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Abstract— We presents distance measurement technique 
in high-interference environment using ultrasonic array 
sensors and direct sequence spread spectrum. First, this paper 
explains time of flight calculation methods for enhancing the 
reflected waves from the object. Then, results obtained using 
this method are discussed. Object detection in an environment 
with much interference can be achieved with machine learning. 
Evaluation results show that the proposed method can 
measure the distance of static target in range of 2-12.5 m ± 5 
cm (99% accuracy) and a target moving at 0-2.0 m/s in range 
of 2-7 m ± 30 cm (77% accuracy). We also conducted 3D 
measurement that was able to detect an object in outdoor at 11 
m. 
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I. INTRODUCTION 

Ultrasonic measurement technology has attracted attention 
for decades. Various ultrasonic applications in robotics and 
security have been developed in recent years. Ultrasonic 
distance imaging system can recognize a position. 
Beamforming techniques for distance image acquisition are of 
particular interest and an ultrasonic transmitter array (UTA) is 
used for this purpose. In contrast to Lidar [1] and optical 
methods, ultrasonic imaging systems present great benefits in 
term of privacy in monitoring activities. In general, measuring 
the distance of an object from a distance image is done using 
the time of flight (TOF) [2-11]. 

However, ultrasonic waves undergo great attenuation of 
acoustic signal in air. For that reason, several studies been 
done to address this issue. The use of spread-spectrum 
techniques is known to improves noise resistance and increase 
the measurement range [6]. Using the techniques, a transmitter 
consisting of four arrays with eight elements has been reported 
as able to measure distance images over a range of 6 m [7]. In 
addition, simulation have shown that ultrasonic array 
transmitter driving higher power with an increased number of 
elements can improve the sound pressure and directivity [8]. 
Earlier reports have described the use of those techniques: an 
ultrasonic distance sensing system with 144 elements and a 
high voltage of 30 Vpp can measure up to 50 m [9], and 

another sensing system with 64 elements and voltage of 20 
Vpp can acquire the distances of two objects at 0.5-6 m [10]. 
Because these studies are conducted in an anechoic room in 
which no other reflection waves exist, useful ultrasonic 
imaging systems in the environment of reflected waves from 
surrounding environment must be considered.  

In this study, we implement a UTA using sixteen 
ultrasound transducers with a fundamental frequency of 25 
kHz and a voltage of 60 Vpp, and discuss how to process 
reflected waves from surrounding environment. We also used 
MEMS microphones for the receiver array to minimize 
element spacing [11]. By correcting the reflected signal, we 
achieved the 1D measurement of a static object and a dynamic 
object according to changes in their location. Using machine 
learning, we could demonstrate that classification was 
possible. To demonstrate the possibility of classifying objects 
in 3D distance images, we measured the position of a static 
object in an environment of reflect waves. 

II. THEORY 

 
Fig. 1 presents a schematic diagram of our ultrasonic signal 
processing system. All received signals stored by the recorder 
are computed on the PC. 

 
Fig. 1. Diagram of ultrasonic measurement system. 
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A. Distance measurement of static object using DSSS 

As described in reports of earlier studies, a direct sequence 
spread spectrum (DSSS) signal using the M-sequence or other 
similar codes is noise resistant making it particularly useful 
for distance measurements. The method of estimating the TOF 
is determination of a point that shows the highest peak of cross 
correlation between the reflected wave and the known 
transmission sequence using DSSS: the magnitude of the 
correlation value is proportional to the similarity and sound 
pressure of the received signal. The propagation loss of 
ultrasonic method is large. Therefore, if non-target objects are 
closer to receiver than the object, the distance attenuation 
should be considered when classifying the peaks. Using our 
method, the decrease of the peak value with distance is 
suppressed by making the amplitude uniform through 
binarization of the received signal. The binarization is given 
by the following equation for static objects: 

𝑥𝑟(𝑡)  =  {
1 (𝑥𝑟(𝑡) > 𝑥𝑐)

−1(𝑥𝑟(𝑡) < 𝑥𝑐)
 (1) 

where 𝑥𝑟  represents the received signal, and 𝑥𝑐  is a mean 
power of microphone outputs. 

 

B. Distance measurement of dynamic object using DSSS 

For a dynamic object, because of the Doppler shift, the 

main peak becomes less noticeable as the velocity increase. 

Reportedly, the speed limit depends on the DSSS code length 

[12], derived from the number of waves per bit and the bit 

length. For this study, we used to a 32-bit signal with eight 

wavelengths per bit for accurate measurements, which is less 

affected by the narrow bandwidth of the UTA device. The 

peak can be detected using the resampled transmission 

sequence for cross-correlation according to Doppler speed if 

the peak cannot be detected beyond the limit speed. The 

resampling ratio is represented by the following formula: 

(𝑣𝑠 − 𝑣𝑑)/𝑣𝑠 (2) 

where 𝑣𝑑 is the object’s velocity, and 𝑣𝑠 is the acoustic wave 

speed in air. 
 

