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Abstract— Simple yet useful analytical formulas for delay,
slope and crosstalk noise amplitude for capacitively coupled
two-, three- and infinite-line systems are derived assuming bus
lines and other signal lines in deep-submicron VLSI’s. The
calculated results using the derived formulas are extensively
compared with SPICE simulation results to demonstrate the
validity of the analytical expressions. Two modes have been
studied; the case where adjacent lines are driven from the
opposite direction and the case where adjacent lines are driven
from the same direction. These cases corresponds to the typical
situations in VL SI designs and indude worst cases in terms of
noise amplitude and delay. Delay error in approximating the
distributed RC lines by N-step n-ladder RC lumped circuit is
also investigated.

1. Introduction

In deep submicron designs, interconnection related issues
become more and more important in estimating timing
behavior of VLSI's [1]. For instance, coupling capacitance is
comparable to grounding capacitance. The coupling noise
may cause malfunction and timing problem especially in
dynamic circuits but even in static circuits, in addition, the
noise may generate unexpected glitches which may give rise
to timing and power problems.

Several attempts have been made to analytically treat the
crosstalk in capacitively coupled interconnections. However,
the results are limited to two-line systems and the case
considered in the previous publications are limited to the case
where adjacent lines are driven from the same direction. This
paper extends the analysis and covers more general cases.
The resultant formulas are more precise than the previously
published expressions.

The delay of the RC distributed lines is also handled
analytically in this paper. To the knowledge of the authors,
formulas for the delay of the capacitively coupled distributed
RC interconnection system have not been presented so
rigorously and systematically as this paper. To analyze the
capacitively coupled lines, moment matching technique based
on Padé approximation is employed to give the analytical
expressions.

The derived expressions are useful in estimating the noise
and delay in the early stage of designs and give insight to
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coupling related issues.

2. Notations
Notations used in this paper are as follows.

¢ : capacitance of line per unit length.

C: total capacitance of line (=cl).

¢, : coupling capacitance of line per unit length.

C¢ :total coupling capacitance of line {=c_).

C, : equivalent capacitance of receiver MOSFET.

C;: =C/C.

d : pure delay of voltage waveform.

E, : step voltage of the driving point of line i (i=1,2). The
condition that E\=1, E,=1 is called an in-phase drive. The
condition that E;=1, E,=-1 is called an out-phase drive.
The condition that E;=1, E,=0 is called E,=0 drive.

K, : residue corresponding to G,.

1: linelength.

m, :k-th moment of voltage waveform k (k=0,1).

n : number of adjacent lines (n=1 for two-line system, n=2
for three-line system and n=1 for infinite-line system).

n; : =n+l.
=1+(n+1)n.

r: resistance of line per unit length.

R: total resistance of line (=rl).

R, : equivalent resistance of driver MOSFET.

Rr: =R/R.
s: Laplace variable.
t: time.

t, : time to give the noise peak.

tyq : propagation delay using Padé approximation.,
v, Vi(x,t) : voltage of line i (i=1,2) in t domain.
V., Vi(x,s) : voltage of line i (i=1,2) in s domain.

v, - peak noise voltage.

X : x-coordinate along the line.

n: =CJ/C.

O, : minimum absolute pole.

T: time constant in single exponential approximation.

3. Basic Equations
The basic equations which governs a capacitively coupled
two-line system (Fig. 1) are written as follows.
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, where 1, and ¢; are resistance and capacitance of line i
(i=1,2) per unit length. Since in bus structures and other
wiring structures lines have the same resistance and
capacitance per unit length, we assume r;=r,=r and ¢,=c,=c.
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Fig. 1  Capacitively coupled two distributed RC lines.

When three-line system (Fig. 2) is considered, the
following equations hold.
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Fig. 2 Capacitively coupled three distributed RC lines.

On the other hand, if infinite lines are placed in parallel
where the same boundary conditions are applied to every two
lines as in Fig. 3, the following equations hold.

d*v ov ov
ale = r(c+20c)—éf—-—2rcc—atl o
2
sz =r(c+ 2cc)a—v—2— -2re, M
X ot ot

Fig. 3 Capacitively coupled infinite distributed RC li‘nes.
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All of the above-mentioned three equation sets (1), (2) and
(3) can be represented by the following one set of equations.

