
DELAYED WEIGHT UPDATE FOR FASTER CONVERGENCE
IN DATA-PARALLEL DEEP LEARNING

Tetsuya Youkawa, Haruki Mori, Yuki Miyauchi, Kazuki Yamada, Shintaro Izumi,

Masahiko Yoshimoto, and Hiroshi Kawaguchi

Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
E-mail: youkawa.tetsuya@cs28.cs.kobe-u.ac.jp

ABSTRACT

This paper presents a proposal of a data-parallel stochastic
gradient descent (SGD) using delayed weight update. A
large-scale neural network appears to solve advanced
problems, but its processing time increases concomitantly
with the network scale. For conventional data parallelism,
workers must wait for data communication to and from a
server during weight updating. Using the proposed data-
parallel method, the network weight has a delay. It is
therefore stale. Nevertheless, it gives faster convergence
time by hiding the latency of the weight communication for
the server. The server concurrently carries out the weight
communication and weight update while workers calculate
their gradients. The experimentally obtained results
demonstrate that, in the proposed data parallel method, the
final accuracy converges within degradation of 1.5%
compared with the conventional method in both VGG and
ResNet At maximum, the convergence speedup factor
theoretically reaches double that of conventional data
parallelism.

Index Terms— Data synchronous parallelism; Delayed
weight update; Distributed learning

1. INTRODUCTION

A convolutional neural network (CNN) imitates a part of the
human visual cortex in the cerebrum. The original CNN,
named neocognitron, was developed for handwritten
character recognition [1]. CNNs have been scaled up with
numerous synapses and neurons in deeper layers. Recently, a
deeper network having more than three layers is generally
designated as deep learning. Today, deep learning is applied
mainly to computer vision applications, but it has general-
purpose characteristics and capabilities [2]. Because deep
learning has generality with a deeper and larger-scale
network, error rates of recognition continue to improve.
Accordingly, training times become much longer. AlexNet
took 5–6 days to train 90 epochs of 1.2-M ImageNet
benchmark datasets [3] on two NVIDIA GTX580 GPUs [4].

Actually, ResNet with 200 layers (ResNet200), which was
designed for ImageNet, took three weeks for training even
with eight GPUs used in parallel computing [5]. In deep
learning, training a single GPU is virtually impossible for a
practical benchmark to be processed in a realistic time.
Therefore, distributed deep learning has received a
remarkable amount of attention.

Two concepts exist for distributed deep learning to
shorten the training time for an enormous network [6–7]: (1)
Model parallelism has divided dimensions of a model
(network). Each worker trains a different part of the model
(network). (2) Data parallelism has divided dimensions of
data. Each worker trains on the same network, but with a
different data example. Data parallelism is mainstream
because it is generic and easily implemented with
homogeneity, irrespective of the processor.

To apply data parallelism for additional speeding up,
multithreaded mini-batch stochastic gradient descent (SGD)
is often used. For homogeneous workers, implementing the
same software for them is simple. Each worker has the same
network, but each processes a different mini batch. In other
words, a single network is trained with different mini
batches. Each worker calculates different gradients. A server
usually updates a weight by averaging the gradients received
from all workers. Then, the updated weight is sent back to
the workers for the next mini-batch step. The multithreaded
data-parallel SGD tends to be less effective in convergence
than a single-threaded one because its actual batch size is
multiplied by the data parallelism [8–10]. By virtue of layer-
wise adaptive rate scaling (LARS) [11], the convergence
efficiency is improved even for batches as large as 32,000.
Several reports have described that training Resnet-50 with
ImageNet dataset can be completed in tens of minutes using
more than 1,000 GPUs [12–14].