C. 3D position and shape recognition by beamforming 

Beamforming enables us to measure an object in three 
dimensions. The amount of delay given to each element for 
beamforming is given by the following equation:  

∆𝑡𝑛 = 𝑑𝑦𝑛 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜑) + 𝑑𝑧𝑛 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜑) (3) 

Therein, the array is in the Y-Z plane; the output direction is 
shown by the X axis. 𝑑𝑦𝑛  and 𝑑𝑧𝑛  are the distances of 𝑛-th 
elements from the center of the array, where 𝜃 represents the 
arrival angle around the X axis and 𝜑 from the Y-Z plane. 

Similarly, detecting the peaks at a distance is important 
also for 3D measurements. The received signal is calculated 
by adding the delayed signals in equation (3), which needs a 
liner summation. Therefore, the method of detecting the far-
field peaks by binarization is inappropriate. The received 
signal power 𝑃𝑟 from a uniformly radiating spherical waves 
from speakers is given by the following equation: 

𝑃𝑟 =
𝑃𝑡

4𝜋𝑅2
 (4) 

where, 𝑃𝑡 stands for peak transmitter power, 𝑅 expresses the 
distance from the speaker. Based on this equation (4), we 
multiply the correlation value by 𝑅2 to enable us to detect the 
peaks at greater distances. 

 

III. EXPERIMENTAL RESULTS 

A. Transmitter and receiver  

Fig. 2 (a) shows the developed UTA, ultrasonic receiver 
array (URA) and other setups used for the experiment. The 
UTA comprises sixteen transducers (MSO-AT1625H12T: 
Changzhou Manorshi Electronics Co. Ltd. with 16.2-mm 
diameter) and mutual element spacing of 17 mm. Each 
transducer is driven at 60 Vpp, with a fundamental frequency 
of 25 kHz. The URA consists of sixteen MEMS microphones 
(SPU0410LR5H-QB: Knowles Electronics, the dimension is 
3.76 mm,) which allows for short element spacing of 7mm. 
By shortening the element space to less than the half-wave 
length of the transmitted signal, the side lobe effect can be 
reduced. Using the parameters of the developed sensors, we 
computed their synthesized directivity by computer 
simulation; Fig. 2 (b) shows the UTA, UTR, and synthesized 
one whose main lobe azimuth angle is peakier around 0°. 

The transmit signal was a 32-bit long code with eight 
waves per bit, generated by a digital pattern generator (410-
338, Digital Discovery; Digilent Inc.). The received signal 
was amplified by an operational amplifier and was captured 
synchronously with the transmitted signal at a sampling 
frequency of 1MHz using a data recorder (MR6000; HIOKI 
E.E. Corp). To demonstrate the effectiveness of our method, 
we conducted experiments in a room with much interference 
from various sources.  

 
(a) 

 
(b) 

Fig. 2. (a) Sensors and (b) direction characteristics of UTA, URA, 

and synthesized one.  
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B. 1D static evaluation 

We used a circular plate with a 1-m diameter as the object, 
as shown in  
Fig. 3. The sensor is placed at 1.2 m from the floor on the 
horizontal line in the center of the circular plate. Two hundred 
measurements were taken at 18 fixed positions from 4.0 m to 
12.5 m (at every 0.5 m step). We binarized all signals.  
Fig. 4 shows that the binarization suppresses the decrease in 
the correlation value with distance. We can distinguish the 
circular plate that are standing at 12.5 m, which has stronger 
signals than the non-binarization case at a long distance. 

 
Fig. 5 shows the signal intensity in the correlation peak of an 
object depending on the distance. In the non-binarization 
experiment, the correlation peaks signal decrease by 15 dB at 
12.5 m, while that is 2 dB in the binarization experiment. 

 
Fig. 3. Circular plates for static and dynamic experiments. 

 

 
(a) 

 
(b) 

Fig. 4. Comparison of (a) non-binarization and (b) binarization in 

1D static experiments. 

 

 
Fig. 5. Signal compensation by binarization. 



 

 

We adopt a variable auto encoder (VAE) as machine 
learning, which can extract common features from data. It 
finds the peaks of an object from multiple peaks that contain 
ambient signals. Fig. 6 (a) shows the VAE learning method. 
The correlation values, normalized pulse, were trained as the 
training data. Correlation values with peaks only at the 
location of the object were trained as correct data. Out of the 
3,116 measurement data obtained, 2,587 training data and 529 
validation data were trained. Consequently, as shown in Fig. 
6 (b), we were able to detect the peak of the object from the 
correlation values under high-inference indoor environment. 
The percentage of correct answers was 99% in 150 epochs, 
allowing an error of ± 5 cm. 