2
I Vzl =r(c+ ncc)%— nre, AZ)
ox ot ot 4
v, v, v, (
==r(c+e, )—=—rc,—=
ox ot ot

In the above equations (4), the following values should be
set to n and c, for each case.

Two-line case:

Three-line case: n—2, ¢, —¢,

Infinite-line case: n—1, ¢c,—2¢,

(4) can be simplified, if the following substitutions are
made.

n—1, c.—c,

a%v

t/lrc—=1t, ¢ /cmn —5 =V,
ax
vy = (14+nm)v, —mmy,
{ vy = (1+m)v, -nV,
are the resultant equations after the substitution. With a linear
transformation, we have
(vi+nv,)” =V, +1v,
{ (v =v,)" =1+ (n+ M)V, - V,)
By Laplace transformation, the following equations can be
derived.
(V,+nV,) =s(V, +1V,)
{ V, = V)" =1+ (+Dms(V, - V,)
The solutions of the above equations are expressed as
follows with the introduction of v, and 7,.

1i=35 1, =L+ @+ Dns = ps

V,+nV, =A’e" + B¢

V-V, =Ce +De"
, where A', B', C' and D' are integration constants.

(n+1DV, =A™ +B’e™ + nC’e"™ +nD’e ™

(m+1)V, =A™ +Be™ - ("™ D™

Then, the following are the general solutions to (4) in s-
domain.

V, = Ae" +Be " + nCe””* + nDe ™"
V, = Ae"" +Be " — Ce™* —De "

A, B, Cand D are to be obtained from boundary conditions.

&)

A. Moment Matching Approach for Delay and Slope
Calculation

Once A, B, Cand D are obtained, closed-form expressions
for Vi(x,s) and V,(x,3) can be obtained using (5).
Approximate voltage waveform of a full-swing line has an
single exponential form with pure delay d shown in the
following figure.
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Fig. 4 Approximate voltage waveform of full-swing line.

In order to obtain expressions for the delay t,;, the moment
matching method (Padé approximation) is used [2-3], where
the coefficients for s° and s! of the exact solution of (5) are
matched to the coefficients of s° and s' of the approximate
waveform in Fig. 4. The coefficient of s” is called the zero-th
moment m, and the coefficient of s' is called the first moment
m;. m, happens to be the well-known Elmore delay. Taylor
expansion of the approximate waveform in Fig. 4 is as
follows.

1
——m,+mgs+o[s’] =
s

2

—1—-—(T+d)+(‘c2+’cd+d7js+o[sz]

s
Consequently, once the moments of (5) are obtained, the
delay t,, and the slope of the waveform can be calculated as
follows using Padé approximation.
T=42m,-m?, d=m,-1
1 (6)

In calculating the crosstalk noise, the moment matching
approach is not effective because the noise shape varies from
case to case and the assumption that the waveform is like Fig.
4 is not valid. For noise analysis, therefore, different
approaches are taken from case to case.

4. Opposite Direction Drive

In this section, the mode where adjacent lines are driven
from the opposite direction is handled. The situation is
depicted in Fig. 5. Forthis mode, analytical expressions turn
out to be very complicated if the equivalent resistance of
driver MOSFET R, and the equivalent capacitance of receiver
MOSEFET C, are to be considered, thatis, Ry and C; are not
equal to zero. The case of R=C=0, however, gives the worst
case scenario in terms of the noise amplitude because the
capacitance coupling effect is mitigated if Ry and C; are
finite. Consequently, the R;=C;=0 case is treated here.

The boundary conditions for this case are as follows (Fig.

5).
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V/(0,s)=0
V,(1,s)=E, /s
V,(0,s)=E, /s
V,(,s)=0
x=0

=]
R R=0
V1(0,5)=0_—AWM

WALSFEJS
¢ ¢ Lcox oI E

R t=0
V's(l,8)=0

Fig. 5 Adjacent lines are driven from the opposite direction (R=C=0).

