers. Thus, thresholds were set to increase the frequency with 
which the upper layers were skipped. However, other networks 
such as ResNet do not necessarily have many operations in the 
upper layer; thus, it is necessary to consider the number of layers, 
and the layers that should be reduced according to the network. 
In some cases, to achieve this, the operation could be adjusted 
by clumping multiple layers together. 
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