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ABSTRACT 
 
This paper presents a proposal of a data-parallel stochastic 
gradient descent (SGD) using delayed weight update. A 
large-scale neural network appears to solve advanced 
problems, but its processing time increases concomitantly 
with the network scale. For conventional data parallelism, 
workers must wait for data communication to and from a 
server during weight updating. Using the proposed data-
parallel method, the network weight has a delay. It is 
therefore stale. Nevertheless, it gives faster convergence 
time by hiding the latency of the weight communication for 
the server. The server concurrently carries out the weight 
communication and weight update while workers calculate 
their gradients. The experimentally obtained results 
demonstrate that, in the proposed data parallel method, the 
final accuracy converges within degradation of 1.5% 
compared with the conventional method in both VGG and 
ResNet At maximum, the convergence speedup factor 
theoretically reaches double that of conventional data 
parallelism. 

Index Terms— Data synchronous parallelism; Delayed 
weight update; Distributed learning 

 
1. INTRODUCTION 

 
A convolutional neural network (CNN) imitates a part of the 
human visual cortex in the cerebrum. The original CNN, 
named neocognitron, was developed for handwritten 
character recognition [1]. CNNs have been scaled up with 
numerous synapses and neurons in deeper layers. Recently, a 
deeper network having more than three layers is generally 
designated as deep learning. Today, deep learning is applied 
mainly to computer vision applications, but it has general-
purpose characteristics and capabilities [2]. Because deep 
learning has generality with a deeper and larger-scale 
network, error rates of recognition continue to improve. 
Accordingly, training times become much longer. AlexNet 
took 5–6 days to train 90 epochs of 1.2-M ImageNet 
benchmark datasets [3] on two NVIDIA GTX580 GPUs [4]. 

Actually, ResNet with 200 layers (ResNet200), which was 
designed for ImageNet, took three weeks for training even 
with eight GPUs used in parallel computing [5]. In deep 
learning, training a single GPU is virtually impossible for a 
practical benchmark to be processed in a realistic time. 
Therefore, distributed deep learning has received a 
remarkable amount of attention. 

Two concepts exist for distributed deep learning to 
shorten the training time for an enormous network [6–7]: (1) 
Model parallelism has divided dimensions of a model 
(network). Each worker trains a different part of the model 
(network). (2) Data parallelism has divided dimensions of 
data. Each worker trains on the same network, but with a 
different data example. Data parallelism is mainstream 
because it is generic and easily implemented with 
homogeneity, irrespective of the processor. 

To apply data parallelism for additional speeding up, 
multithreaded mini-batch stochastic gradient descent (SGD) 
is often used. For homogeneous workers, implementing the 
same software for them is simple. Each worker has the same 
network, but each processes a different mini batch. In other 
words, a single network is trained with different mini 
batches. Each worker calculates different gradients. A server 
usually updates a weight by averaging the gradients received 
from all workers. Then, the updated weight is sent back to 
the workers for the next mini-batch step. The multithreaded 
data-parallel SGD tends to be less effective in convergence 
than a single-threaded one because its actual batch size is 
multiplied by the data parallelism [8–10]. By virtue of layer-
wise adaptive rate scaling (LARS) [11], the convergence 
efficiency is improved even for batches as large as 32,000. 
Several reports have described that training Resnet-50 with 
ImageNet dataset can be completed in tens of minutes using 
more than 1,000 GPUs [12–14]. 

However, with data parallelism, bottlenecks arise from 
communication between a server and workers. Particularly 
in a huge model with many parameters, the communication 
time increases concomitantly with the number of workers: 
for learning Resnet-50 with 1,024 Tesla P100 GPUs, the  
communication time occupies a quarter of the total time, 
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although parameter communication is optimized to half 
accuracy [14]. Communication time will be even greater for  
huge models expected in future applications. In this paper, 
we propose delayed update in synchronous data parallelism 
by which all workers calculate gradients using weights 
delayed by one step. Techniques for updating with old 
gradients have already been discussed [15-16]. The 
proposed method allows each worker to communicate new 
gradients while one is calculating with only one older 
weights. In addition, this paper explains the speed 
multiplication factor using this method. 

This paper is organized as follows: Section 2 presents a 
data-parallel SGD using delayed weight update. The 
experimentally obtained results, including convergence time 
performance, are explained in Section 3. The last section 
presents discussion of the proposed method and related 
issues. 

 
2. DATA PARALLELISM WITH DELAYED 

WEIGHT UPDATE 
 

Fig. 1 presents a conceptual diagram of data parallelism. 
After a batch of data (a mini-batch) is given to each worker, 
every worker calculates its gradient (dW1, dW2, …) in the 
order of forward propagation, loss calculation, and back 
propagation. The server collects the gradients from the 
workers and then distributes an updated weight (W) back to 
the workers after averaging the gradients. The gradients and 
the weight have the same data size, which increases with the 
network size; the server collects the gradients of 243 × n 
MB (where n is the number of workers) in the VGG-F 
network [17] with the ImageNet benchmark dataset [3]. 
Then the server calculates the averaged weight from the 
gradients and broadcasts the updated weight of 243 MB to 
the workers. 