Writing these conditions using (5) yields
AY, - By, +nCy, —nDy, =0
Ae"' +Be™ +nCe™ +nDe ™" = E, /s
A+B-C-D=E,/s
Ay,e" —Bye " —Cy,e’? + Dy,e ™' =0
The above linear equations can be solved interms of A, B,
Cand D. Then A, B, C and D are substituted back in (5) and

the closed-form expressions for V,(x,s) and V,(x,s) are
obtained.

A. Crosstalk Noise

Although the derived expression for V,(x,s) is very
complicated, the peak noise amplitude, Vp, €AN be calculated
using the following initial value theorem of Laplace
transform. In order to obtain the crosstalk noise on V,(x,s), E,
isset to 0 and E, is set to E.

bl V1(0,+0) 5 P_{ESVI(O,S)

E E  E

The resultant expression for the peak noise amplitude is
simple as follows. The formulas are exact. Special case
expressions for two-, three- and infinite-line systems are also
shown.

\%

Xé_‘ = I;J“ 11:((2:11))?] :Lrll (general, exact)

Yp TGt

=X ¢ (two—line

E  1+2C,/C+1 )
2J1+3C_/C =2

Yoo NI TR (three — line)

E  21+3C./C+1
J1+4C_ /C -1

Dot NP T Ginfinite — line)

E J1+4C_/C +1

If the coupling capacitance C is equal to the grounding
capacitance C, which can happened in deep submicron
designs, v /E for two-, three- and infinite-line systems are
0.27, 0.40 and 0.38, respectively. This means that the noise
induced by the coupling would go up to 40% of the signal
swing, which may in tum cause malfunction and timing



problems. This situation can be verified by SPICE [4]
simulation results as seen in Fig. 6. The SPICE simulation is
carried out by using 10 sections of lumped RC blocks.
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Fig. 6 SPICE simulation results for the case where adjacent lines are
driven from the opposite direction (three-line system).

B. Delay and Slope
Although the expressions for voltage waveform, V,(x,s)
and V,(x,s) are also complicated, the moments, m, and m,; of
V(0,s) can be expressed as below. Once m, and m, are
obtained, the delay t,, and the slope are calculated using (6).
m,/ RC=4{E (1+nmm)-E,nm}

m, / (RC)* = 4 [E,{(5+ 501 + 0am(10 +31)}
—E,nm{8 + (3 +5n)n}]

The worst case in terms of delay occurs when n=2 and the
adjacent lines are driven in out-phase fashion, that it, E,=1

®)

and E,=-1. t,4 in this Worst case is expressed as follows.

t 1

pd 2
= 4 2n-—=1lo 4/1+6 +2
RC 2 n- «/— g N+ 21 )
= 1.7m+0.37 (n<2)
Typlcal delay s1mu1at10n example is shown in Fig. 7
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Z
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Normalized time: YRC
Fig.7 Delay simulation example for the opposite drive case (threcdine
system).
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5. Same Direction Drive
In this section, the mode where adjacent lines are driven
from the same direction is treated. The situation is depicted in
Fig. 8. For this case, the equivalent resistance of driver
MOSFET R, and the equivalent capacitance of receiver
MOSFET C, can be taken into account in the analysis, that is,

R and C; can be finite.
x=0 x=l

R R
v1(o,s)=E1/s§M—WMWMjV'1(I,s)=o
OtJ—(;E1 c ;J; CC_ I-;;Ct
= R R

V,(0,5)=Ex/s V'(1,8)=0
O_t_l'; Ex ,;__’Ct

Fig. 8 Adjacent lines are driven from the same direction.

C

The boundary conditions for this case are written as
follows.

_lov _Eov
r X |, R, |,
RN e
r Ox |, fot., 10
3 _i_avz E,-v,
r/nodx|, R/n|_,
S APt AT
r/n 0x |, at |

A. Crosstalk Noise

In order to obtain the crosstalk noise, the moment
matching approach is not effective and a special analytical
treatment like below is employed. For noise calculation, E, is
set to 0 and E, is set to E.

If we define u;=v,+nv, and u,=v-v,, u; and u, give the
following equations.

o, _ 9

x> ot 1
0’u, _ Cghzr du, 8u2

ox? ot At/p) ot

The boundary conditions for u; and u, are obtained by
linearly combining (10) as follows.

