
Cooperative Voltage Scaling (CVS) between OS and Applications for
Low-Power Real-Time Systems

Youngsoo Shin, Hiroshi Kawaguchi, and Takayasu Sakurai
Center for Collaborative Research,

University of Tokyo, Tokyo 106-8558, Japan

Abstract
Power eficient design of real-time embedded systems based on
progmmmpble processors becomes more important as system
functionuliry is increasingly realized through software. This pa-
per presents a cooperative power optimization method among
OS, applications, and hardware ptaijorm. The hardware platform
that consists of off-the-shelf microprocessor and custom-designed
LSI is designed to support power-down and discrete levels of fre-
quencies and voltages. In order to exploit these features, coopera-
tive voltage scaling method is proposed, which is realized through
design of power conscious OS and development of applications
with concept of application slicing.

1 Introduction
Recently, power consumption has been a critical design con-

straint in the design of digital systems due to widely used portable
systems such as cellular phones and PDAs, which require low
power consumption with high speed and complex functionality.
The design of such systems frequently involves reprogrammable
processors such as microprocessors, microcontrollers, and DSPs
in the form of off-the-shelf components or cores. Furthermore,
an increasing amount of system functionality tends to be realized
through software, which is leveraged by the high performance of
modern processors. As a consequence, power conscious design
of sofnvare, including operating system (OS) and application pro-
grams, as well as supporting hardware platform is important for
the power-efficient design of such systems.

To reduce the power consumption of processors, two kinds
of features are widely used: one is to bring a processor into a
power-down mode when the processor is in an idle state, where
only certain parts of the processor such as the clock generation
and timer circuits are kept running; the other is to dynamically
change the speed of a processor by varying the clock frequency
along with the supply voltage when the required performance on
the processor is lower than the maximum. Given a processor with
these features, we are confronted with problems to desrgn appli-
cation programs and to manage the mix of applications in such a
way that the power consumption is minimized while timing con-
straints imposed on the system is guaranteed.

In this paper, we propose a methodology for power conscious
application design and OS development together with underly-
ing hardware platform, with emphasis put on practical issues in-
cluding implementation and feasibility of model. Specifically,
as shown in Figure 1, we have a hardware platform consisting
of off-the-shelf microprocessor and custom-designed LSI, which
together provide power-down mode and discrete levels of speed
(frequency and voltage). We are given a set of applications (or
called tasks) with timing constraint imposed on each application,
and OS that controls the execution Bow of applications. Each ap-

operating System

Figure 1. Structural view of a system.

plication is modified in a way that it consists of a sequence of
slices and some additional code fragment is inserted at the head
of each slice. OS is also modified in a way that it maintains and
provides timing information to applications, which is then used
by each application to reduce the power consumption of the pro-
cessor. The efficiency of the cooperation between OS and appli-
cations, which we call CVS, is verified through simulation with
several examples.

The remainder of the paper is organized as follows. In the next
section, we present our methodology to design power conscious
applications and OS, together with issues encountered during im-
plementation. In section 3, a hardware architecture to support our
methodology is addressed. In section 4, experimental results are
presented to evaluate the proposed method. Finally, a conclusion
follows in section 5.

2 Cooperative Voltage Scaling
2.1 Model of CVS

As shown in Figure 1, software architecture consists of appli-
cations and OS. While each application (or application designer)
has better knowledge of its own behavior, global information such
as dynamic task interaction is only known to OS. This means
that applications and OS should cooperate each other in order to
exploit information toward reducing power consumption of pro-
cessors. In our model of CVS, a set of applications' consists of
real-time tasks, with each task associated with its period (the min-
imum inter-arrival time between successive requests in case of a
sporadic task), deadline, and worst case execution time (WCET).
The real-time tasks are scheduled according tofiedpriority pre-
emptive scheduling algorithm such as rate-monotonic scheduling
(RMS) [I] , although other scheduling algorithms can be used in
our method.

2.2 Application Slicing
Power conscious application design. which we call applica-

tion slicing, can be best explained with the help of Figure 2.
An application is subdivided into a sequence of slices, with each

'Applicuion and fork are used interchangeahly in this paper,

25-5-1
0-7803-6591-7/01/$10.00 0 2001 IEEE IEEE 2001 CUSTOM INTEGRATED CIRCUITS CONFERENCE 553

I Application I
I I

Code fragments to
change pmcesmr's

speed

la1

Current time Virtual deadline

~ Time r tl t2
Bl

t3
Ibl

Figure 2. Application slicing. (a) Slicing structure. (b) Scheduling of slices.

slice having potentially different length, and small size of addi-
tional code fragment, which selects for each slice most appropri-
ate speed in view of power consumption, is inserted at the start of
each slice. The rationale for application slicing lies in the fact that
we have no prior knowledge about future execution time of appli-
cations and the execution time of each application frequently de-
viates from its WCET, sometimes by a large amount [Z]. Thus we
gain more control over applications if they are sliced into many
pieces. Although application slicing incurs a lot of engineering
efforts, this can be done by application designers or middleware
providers once and for all. Furthermore, recognizing the fact that
processors are occupied mostly by highly demanding applications
such as MPEG and the number of such applications is small in
nature, the system designers can compose systems with their own
custom applications, which can be designed either by application
slicing or not, and sliced applications provided by middleware
providers.