 
(a) 

 
(b) 

Fig. 6. Machine Learning with VAE for static measurement: (a) an 

example dataset and (b) inference results. 

 

C. 1D Dynamic evaluation 

The left picture in  
Fig. 3 (b) presents the environment used for dynamic 
experiment. We held the circular plate in our hands and moved 
the object in direction where the Doppler velocity was 
negative. The walking state from 4 m to 5 m is saved at one-
second intervals. 

 
Fig. 7 shows the cross-correlation between the reflected waves 
of moving object and the resampled transmission sequence 
with the Doppler velocity varied by every 0.1 m/s. In the 
figure, the closer is to the object’s velocity of 1.2 m/s. 

 
Fig. 7. Correlation values of the dynamic object and non-target 

objects with Doppler compensation. 

 

We measured 1,982 data, and then all were binarized: 21-
series correlations were calculated using the transmission 
sequences resampled from 0.0 m/s to 2.0 m/s. Fig. 8 (a) shows 
the learning method used for the VAE in dynamic experiment. 
The correct distances were acquired using a depth camera. A 
teacher signal was expressed in the form of normal 
distribution curb. We used 1,734 data (× 21 datasets) for 
learning data and the rest 194 data for test data. The training 
results are shown in Fig. 8 (b). The percentage of correct 
answers in a range of 2-7m was 77% in 1000-epoch training, 
allowing for an error of ± 30 cm. 
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(a) 

 
(b) 

Fig. 8. Machine Learning with VAE for dynamic measurement: an 

example dataset and (b) inference results. 

D. 3D static evaluation  

For 3D evaluation, we carried out outdoor experiment. We 
detected the same circular plate as shown in  
Fig. 3 by directing the transmitter beam to both elevation and 
azimuth angles of 0°, where the target locations has three cases 
(center, left and right around ± 12° ). The distance from the 
transmitter to the plate at each location is slightly different due 
to the outdoor experimental environment. Fig. 9 shows 
visualization of the correlation values of which distance and 
azimuth angle in vertical and horizontal axis, respectively. 
The distance and angle of the object detected is the area with 
the highest correlation value. The object at each different 
position can be detected. TABLE I presents a comparison with 
the actual distance measured using the range finder.  

 

 
Fig. 9. Visualization of 3D measurement in outdoor. 

 

TABLE I. 3D outdoor measurement (azimuth 0°, elevation 0°) 

Position 

Correct Measurement 

Distance 

(m) 

Angle 

(°) 

Distance 

(m) 

Angle 

(°) 

Center 22.78 0.0 22.77 −2 

Left 23.58 11.9 23.49 7 

Right 24.73 −12.4 24.55 −12 

 

×21

Center

Left

Right



 

 

As well, we conducted another experiment in the room 
with higher interference. Referring to Fig. 2, the beamforming 
scan width of the UTA was found as -24° to 24° azimuth. We 
took measurements from 24° to -24° azimuth by every 3° step 
at elevation of -5° We used a narrow 1.2 m × 0.4 m wooden 
board as the object and installed it at 4-m distance (center, left 
and right by 0.5 m). Fig. 10 the measurement results, and 
TABLE II presents a comparison with the actual distance 
measured using the range finder. In a room with many 
reflections from surrounding environment, the detectable 
range is shorter, but we were able to detect the object. 

 
Fig. 10. The results of 3D measurement in the room. 

 

TABLE II. 3D indoor measurement (elevation −5°) 

Position 

(azimuth) 

Correct Measurement 

Distance 

(m) 

Angle 

(°) 

Distance 

(m) 

Angle 

(°) 

Center (0°) 7.73 0.0 7.86 −1 

Left (12°) 8.04 7.4 8.16 9 

Right (−12°) 7.83 −9.6 7.95 −12 

 

IV. CONCLUSION 

A method with ultrasonic DSSS was proposed for 
measuring objects using UTA consisting of 16 ultrasound 
transducers and URA consisting of 16 MEMS microphones. 

For 3D ranging, we were able to detect object at 22.7 m 
outdoor and at 7.8 m in the room, a static valuation. In static 
distance measurement, we could distinguish objects on the 
beam and measure 12.5 m ± 5 cm distance with 99% accuracy. 
For 0-2m/s dynamic evaluation, 2-7 m ± 30 cm were possible 
with 77% accuracy. TABLE III summarizes comparison with 
conventional range imaging techniques. 

TABLE III. Comparison with conventional methods. 

 Proposed [9] [10] 

Number of elements 16 144 64 

Noiseless environment 

11 m 

(outdoor) 

 

25 m 

(anechoic 

room) 

3 m 

(anechoic 

room) 

Indoor environment 

12.5 m 

(static) 

7.0 m 

(dynamic) 

N/A N/A 
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