However, with data parallelism, bottlenecks arise from
communication between a server and workers. Particularly
in a huge model with many parameters, the communication
time increases concomitantly with the number of workers:
for learning Resnet-50 with 1,024 Tesla P100 GPUs, the
communication time occupies a quarter of the total time,

This paper is based on results obtained from a project commissioned
by the New Energy and Industrial Technology Development Organization
(NEDO), Japan.

although parameter communication is optimized to half
accuracy [14]. Communication time will be even greater for
huge models expected in future applications. In this paper,
we propose delayed update in synchronous data parallelism
by which all workers calculate gradients using weights
delayed by one step. Techniques for updating with old
gradients have already been discussed [15-16]. The
proposed method allows each worker to communicate new
gradients while one is calculating with only one older
weights. In addition, this paper explains the speed
multiplication factor using this method.

This paper is organized as follows: Section 2 presents a
data-parallel SGD using delayed weight update. The
experimentally obtained results, including convergence time
performance, are explained in Section 3. The last section
presents discussion of the proposed method and related
issues.

2. DATA PARALLELISM WITH DELAYED

WEIGHT UPDATE

Fig. 1 presents a conceptual diagram of data parallelism.
After a batch of data (a mini-batch) is given to each worker,
every worker calculates its gradient (dW1, dW2, …) in the
order of forward propagation, loss calculation, and back
propagation. The server collects the gradients from the
workers and then distributes an updated weight (W) back to
the workers after averaging the gradients. The gradients and
the weight have the same data size, which increases with the
network size; the server collects the gradients of 243 × n
MB (where n is the number of workers) in the VGG-F
network [17] with the ImageNet benchmark dataset [3].
Then the server calculates the averaged weight from the
gradients and broadcasts the updated weight of 243 MB to
the workers.

The processing time for the gradient collection, weight
update, and weight distribution is regarded as a latency until
the next gradient calculation for the workers. It is overhead
time in the conventional synchronous data parallelism. This
latency increases with increasing parameter size. Especially
in a huge model, this latency hinders the scaling up of
parallelization. The proposed method hides the latency using
a stale (= delayed) gradient. Therefore, the proposed delayed
update makes it possible for workers to perform
instantaneous processes. Fig. 2 presents timing diagrams of
the conventional synchronous data parallelism and the
proposed method with the delayed update.

In conventional data parallelism, TW and TS are given
respectively as a calculation time for workers and a
processing time for the server. In TW, each worker calculates
its own gradient, dW(t) for the present batch step, t, with the
updated weight, W(t). Then in TS, the server collects the
gradients, by which the weight is updated. The new weight,

W(t+1), is distributed back to the workers. In other words,
W(t+1) is updated by the very new dW(t), yet there must exist a

latency between the gradient and the weight. Workers and
the server, with the proposed data parallelism with the
delayed update, carry out their tasks concurrently without
latency. The updated weight is dW(t) as in the conventional
method, but it is for W(t+2), not for the very next.
Concurrency exists with no latency, but with a delay in batch
steps. Therefore, we designate the proposed method as
“delayed update.” The proposed method is not a naive SGD
algorithm. We must verify its accuracy, as explained below.

Dataset

Data
subset 1

Data
subset 2

Collect gradients

Update weight

Gradient
calculation

Gradient
calculation

Server

Worker 1

Worker 2

dW1

W

dW2

W

W

dW1,dW2

Batch 1

Batch 2

Bus

Fig. 1. Conceptual diagram of data parallelism for distributed deep

learning (two workers shown for simplicity).

Bus

Server

Worker 1

Worker 2

Bus

Server

Worker 1

Worker 2

W(t)

Forward Backward

Update

Forward Backward Forward Backward

Forward Backward

Forward Backward

Forward Backward

Update

Update

Improve latency

TW TS

(a)

(b)

dW (t) W (t+1)

W (t) dW (t-1) W (t+1) dW (t) W (t+2)

max(TW,TS)

Fig. 2. Timing diagrams of (a) conventional SGD data parallelism and

(b) proposed SGD data parallelism with delayed update.

3. EXPERIMENT RESULTS

3.1 Acceleration Ratio: RWS

The convergence time of the proposed method depends not
only on its accuracy, but also on the computing system. The
conventional data parallelism takes TW for a worker to
calculate a gradient in a batch. It takes TS for the server to
process a new updated weight. TW + TS is the time for one
iteration. In the proposed method, the iteration time is the
longer one of TW and TS. For the proposed method, we
define acceleration ratio RWS as

 RWS = (TW + TS) / max (TW, TS).