_low) _nB-u
r X |, R |
_1du, Bu
r ox | _ “ Bt 12
_la& —E—uz
r 9x |, R, |2
_ 10w _Ciduy
rox|,, p ot'|,,




On the other hand, it is well-known that the equation
%y Bv

o a
with the boundary condition,
1 By
r ox|,_, R, |,
loav| _  ov
Craxly o
has the following solution [5-7].
() 1+2K e_‘fCkl =1+K, e_R?
E

This means that v(l,9) can be approximated with a single
exponential function. o, is the pole with minimum absolute
value, and K, is the corresponding residue and can be
approximated as follows.

Ri+C; +1
Ri+C,+mn/4

1.04
0, = B
R;C;+R;+Cr+(2/7)

Comparing the above solved system and (11) and (12), we
get approximate formulas for v, and u,. v, and v, are obtained
by a linear combination of u; and u, as follows.

K, =-101

AL e -
E  n+l| '
(13)
oit
YO, L TR g o TR
E n+l

In the above expression, K,' and ©,' are expressed as
follows.
1
K/ ~ 1,012 Cr/Pt
R, +C,/p+n/4
, 1.04

0, = 3

R.C,/p+R;+C;/p+(2/7)

The peak noise amplitude can be derived by searching for
the peak wvalue in (13). This can be achieved by
differentiating (13) and solve dv,/0t=0 in terms of t. If we
write the solution to this equation as t,, t,; canbe expressed

as follows.
_pIn(%p)

t
" po, — O,
Now, putting t,; back in (13), the peak noise amplitude is
obtained.
v PO

o1
E —[K< p) s K p)%ﬂ a4

Several special cases are discussed in the following
chapters.

A-1. Noise for the Case: R Cp»1

In this case, K;=K,'=-1, 6,=1/(R;C;) and &,'=p/(R;C) hold.
Then, from (14), v, —0. This case corresponds to the old
situation where interconnection capacitance and resistance
are not large compared to MOSFET related resistance and
capacitance. For this case, as a matter of course, noise issues
can be neglected. The capacitance coupling noise is rather a
new headache in VLSI designs.

A-2. Noise for the Case: R, C«l
In this case, K,=K,'=-4/% and 6,=0,'=n*/4 hold.

1

4 1 ) 7
V= —0
© \l+nm I+nm

n .
= —————(valid wh <2
2+(n+1)n(val whenn <£2)

Special case expressions for two-, three- and infinite-line

systems are shown below.
Vot nC, /C

=————¢ ~ _ (general
E 2+(n+1)C,/C e )
V_z__CcL (two — line)
E 2+2C./C

. (15)
v
ol zM__ (three — line)
E 2+3C./C
v
Yoo _C/C  infinite —line)
E 1+2C,/C

The approximation is valid when Co/C<2. If the coupling
capacitance C. is equal to the grounding capacitance C which
can happened in deep submicron designs, v,/E for two-,
three- and infinite-line systems are 0.25, 0.40 and 0.33,
respectively. This means that the noise induced by the
coupling would go up to 40% of the signal swing, which is
the same situation as in the previous section. This situation
can be verified by the SPICE simulation as seen in Fig. 9.
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Normalized time: t/RC

Fg. 9 SPICE simulation results for the case where adjacent lines ar
driven from the same direction (three-line system).
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Forthis case, the time when the noise shows the peak t, is
approximated as follows.

ln 4 plnp
RC = p-1
A-3. Noise for the Case: C«l

This is similar to the previous case and the noise amplitude
is approximated as follows.

1
~RT+1n 1 am
R:+% {1+nn

R, +1 nm
127R +12+(n+1n

n
I+nm

pl

(valid when 1< 2)

A-4. Noise for the Case: Rp»1
In this case,
1

1\
V. =n
ot 1+nm

go— M
2+ (n+1n’
, where n'=C/(C+Ct).