The processing time for the gradient collection, weight 
update, and weight distribution is regarded as a latency until 
the next gradient calculation for the workers. It is overhead 
time in the conventional synchronous data parallelism. This 
latency increases with increasing parameter size. Especially 
in a huge model, this latency hinders the scaling up of 
parallelization. The proposed method hides the latency using 
a stale (= delayed) gradient. Therefore, the proposed delayed 
update makes it possible for workers to perform 
instantaneous processes. Fig. 2 presents timing diagrams of 
the conventional synchronous data parallelism and the 
proposed method with the delayed update. 

In conventional data parallelism, TW and TS are given 
respectively as a calculation time for workers and a 
processing time for the server. In TW, each worker calculates 
its own gradient, dW(t) for the present batch step, t, with the 
updated weight, W(t). Then in TS, the server collects the 
gradients, by which the weight is updated. The new weight, 

W(t+1), is distributed back to the workers. In other words, 
W(t+1) is updated by the very new dW(t), yet there must exist a 

latency between the gradient and the weight. Workers and 
the server, with the proposed data parallelism with the 
delayed update, carry out their tasks concurrently without 
latency. The updated weight is dW(t) as in the conventional 
method, but it is for W(t+2), not for the very next. 
Concurrency exists with no latency, but with a delay in batch 
steps. Therefore, we designate the proposed method as 
“delayed update.” The proposed method is not a naive SGD 
algorithm. We must verify its accuracy, as explained below. 
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Fig. 1. Conceptual diagram of data parallelism for distributed deep 

learning (two workers shown for simplicity). 
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Fig. 2. Timing diagrams of (a) conventional SGD data parallelism and 

(b) proposed SGD data parallelism with delayed update. 

 
3. EXPERIMENT RESULTS 

 
3.1 Acceleration Ratio: RWS 

 

The convergence time of the proposed method depends not 
only on its accuracy, but also on the computing system. The 
conventional data parallelism takes TW for a worker to 
calculate a gradient in a batch. It takes TS for the server to 
process a new updated weight. TW + TS is the time for one 
iteration. In the proposed method, the iteration time is the 
longer one of TW and TS. For the proposed method, we 
define acceleration ratio RWS as 

 RWS = (TW + TS) / max (TW, TS). 



Actually, RWS becomes 2 at maximum when TW = TS, 
although RWS strongly affects the final convergence speedup. 
In our experimental environment (Core i7-6700K, NVidia 
GeForce GTX 1080, Cuda 9.0, CuDNN 6.1, Matlab 2017a, 
and MatConvNet [18]), we verified VGG-F [17] and 
ResNet50 [5]. Our mechanical system contains a single GPU. 
In order to evaluate data parallelism, parallelization is 
virtually implemented by updating the weight with the 
accumulated gradient. Fig. 3 shows the gradient calculation 
times (GCTs) and the weight update time (UTs) achieved 
after doubling the batch size from one to 128. A GCT is TW; 
the sum of a UT and a communication time is TS. The GCT 
increases with the batch size. In VGG-F, the GCT becomes 
almost equal to the UT at a batch size of 16; TS becomes a 
bottleneck for batches smaller than 16. TABLE I presents 
the normalized GCT per image for batch sizes. The 
experimental environment appears to be well optimized 
when the batch size is 16–128 in VGG-F. 

Communication time is particularly determined by the 
data size of a weight. VGG-F with three fully connected 
layers requires as much as 243 MB of weight memory. 
ResNet50 has 100-MB weight memory. For this reason, the 
amount of data communication between the server and the 
worker is important for TS. Fig. 4 depicts the measured time 
for transferring gradients and the update weight. The 
communication time increases with the number of threads. 
From these setup data, Fig. 5 is obtained. In VGG-F, RWS 
tends to be a small value because the communication time is 
dominant over others. RWS can be improved using a wider 
bus interface. In ResNet50, RWS approaches a better value as 
the number of threads is increased because the GCT is much 
larger than the sum of the communication time and the UT. 
RWS reaches 1.92 when the number of threads is eight and 
the batch size is 16. 
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Fig. 3. Measured gradient calculation times (GCTs) and weight update 

times (UTs) in VGG-F and ResNet50. 

TABLE I  Gradient calculation time (GCT) per image 

Calculation 
time (ms) 

Batch size 

1 2 4 8 16 32 64 128 
VGG-F 12.2 6.24 3.84 2.65 2.06 1.72 1.63 1.62 

ResNet-50 98.4 104.5 108.8 58.1 30.6 18.8 16.4 17.9 
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Fig. 5. Change in RWS for various numbers of threads. 