Actually, RWS becomes 2 at maximum when TW = TS,
although RWS strongly affects the final convergence speedup.
In our experimental environment (Core i7-6700K, NVidia
GeForce GTX 1080, Cuda 9.0, CuDNN 6.1, Matlab 2017a,
and MatConvNet [18]), we verified VGG-F [17] and
ResNet50 [5]. Our mechanical system contains a single GPU.
In order to evaluate data parallelism, parallelization is
virtually implemented by updating the weight with the
accumulated gradient. Fig. 3 shows the gradient calculation
times (GCTs) and the weight update time (UTs) achieved
after doubling the batch size from one to 128. A GCT is TW;
the sum of a UT and a communication time is TS. The GCT
increases with the batch size. In VGG-F, the GCT becomes
almost equal to the UT at a batch size of 16; TS becomes a
bottleneck for batches smaller than 16. TABLE I presents
the normalized GCT per image for batch sizes. The
experimental environment appears to be well optimized
when the batch size is 16–128 in VGG-F.

Communication time is particularly determined by the
data size of a weight. VGG-F with three fully connected
layers requires as much as 243 MB of weight memory.
ResNet50 has 100-MB weight memory. For this reason, the
amount of data communication between the server and the
worker is important for TS. Fig. 4 depicts the measured time
for transferring gradients and the update weight. The
communication time increases with the number of threads.
From these setup data, Fig. 5 is obtained. In VGG-F, RWS
tends to be a small value because the communication time is
dominant over others. RWS can be improved using a wider
bus interface. In ResNet50, RWS approaches a better value as
the number of threads is increased because the GCT is much
larger than the sum of the communication time and the UT.
RWS reaches 1.92 when the number of threads is eight and
the batch size is 16.

1.0E+01

1.0E+00

1.0E-01

1.0E-02

T
im

e
 [

s
]

Batch size

Gradient Calculation Time: GCT (VGG-F)
Gradient Calculation Time: GCT (ResNet50)
Update Time: UT (VGG-F)
Update Time: UT (ResNet50)

1001 10

Fig. 3. Measured gradient calculation times (GCTs) and weight update

times (UTs) in VGG-F and ResNet50.

TABLE I Gradient calculation time (GCT) per image

Calculation
time (ms)

Batch size

1 2 4 8 16 32 64 128
VGG-F 12.2 6.24 3.84 2.65 2.06 1.72 1.63 1.62

ResNet-50 98.4 104.5 108.8 58.1 30.6 18.8 16.4 17.9

0.6

T
im

e
to

 t
ra

n
s

fe
r

[s
] 0.5

0.4

0.3

0.2

0.1

0

SGT(VGG-F)
SGT(ResNet50)
RGT(VGG-F)
RGT(ResNet50)
Sum(VGG-F)
Sum(ResNet50)

SGT : Send-to-GPU Time RGT : Receive-from-GPU Time Sum : SGT + RGT

1 2 3 4 5 6 7 8

Number of threads
Fig. 4. Measured communication times for sending and receiving data

to/from the GPU, and their sums.

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

R
W
S

1 2 3 4 5 6 87

Number of threads

Batch size 16(VGG-F)
Batch size 32(VGG-F)
Batch size 16(ResNet50)
Batch size 32(ResNet50)

Calculation time is dominant

Communication time is dominant

Fig. 5. Change in RWS for various numbers of threads.