’

il
1+nn

(valid when 1" £2)

B. Delay and Slope

Although the expressions for voltage waveform are
complicated, the moments, my; and m; of V,(I,s) can be
expressed as below. Once m, and m, are obtained, the delay
t,s and the slope are calculated using (6).

m, / RC=4[E {2C.(1+Rp)+ (1+ 2R )(1+nm)}
—-E,nmm(1+2R,)]

m, / (RC)* = 4[E,{24C2(1+R)*
+4C(5+15R; +12R3)(1 +1nm)
+(5+20R [ +24R2)(1+2mm +0m* +n°n?)}
—B,M{4C((2+3n)(1+3R)+6(1+n)R2)
+(5+20R, +24R2) 2+ +nm)}]

The worst case in terms of delay occurs when n=2 and the
adjacent lines are driven in out-phase fashion, that it, E;=1
and E,=-1. A simple case when C;=R;=0, t,; in this worst

case is expressed as follows
——+2 «/1+8n+6n

RC 2T «/‘
= 1.63n+0.37 (N <2)

Typical delay simulation example is shown in Fig. 10. It is
seen from the figure that t,, in three-line system varies from
0.37RC (in-phase) to 2.0RC (out-phase) depending on the
behavior of the adjacent lines. When E,=0, t , is 0.98RC.

(16)

)
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Normalized voltage: v,/E

-0.5 i i

5 10
Normalized time: t/RC
Fig. 10 Delay simulation example for the same direction drive case (three-
line system).

6. Comparison with Simulation

A. Crosstalk Noise

SPICE simulation is carried out to demonstrate the validity
of the noise peak formulas of (7) and (14). The simulation
results are compared with the calculated results using the
analytical formulas in Figs. 11, 12 and 13. As seen from the

figures, excellent agreement is observed between the
simulated and the calculated results.
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3 L5 - n=2 |
o)
g L
S F L Formula .
> .
g Simulation .
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o
o
Q
N
©
E
]
2

1n: Ce/C
Fig. 11 Simulated and calculated peak noise amplitude using (7). Adjacent
lines are driven from the opposite direction.
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Fig. 12 Simulated and calculated peak noise amplitude using (14). Adjacent
lines are driven from the same direction.
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Fig. 13 Simulated and calculated peak noise amplitude using (14). Adjacent
lines are driven from the same direction.

B. Delay and Slope

The simulation results for delay and slope are compared
with the calculated results using the analytical formulas (6),
(8) and (16) in Fig. 14 through Fig. 21. As seen from the
figures, good agreement is observed between the simulated
and the calculated results.
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Fig. 14 Simulated and calculated delay using (6) and (8). Adjacent lines are
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Fig. 15 Simulated and calculated delay using (6) and (16). The case is for
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Fig. 16 Simulated and calculated delay using (6) and (16). The case is for
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Fig. 17 Simulated and calculated delay using (6) and (16). The case is for
the same direction and E,=0 drive.
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7. Approximation with Lumped Circuit

In circuit simulation, 7-ladder lumped circuit is often
adopted to approximate the distributed RC lines. The error in
simulating delay of the distributed RC line by using N-step
lumped ladder blocks (Fig. 22) is investigated.

The results are shown in TABLE 1 through TABLE 6.
Numbers in the tables signify % error of the delay. The
reference (exact delay) is taken from the simulation results
with N=10. C; and R are set equal to 0, because this
condition corresponds to the worst case in terms of error.
When C; and Ry are finite, they tend to determine the timing

behavior of the system and they are lumped circuit elements
from first.
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Fig. 22 (a) Distributed RC lines and (b) approximating N-step n-ladder
circuit.
It is seen from these tables that 3-step m-ladder network is
a good approximation in estimating delay within 4% relative
error even in the worst cases.

TABLE 1 Delay % error with lumped circuit
(opposite direction, in-phase drive case)
=1 n=2
n N=1 N=2 N=3 N=5 N=1 N=2 N=3 N=5
0.01 8.9 1.0 0.3 0.1 9.4 1.0 0.3 0.1
0.1 13.2 1.1 0.3 0.1 19.0 1.4 0.3 0.1
0.4 33.0 25 0.6 0.1 73.6 74 1.6 0.4
1 _ _ _ _ _ — _ _
4 - - - - - - - -

— signifies that the relative error can not be calculated because the exact
delay is zero but the absolute error is smaller than 0.001RC.

