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Abstract-This paper describes an optical-flow processor core 

for real-time video recognition. The processor is based on the 
Pyramidal Lucas and Kanade algorithm. It has small chip area, a 
high pixel rate, and high accuracy compared to conventional 
optical-flow processors. Introduction of search range limitation 
and the Carman filter to the original algorithm improves the 
optical-flow accuracy and reduces the processor hardware cost. 
Furthermore, window interleaving and window overlap methods 
can reduce the necessary clock frequency of the processor by 70%. 
The proposed processor can handle a VGA 30-fps image sequence 
with 332 MHz clock frequency. The core size and power 
consumption in 90-nm process technology are estimated 
respectively as 3.50 × 3.00 mm2 and 600 mW. 
 

I. INTRODUCTION 
 

An optical flow is a motion vector of a pixel between two 
successive images; that flow is the basis of video recognition. 
Fig. 1 depicts an image sequence: Yosemite and its optical 
flows. Using the optical flow, moving objects in an image 
sequence or movement of a camera itself can be detected. Fig. 
2 shows various applications using optical flows. An optical 
flow is useful for vehicle safety systems, robot systems, 
medical systems, and surveillance systems. 

 
Fig. 1. Yosemite and its optical flows. 

 
In optical-flow calculations, several equations must be 

solved for every pixel. The computational cost reaches a few 
tens of GOPS, even in a CIF 30-fps (352 × 288 pixels per frame 
and 30 frames per second) image sequence. Consequently, 
software approaches using generally available processors have 
examined only a small part of an image; alternatively, such 
approaches have neglected accuracy. For higher resolution 
real-time operation, dedicated hardware is required. Moreover, 
scalability in the pixel rate and accuracy is preferable for an 
optical flow processor because the required pixel rate and 
accuracy differ among application areas. 
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Fig. 2. Applications using optical flows. 

 
Several optical-flow processors have been developed 

[1]–[3]. Fig. 3 depicts a comparison of the proposed processor 
to conventional ones in terms of accuracy (MAE: Mean Angle 
Error) and the pixel rate. Here, L, W, and K respectively denote 
a hierarchical level, a window size, and an iteration count, as 
stated later. The HOE processor can handle a CIF 30-fps image 
sequence, but it needs a large memory capacity of about 1.2 
MBytes [1], which will result in a huge memory for higher 
resolution image sequence. 
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Fig. 3. Performance comparison. 

 
This paper describes the optical-flow processor core based 

on the Pyramidal Lucas and Kanade (PLK) algorithm [4]. The 
PLK processor can handle a VGA 30-fps image sequence with 
far less memory capacity. Its MAE is 7.36° for the Yosemite 
image sequence, which is equal accuracy to that of the HOE 
processor. The PLK processor provides both the highest pixel 
rate and accuracy. The PLK processor architecture has wide 
scalability in terms of pixel rate and accuracy: it can handle an 
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XVGA 30-fps image sequence by connecting four processors 
in parallel. In addition, it can save its power consumption in 
low accuracy applications by appropriately choosing the 
values of algorithm parameters. 
 

II. PYRAMIDAL LUCAS AND KANADE (PLK) ALGORITHM 
 

The PLK algorithm is released in the OpenCV library by 
Intel Corp.; it applies a hierarchical scheme to the Lucas and 
Kanade algorithm [5] to handle large movement of objects. 
The PLK algorithm has been adopted for our VLSI 
implementation because this algorithm has lower 
computational cost, less memory size, and higher accuracy 
than other optical-flow algorithms [5]–[8]. 

An optical flow u in the PLK algorithm is defined as a vector 
to minimize the following residual function E(u): 

,))()(()( 2∑ +−= urru JIE                     (1) 
where I and J are luminance values of the first and second 
images of two successive ones, respectively and the 
summation is over a region centering at position r. The region 
is referred as a window A on the first image and a window B on 
the second image. The window B has displacement u (the 
optical flow) to the window A. In a linear approximation, (1) 
leads to (2): 
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where the spatial gradient matrix and a mismatch vector are 
respectively represented as G and b. The luminance gradients 
of x, y, and t coordinates are respectively denoted as Ix, Iy, and It. 
Using (2), the optical flow is computed iteratively with the 
Newton-Raphson method. Fig. 4 depicts a flowchart of the 
PLK algorithm, where L denotes a hierarchical level and K an 
iteration count. First, hierarchical images are generated in a 
recursive fashion. Then, Ix and Iy are computed from pixel data 
in the window A and It from ones in the windows A and B. 
Then, G and b are computed to produce an optical flow. These 
steps are repeated iteratively at a hierarchical level. The 
position of the window B varies at every iteration step 
depending on the previous optical flow. Furthermore, this 
procedure is repeated from the uppermost level to the 1st level 
(raw image). Finally, the optical flow is obtained.  
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Fig. 4. Flowchart of the PLK algorithm. 