3.2 Convergence Speedup

3.2.1. Results obtained using the VGG model

The proposed data parallelism with the delayed update does
not strictly carry out the naive SGD because the gradient is
calculated using the one-step delayed weight. To verify the
accuracy and convergence time, we first set optimal
hyperparameters. In data parallelism, the batch size and the
learning rate are important and closely related
hyperparameters. The actual batch size is proportional to the
number of threads. According to the linear scaling rule [6],
the learning rate must be increased in proportion to the batch
size. Therefore, we set the respective learning rates as 0.001
× th (where th is the number of threads and the batch size is
16). This learning rate is multiplied by 1/10 at the 20-th
epoch and the 30-th epoch. The optimization method is the
momentum SGD. The moment is 0.9. The weight decay is
0.0001. Batch normalization [19] is adopted for
convolutional layers and fully connected layers, except the
final layer. After implementing the proposed data
parallelism with the delayed update, we observed its
convergence time. Fig. 6 shows a convergence comparison
from learning 40 epochs in training a subset of 50,000
images in the ImageNet benchmark dataset [3] (50 images

selected randomly from each category). Table II shows the
final accuracy obtained under each condition. In the same th,
the final accuracy difference between the conventional
method and the proposed method is up to 1.5%. When th = 8,
the proposed method shows slower convergence in the early
epochs. In the latter part, however, it converges just as well
as other condition of proposed method. It is noteworthy that
the proposed method has a speedup factor: RWS The
proposed data parallel method can learn faster.

x RWS speed up

50

40

30

20

10

0

V
al

id
a

ti
o

n
To

p
 5

 a
cc

u
ra

c
y

[%
]

Normalized time [a.u.]

#Threads th=2,Conv.
#Threads th=4,Conv.
#Threads th=8,Conv.
#Threads th=2,Prop.
#Threads th=4,Prop.
#Threads th=8,Prop.

Fig. 6. Convergence comparison of VGG-F between conventional data

parallelism and the proposed data parallelism when RWS is 2.

TABLE II Final accuracy of the VGG-F network [%]

Condition
Number of threads

2 4 8
Conv. 41.7 41.6 41.2

Prop. 41.7 41.0 39.7

3.2.2. Results obtained using ResNet

Because of GPU memory constraints, we implemented our
proposed method using the ResNet-18 model instead of
Resnet-50 and then compared the results with those obtained
using the conventional method. As with the experiment of
the VGG model described above, the optimizer is
Momentum SGD. The learning rate is 0.025 × th; it is
multiplied by 1/10 at every 30 epochs. The moment is 0.9.
The weight decay is 0.0001. Batch normalization is adopted
for each convolution layer. The batch size is 16. Fig. 7
shows a convergence comparison between the conventional
method and the proposed from learning 70 epochs.
Furthermore, Table III shows the final accuracy under the
different th conditions. Similarly to the VGG-F network, the
learning curves converge on all conditions; the accuracy
deterioration is 1.4% at most. These results from the VGG
model and the ResNet prove that the proposed data
parallelism can boost the learning speed irrespective of the
models. Particularly, ResNet has fewer parameters than the
VGG model because of the less fully-connected layer.
Therefore, ResNet is a suitable model for data parallelism.
This result is important for evaluating the proposed method.

Normalized time [a.u.]

60

50

40

30

20

10

0

V
al

id
at

io
n

To
p

 5
 a

cc
u

ra
cy

 [
%

]

#Threads th=2,Conv.
#Threads th=4,Conv.
#Threads th=8,Conv.
#Threads th=2,Prop.
#Threads th=4,Prop.
#Threads th=8,Prop.

Fig. 7. Convergence comparison of ResNet-18 between conventional data

parallelism and the proposed data parallelism when RWS is 2.

TABLE III Final accuracy of the ResNet-18 network [%]

Condition
Number of threads

2 4 8
Conv. 55.4 50.6 50.5

Prop. 54.2 52.6 49.2

4. CONCLUSION AND DISCUSSION

The experiment results demonstrate that applying the
delayed data parallelism to a general deep learning model
improves the convergence speed, although it degrades the
accuracy slightly. The proposed method shows great
effectiveness when communication costs increase with the
model size and the number of parallel workers. In a huge
distributed deep learning system including more than 1000
GPUs, the proposed method is expected to be very effective
because the communication costs are high. Moreover, the
proposed method is useful for low-cost distributed systems
with inexpensive communication interfaces.