TABLE 2 Delay % error with lumped circuit
(opposite direction, out-phase drive case)

=] n=2
n N=1 N=2 N=3 N=5 N=1 N=2 N=3 N=5
0.01 8.3 1.4 0.8 0.1 7.0 0.5 -0.9 -0.9
0.1 5.5 1.0 0.4 0.4 4.5 1.6 0.9 0.3
0.4 2.1 1.7 0.6 0.2 3.7 1.7 0.6 0.0
1 1.0 1.9 0.8 02 49 1.8 07 02
4 2.4 3.0 1.3 0.4 5.0 1.2 0.4 0.1
TABLE 3 Delay % error with lumped circuit
(opposite direction, E,=0 drive case)
n=1 n=2
n N=1 N=2 N=3 N=5 N=1 N=2 N=3 N=5
0.01 8.3 0.9 0.1 0.0 8.3 0.9 0.1 0.0
0.1 8.4 0.9 0.3 0.1 7.9 0.8 0.2 0.0
0.4 6.0 0.7 0.1 0.0 5.5 0.6 0.2 0.0
1 0.5 0.1 -0.1 0.0 241 0.6 0.2 0.0
4 -15.6 -1.9 -0.3 0.0 -0.4 1.8 0.8 0.2
TABLE 4 Delay % error with lumped circuit
(same direction, in-phase drive case)
=1 n=g
n N=1 N=2 N=3 N=5 N=1 N=2 N=3 N=
0.01 8.5 0.9 0.3 0.1 8.5 0.9 0.3 0.1
0.1 8.5 0.9 0.3 0.1 8.5 0.9 0.3 0.1
0.4 8.5 0.9 0.3 0.1 8.5 0.9 0.3 0.1
1 8.5 09 03 0.1 8.5 0.9 03 0.1
4 8.5 0.9 0.3 0.1 8.5 0.9 0.3 0.1
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TABLE 5 Delay % error with lumped circuit
(same direction, out-phase drive case)

l’L=1 n=2
n N=1 N=2 N=3 | N=5 | N=1 N=2 | N=3 | N=5
0.01 8.6 1.6 0.0 0.0 8.8 1.7 1.3 0.0
0.1 8.2 0.5 0.2 -0.4 8.4 1.4 0.5 0.6
0.4 8.4 0.7 0.1 -0.2 5.0 0.2 -0.1 0.1
1 8.5 0.8 0.1 0.1 1.9 0.5 0.3 -0.1
4 8.5 0.9 0.3 0.1 1.0 -0.6 -0.3 <0.1
TABLE 6 Delay % error with lumped circuit
(same direction, E,=0 drive case)
=1 n=2
n N=1 N=2 N=3 | N=5 | N=1 N=2 | N=3 | N=5
0.01 8.6 1.1 0.3 0.2 8.6 1.0 0.3 0.2
0.1 8.6 1.0 0.3 0.1 8.6 1.0 0.2 0.1
0.4 9.4 1.3 0.4 0.0] 10.1 1.6 0.6 0.1
1 116 2.6 1.0 03] 142 33 1.2 0.3
4 20.3 8.1 4.0 1.3] 29.1 7.7 3.0 0.8

8. Conclusion

Simple yet useful analytical expressions for peak noise
amplitude, delay and slope for capacitively coupled two-,
three- and infinite-line systems.

The calculated results using the derived formulas of (7),
(14) for the crosstalk noise and (6), (8), (16) for the delay and
the slope coincide excellently with SPICE simulation results.
The derived approximate expressions like (9), (15) and (17)
are useful in estimating the crosstalk noise and delay in the
early stage of designs and give insight to coupling related
issues.

In deep submicron VLSI designs where C. can be
comparable to C, the crosstalk induced by the coupling goes
up to 40% of the signal swing and the delay fluctuates 5
times depending on the behavior of the adjacent lines.

As for the approximation with lumped circuit, 3-step -
ladder network is good approximation within 4% relative
error even in the worst cases.
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