3.2 Convergence Speedup 
 
3.2.1. Results obtained using the VGG model 
 
The proposed data parallelism with the delayed update does 
not strictly carry out the naive SGD because the gradient is 
calculated using the one-step delayed weight. To verify the 
accuracy and convergence time, we first set optimal 
hyperparameters. In data parallelism, the batch size and the 
learning rate are important and closely related 
hyperparameters. The actual batch size is proportional to the 
number of threads. According to the linear scaling rule [6], 
the learning rate must be increased in proportion to the batch 
size. Therefore, we set the respective learning rates as 0.001 
× th (where th is the number of threads and the batch size is 
16). This learning rate is multiplied by 1/10 at the 20-th 
epoch and the 30-th epoch. The optimization method is the 
momentum SGD. The moment is 0.9. The weight decay is 
0.0001. Batch normalization [19] is adopted for 
convolutional layers and fully connected layers, except the 
final layer. After implementing the proposed data 
parallelism with the delayed update, we observed its 
convergence time. Fig. 6 shows a convergence comparison 
from learning 40 epochs in training a subset of 50,000 
images in the ImageNet benchmark dataset [3] (50 images 



selected randomly from each category). Table II shows the 
final accuracy obtained under each condition. In the same th, 
the final accuracy difference between the conventional 
method and the proposed method is up to 1.5%. When th = 8, 
the proposed method shows slower convergence in the early 
epochs. In the latter part, however, it converges just as well 
as other condition of proposed method. It is noteworthy that 
the proposed method has a speedup factor: RWS The 
proposed data parallel method can learn faster. 
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Fig. 6. Convergence comparison of VGG-F between conventional data 

parallelism and the proposed data parallelism when RWS is 2. 

TABLE II  Final accuracy of the VGG-F network [%] 

Condition 
Number of threads 

2 4 8 
Conv. 41.7 41.6 41.2 

Prop. 41.7 41.0 39.7 

 
3.2.2. Results obtained using ResNet 
 
Because of GPU memory constraints, we implemented our 
proposed method using the ResNet-18 model instead of 
Resnet-50 and then compared the results with those obtained 
using the conventional method. As with the experiment of 
the VGG model described above, the optimizer is 
Momentum SGD. The learning rate is 0.025 × th; it is 
multiplied by 1/10 at every 30 epochs. The moment is 0.9. 
The weight decay is 0.0001. Batch normalization is adopted 
for each convolution layer. The batch size is 16. Fig. 7 
shows a convergence comparison between the conventional 
method and the proposed from learning 70 epochs. 
Furthermore, Table III shows the final accuracy under the 
different th conditions. Similarly to the VGG-F network, the 
learning curves converge on all conditions; the accuracy 
deterioration is 1.4% at most. These results from the VGG 
model and the ResNet prove that the proposed data 
parallelism can boost the learning speed irrespective of the 
models. Particularly, ResNet has fewer parameters than the 
VGG model because of the less fully-connected layer. 
Therefore, ResNet is a suitable model for data parallelism. 
This result is important for evaluating the proposed method. 
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Fig. 7. Convergence comparison of ResNet-18 between conventional data 

parallelism and the proposed data parallelism when RWS is 2. 

TABLE III  Final accuracy of the ResNet-18 network [%] 

Condition 
Number of threads 

2 4 8 
Conv. 55.4 50.6 50.5 

Prop. 54.2 52.6 49.2 

 
4. CONCLUSION AND DISCUSSION 

 
The experiment results demonstrate that applying the 
delayed data parallelism to a general deep learning model 
improves the convergence speed, although it degrades the 
accuracy slightly. The proposed method shows great 
effectiveness when communication costs increase with the 
model size and the number of parallel workers. In a huge 
distributed deep learning system including more than 1000 
GPUs, the proposed method is expected to be very effective 
because the communication costs are high. Moreover, the 
proposed method is useful for low-cost distributed systems 
with inexpensive communication interfaces. 

Furthermore,  to generalize the proposed method, we must 
eliminate accuracy deterioration. Deep learning accuracy is 
often dependent on a set of hyperparameters and a type of 
optimization method; they should be optimized through 
further experimentation. In this paper, the degree of 
parallelism is up to eight (th = 8). Algorithms such as LARS 
[11] and Warmup [12], which suppress accuracy 
degradation even when the actual batch is very large, might 
be countermeasures. 

In the proposed method, speed up is difficult if either TS 
or TW dominates the time. When TS is dominant, the 
introduction of a high-bandwidth communication interface 
increases RWS. When TW is dominant, introduction of a high-
performance processor is a solution. Alternatively, reducing 
the parameter size or communicating half-precision 
gradients is expected to  be another solution. To balance TS 
and TW, optimizing hardware for processors, memory, and 
communication interfaces is necessary in practical cases. If 
TS and TW are balanced, then the proposed method will help 
speed up data parallelism. 
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