During run-time, the code fragment at the head of each slice
computes the lowest processor speed to be used by the slice based
on timing parameters. For example of slice 2 in Figure Z(b), rl
denotes WCET of slice 2 and 12 represents the sum of WCETs
of the remaining slices. This means that r l and t2 are static pa-
rameters obtained in the design stage, thus can be embedded in
the code fragment itself. The most important parameter, r3, is
the time difference between current time and virtual deadline,
which is obtained from OS and to be explained in the next sub-
section. Thus, it is a dynamic parameter and obtained via system
call. An example of the pseudo code fragment for slice 2 is
shown in Figure 32. Because, time interval of C-r2 is allowed
to execute slice 2, the code fragment can compute the neces-
sary speed taking various effects into account such as transition
delay (Td) to change speed and the speed of the previous slic2. It
should be noted that t3 is determined in run-time due to two fac-
tors: although the speed used for slice 2 is determined based on
assumption that it takes WCET to execute slice 2 (t l) , slice 2
may complete its execution earlier than its WCET meaning that
start of slice 3 may occur earlier than worst-case; virtual dead-
line itself varies even for slices in the same application due to

*In OUT implementation. there are two kinds of modes. which arc to bc explained in more detail
in the next subsection. A task i s either allowed to use vinual deadline or forced to complete ils

execution within its WCET.
31f the sped determined for the cumnt slice is equal to that of Ule previous slice, there is no

owmead oftransition delay.

o d If

end

Figure 3. Pscudo codc of the code fragmcnt at the head of slice 2.

Figure 4. Task state transition

preemptive scheduling.

2.3 Power Conscious OS
Although there have been extensive studies for OS-level con-

trol of the power consumption of processors [31, [4], [5] , [21, [61,
they have limitations in that dynamic nature of applications such
as execution time variation is not fully exploited. There is also
a method [7] to exploit application-level variation of execution
time. However, it is limited to a single application. Our method,
CVS, overcomes these limitations through interaction between
power conscious OS and applications designed with the concept
of application slicing.

Tasks are scheduled by OS based on their states as shown in
Figure 4. If a task is in RUN state (called a run task for brevity),
it currently occupies a processor. If it is in READY state, it is
waiting to run meaning that some other task with higher priority
is in RUN state. A queue, called ready queue, holds tasks in
READY state in order of priority. If it is in DORMANT state,
it has already run in its period and is waiting for its next period
to start again. A queue, called d o n a n ? queue, holds tasks in
DORMANT state in order of the time at which their release is
due. When the scheduler (or dispatcher) is invoked, it searches
the dormant queue to see if any tasks should be moved to the
ready queue. If some of the tasks in the dormant queue are moved
to the ready queue, the scheduler compares the run task to the task
at the head of the ready queue. If the priority of the run task is
lower, a context switch occurs.

The main function of power conscious OS other than basic op-
erations described above consists of providing virtual deadline
to each task in such a way that deadlines of all rusks are always

25-5-2
554

A E"

a a 2 0 0 1 2 30

HIIwhl
S H d Solullan Engine
MSTlSOSEOt

0 10 2 0 3 0 4 0 50 60

ib)

VGA

0 1 0 2 0 3 0 40 50 60

0 1 0 2 0 3 0 4 0 53 63

(dl

Figure 5 . A schedule for the example of task set. (a) An example of task set.
(b) Conventional ralc-monotonic scheduling. (c) Scheduling with slice-lcvel
conlrol of speed without interaction with OS. (d) CVS.

guaranreed; predicting the exact time interval during which there
is no activity on the processor and bring the processor into power-
down. This is done based on status of queues (ready queue and
dormant queue). First, if the ready queue is empty but there is
a run task (say task A) meaning that there is only one task that
needs a processor, we set the virtual deadline of A to the mini-
mum of deadline of A and release time of the task at the head of
the dormant queue (recall that dormant queue is ordered by the
next release time). Note that deadlines of all tasks are guaran-
teed with this approach. Second, if the ready queue is not empty
meaning that there is a contention among tasks to take a proces-
sor, A is forced to complete its execution within its WCET. This
is again conservative with respect to timing constraints. Note that
there are still possibilities to lower the speed because some slices
may complete their execution earlier than their WCETs thereby
providing time margin to the subsequent slices. Third, if all tasks
are in the dormant queue meaning that there is no task that needs
a processor, we set a timer to expire at release time of the task
at the head of the dormant queue and then put the processor into
power-down mode. All these processes together with application
slicing are illustrated in the following example.