III. PLK ALGORITHM OPTIMIZATION FOR VLSI 
IMPLEMENTATION 

 
In the PLK algorithm, a window B at the L-th level is 

determined using the (L+1)-th level optical flow. The search 
range of an optical flow will become large proportionately if 
the computed optical flow will be large. This increases the size 
of the memory on a chip. Fig. 5 shows a proposed search range 
limitation method, which configures the upper limit value of an 
optical-flow. The method reduces the number of pixels 
necessary to compute the optical flow of one pixel. It requires 
only 18 kBytes memory. The method also enhances 
optical-flow accuracy. The PLK algorithm assumes small 
movement of the flow, so a large value of the flow is likely to 
be false. The method described here reduces false detections 
and enhances the flow accuracy. In addition, the Carman Filter 
[9] is adopted for computing It, as shown in (3). The filter 
improves MAE by 0.1°. Introduction of these methods to the 
original PLK algorithm both improves accuracy and reduces 
the memory size. 

)).()((
4
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                         (3) 

Fig. 6 shows an accuracy comparison of the PLK algorithm 
according to parameters. The parameter set of L (hierarchical 
level) = 3, W (window size) = 11, K (iteration count) = 1 is 
adopted for our VLSI implementation. The algorithm 
optimization with the above parameter set improves MAE by 
0.59° and reduces the memory size by 96% compared to the 
original PLK algorithm. 
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Fig. 5. Search range limitation method. 
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Fig. 6. Accuracy comparison of the PLK algorithm. 

This MAE is an average value of MAEs of four image  
sequences: Translating-tree (Trans), Diverging-tree (Div),  

Yosemite (Yos), and Original Composite Sequence. 
 

IV. VLSI ARCHITECTURE 
 
A. PLK Optical-flow Processor 

Fig. 7 shows a block diagram of the PLK optical-flow 
processor, which comprises a pyramidal image creation (PIC), 
a spatial gradient matrix (SGM), a mismatch vector (MMV), 

189



an optical flow (OPF), and so on. Each block is a pipeline stage 
and operates in parallel. Because the window B at the L-th 
level is determined using the (L+1)-th level optical flow, the 
MMV can not start computing the L-th level optical flow until 
the (L+1)-th level optical flow is obtained. It causes pipeline 
stall, as shown in Fig. 8(a). The window interleaving method is 
proposed as shown in Fig. 8(b). Because an optical-flow 
calculation corresponding to a pixel is independent of a 
calculation corresponding to another pixel, the optical-flow 
calculation of the other pixel can be inserted into idle cycles in 
Fig. 8(a). Thanks to this method, pipeline stall does not occur 
and the clock frequency is reduced by 65%. 
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Fig. 7. Block diagram of the PLK optical-flow processor core. 
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Fig. 8(a). Timing chart (conventional). 
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Fig. 8(b). Timing chart (window interleaving method). 

 
B. Pyramidal Image Creation (PIC) 

Fig. 9 shows a block diagram of the PIC. This block 
generates a hierarchical image by sub-sampling and 5 × 5 
Gaussian filtering, as shown in Fig. 10. The filtering is made 
by addition and bit-shifting. 
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Fig. 9. Block diagram of the PIC.             Fig. 10. 5 × 5 Gaussian filter. 

 
C. Spatial Gradient Matrix (SGM) 

Fig. 11 shows a block diagram of the SGM, which comprises 
interpolation A (IPAs), spatial gradient (SPGs), gradient matrix 
element (GMEs), and a summation (SUM). First, pixel data of 
a window A are acquired from the Py.Img A memory (a first 
frame hierarchical image corresponding to the window A), as 

shown in Fig. 7. Next, the IPAs interpolate luminance values at 
decimal pixels. The SPGs calculate Ix and Iy. The GMEs 
calculate elements of a spatial gradient matrix; they are added 
for each row at the SUM. By repeating these steps for iterations 
equal to the number of window rows, G is derived; it is the 
total of spatial gradient matrices. 

Most pixels in the window corresponding to a calculating 
pixel and in the next window corresponding to a next pixel are 
identical. Most pixel data can be used in common in computing 
the optical flow at neighboring pixels. Fig. 12 portrays a 
window overlap method. This method reduces the memory 
size and clock cycles to read pixels. It reduces the clock 
frequency by 15% from that using the window interleaving 
method alone. 
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Fig. 11. Block diagram of the SGM. 
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Fig. 12. Window overlap method. 