Furthermore, to generalize the proposed method, we must
eliminate accuracy deterioration. Deep learning accuracy is
often dependent on a set of hyperparameters and a type of
optimization method; they should be optimized through
further experimentation. In this paper, the degree of
parallelism is up to eight (th = 8). Algorithms such as LARS
[11] and Warmup [12], which suppress accuracy
degradation even when the actual batch is very large, might
be countermeasures.

In the proposed method, speed up is difficult if either TS
or TW dominates the time. When TS is dominant, the
introduction of a high-bandwidth communication interface
increases RWS. When TW is dominant, introduction of a high-
performance processor is a solution. Alternatively, reducing
the parameter size or communicating half-precision
gradients is expected to be another solution. To balance TS
and TW, optimizing hardware for processors, memory, and
communication interfaces is necessary in practical cases. If
TS and TW are balanced, then the proposed method will help
speed up data parallelism.

REFERENCES

[1] K. Fukushima, “Neocognitron: A Self-Organizing Neural

Network Model for a Mechanism of Pattern Recognition
Unaffected by Shift in Position,” Biological Cybernetics, vol.
36, no. 4, pp. 93–202, Apr. 1980.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, pp. 436–444, May 2015.

[3] ImageNet at http://image-net.org/
[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

Classification with Deep Convolutional Neural Networks,”
Proceedings of Neural Information Processing Systems (NIPS),
pp. 1097–1105, Dec. 2012.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Identity Mappings in
Deep Residual Networks,” Proceedings of European
Conference on Computer Vision (ECCV), arXiv:1603.05027,
July 2016.

[6] A. Krizhevsky, “One weird trick for parallelizing convolutional
neural networks,” arXiv:1404.5997, Apr. 2014.

[7] H. Mori, T. Youkawa, S. Izumi, et al., “A Layer-Block-Wise
Pipeline for Memory and Bandwidth Reduction in Distributed
Deep Learning,” Proceedings of IEEE International Workshop
on Machine Learning for Signal Processing (MLSP), pp. 1–4,
Sep. 2017.

[8] Y. Bengio, “Practical Recommendations for Gradient-Based
Training of Deep Architectures,” arXiv:1206.5533, Sep. 2012.

[9] S. Gupta, W. Zhang, and F. Wang “Model Accuracy and
Runtime Tradeoff in Distributed Deep Learning: A Systematic
Study,” Proceedings of IEEE International Conference on Data
Mining (ICDM), arXiv:1509.04210, Dec. 2016.

[10] J. Keuper and F.-J. Pfreundt, “Distributed Training of Deep
Neural Networks: Theoretical and Practical Limits of Parallel
Scalability,” arXiv:1609.06870, Dec. 2016.

[11] Y. You, I. Gitman, and B. Ginsburg, “Large Batch Training of
Convolutional Networks,” arXiv:1708.03888, Aug. 2017.

[12] P. Goyal, P. Dollr, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, Large
Minibatch SGD: Training ImageNet in 1 Hour ,”
arXiv:1706.02677, June 2017.

[13] Y. You, Z. Zhang, C. Hsieh, J. Demmel, and K. Keutzer,
“ImageNet Training in Minutes,” arXiv:1709.05011, Sep 2017.

[14] T. Akiba, S. Suzuki, and K. Fukuda, “Extremely Large
Minibatch SGD: Training ResNet-50 on ImageNet in 15
Minutes” arXiv:1711.04325, Nov. 2017.

[15] A. Agarwal, and J. Duchi, “Distributed delayed stochastic
optimization,” Proceedings of Neural Information Processing
Systems (NIPS), pp. 873-881, Dec 2011.

[16] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M.
Mao, M. A. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Ng,
“Large scale distributed deep networks,” Proceedings of Neural
Information Processing Systems (NIPS), pp. 1232–1240, Dec
2012.

[17] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,”
arXiv:1409.1556, Sep. 2014.

[18] MatConvNet at http://www.vlfeat.org/matconvnet/
[19] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating

Deep Network Training by Reducing Internal Covariate Shift,”
Proceedings of International Conference on Machine Learning
(ICML), pp. 448-456, July 2015.