 
D. Mismatch Vector (MMV) 

Fig. 13 shows a block diagram of the MMV, which 
comprises interpolation B (IPBs), mismatch vector (MVs) and 
a summation (SUM). First, pixel data of window B are 
acquired from the Py.Img B (a second-frame hierarchical 
image corresponding to the search range), as shown in Fig. 7. 
Next, IPBs interpolate luminance values at decimal pixels 
estimated using an upper level optical flow. The MVs calculate 
It from pixel data of both window A and window B with the 
Carman filter in (3). Then, mismatch vectors of each pixel are 
calculated from Ix, Iy, and It. Finally, as with the SGM, by 
adding mismatch vectors, b is derived, which is the total of 
mismatch vectors. 

b

Py.Img B

IPB IPB IPB IPB IPB IPB IPB IPB IPB IPBIPB

MV MV MV MV MV MV MV MV MV MVMV

SUM

 
Fig. 13. Block diagram of the MMV. 

 
E. Optical Flow (OPF) 

Fig. 14 shows a block diagram of the OPF. This comprises a 
calculation of the denominator and numerator (CDN), divider 
(DIVs), and an UPDATE (update). First, the CDN executes a 
32-bit multiplication with four 16-bit multipliers in a 
four-stage pipelined multiplication. Next, DIVs execute 32-bit 
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division using a subtraction shift recovery algorithm. The DIV 
can calculate a 1-bit quotient per clock cycle. Because the 
bit-length of an optical flow is 24, division with the DIV 
requires 24 clock cycles per optical flow. The DIV must finish 
calculation at every six clock cycles when W = 5 (the smallest 
window size in the proposed processor) because an optical 
flow is produced per six clock cycles. Four DIVs are placed in 
parallel to handle this occasion. Finally, at the UPDATE, an 
optical flow is updated by adding an upper level optical flow 
and this optical flow. 

DIV DIV DIVDIV

UPDATE

CDN

G b

u  
Fig. 14. Block diagram of the OPF. 

 
F. Scalability 

The proposed processor has scalability in terms of pixel rate 
and accuracy. By connecting four processors in parallel, it can 
handle an XVGA 30-fps image sequence. Fig. 15 shows its 
scalable architecture. Each processor is independent except for 
input from a memory bus. Each processor receives pixel data 
of the same region and calculates optical flows at different 
places. Therefore, optical flows can be computed with reduced 
clock frequency and without increasing the bus-bandwidth. In 
addition, the processor operates at lower clock frequency in 
less accuracy applications by setting the values of the 
algorithm parameters to be smaller than those of the optimized 
ones; as a result, power consumption can be saved. 
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Fig. 15. Scalable Architecture. 

 
V. VLSI IMPLEMENTATION 

 
Fig. 16 shows a PLK processor core layout, which is 

designed in 90-nm process technology. Then, the respective 
area sizes of the SGM, the MMV, and the OPF are 1.50 × 0.84 
mm2, 1.50 × 0.70 mm2, and 0.50 × 0.84 mm2. The core size, 
which includes all blocks, is estimated within 3.50 × 3.00 mm2. 
Table I shows a performance comparison of the PLK and the 
HOE processors. The PLK processor achieves real-time 
processing of a VGA30-fps image sequence with smaller chip 
size than that of the HOE. Total power consumption of the 
SGM, the MMV, and the OPF is estimated at 600 mW with the 
parameters of L = 3, W = 11 and K= 1. Accuracy of the PLK is 
equivalent to that of the HOE. 
 

VI. CONCLUSION 
 

An optical-flow processor core for real-time video 
recognition based on the PLK algorithm is described in this 

paper. For VLSI implementation, introducing the search range 
limitation and the Carman filter as computing the temporal 
luminance gradient optimizes the PLK algorithm. The 
optimized PLK algorithm provides accuracy which is 
equivalent to that of the HOE algorithm, with improved MAE 
by 0.59°, and memory size reduced by 96% for parameters of L 
= 3, W = 11 and K = 1 (see TABLE I). Moreover, introduction 
of window overlap and window interleaving methods reduces 
the PLK processor clock frequency by 70%. The core size is 
estimated as 3.50 × 3.00 mm2 in 90-nm process technology; it 
can handle a VGA 30-fps image sequence at 332 MHz clock 
frequency and 600 mW power consumption. Therefore, the 
proposed optical-flow processor is applicable to several 
application fields of real-time video recognition tasks such as 
those for vehicle safety, robotics, medical care, and 
surveillance. 

TABLE I 
COMPARISON OF PERFORMANCE 

RAMs

PICA PICB

MMV SGM
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3000 µm

3500 µm
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Fig. 16. PLK Processor Core Layout. 
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