Example 1 Consider the two tasks shown in Figure 5(a). Sup-
pose that they consist of 4 and 6 slices, respectively, with each
slice requesting 2 time units for its WCET. If we assume that pe-
riod is equal to deadline, rate monotonic priority assignment is
a natural choice meaning that A gets higher priority. A typical
schedule, when each slice runs at half of its WCET, is shown in
Figure 5(b). Suppose that there are three speed levels: 1,1/2, and
1/3. CVS results in the schedule shown in Figure 5(d). At time
0, A is forced to complete its execution within its WCET at 8 be-
cause B is in RUN state. This is similar to having virtual deadline
at 8. At time 6, A goes to DORMANT state. Thus, the virtual
deadline of B is set to 20, which is the minimum of its deadline
at 30 and the next arrival time of A at 20. The remaining sched-
ule can be verified similarly. For comparison, Figure 5(c) shows
a schedule when the method in [7] is extended to multitasking

0 environment if proper support from OS is possible

PC

PC

I I

RGB out

Figure 6. A block diagram of the hardware platform

2.4 Implementation of CVS

To realize CVS, we implement our method through customiz-
ing HI7750 [8] industrial real-time OS (RTOS). First, task control
block (TCB), which is a data structure to contain task-specific in-
formation such as priority and start address, is modified to con-
tain additional parameters used in CVS including period, virtual
deadline, frequency used in the task, and so on. Second, several
new system calls are added to support CVS. These include sys-
tem calls to get virtual deadline, set or get the frequency of the
processor, and so on. Third, scheduler, which resides in the ker-
nel of RTOS, is modified such that it performs necessary action
during task state transition. These include managing timing in-
formation in TCB, computing virtual deadline, bring a processor
into power-down, and so on.

3 System Architecture
A block diagram of the hardware platform supporting the con-

cept of CVS is shown in Figure 6. SH-4 [9] is used as a micro-
processor. The average power consumed by a NOP instruction is
about 70% of that consumed by a typical instruction, and the aver-
age power consumed by the processor when it is in power-down is
10% of the full power mode. In our current implementation, three
speed levels are supported: 200 MHz with 2.0 V, 100 MHz with
1.4 V, and 66 MHz with 1.4 V. Thus, the speed can be changed
by specifying clock frequency as the input parameter of a sys-
tem call as shown in Figure 3, because voltage can be changed
correspondingly within the system call.

The processor has a clock frequency control register, called
FRQCR. The internal clock frequency, which is synchronized
with external clock of 33 MHz, can be changed by accessing
FRQCR. Because we use frequencies that are divisible with each
other (200 MHz, 100 MHz, and 66 MHz), there is no synchro-
nization problem with the external systems at the interface of the
processor.

The VDD information determined by the system call is sent via
a local bus of the processor to FPGA (Altera EPM7064) residing
on a VDD control board. The function of the VDD control board
is also implemented in LSI and fabricated with 0.6-pm CMOS

555

technology. On the VDD control board, VDD is switched between
VDD“ (2.0 V) and V D D ~ ~ ~ (1.4 V) by power switch MOSFETs
(285208 x 2). Although the threshold voltage of the MOSFETs
is one of the lowest available on the market, it is still too high
(2.8 V) compared to the maximum supply voltage (2.0 V) of the
processor meaning that they never turn on. To alleviate the prob-
lem, we use RS-232C driver (MAX232) as a voltage swing am-
plifier that amplifies thc signal to 5 8 V. Although, the number
of power switches is limited to two in our implementation, it can
be increased at the cost of area. The measured fall and rise time
of VDD are less than 200 ps and 100 p , respectively, with 30 pF
decoupling capacitance at the node V’D.

Because we use two switches to switch between two levels
of VDD, we ideally want to turn one MOSFET on and turn the
other MOSFET off exactly at the same time, which is impossi-
ble. Thus, we have two cases with regard to two signals: V!,D,,
enable signal (V G ~ ~ ~) and V ’ D ~ ~ ~ enable signal (Vcmjn) . First, if
there is an overlap between two signals, large current may flow
from V’D~, to V D D ~ ~ ~ thereby causing a problem. However,
neither spike-like noise nor voltage drop is observed due to the
decoupling capacitance. Second, if there is no overlap meaning
that there is a potential period while VDD line is completely cut
off from both VDD,~, and V D D ~ ~ ~ , malfunction may occur in the
processor. Thus, in reality, the switching between VDO,, and
V D D ~ ~ ~ should be carried out in a way that there exists a short
period of overlap during which both VDD,, and V D D ~ ; ~ are con-
nected to V ~ D line. In our implementation, the period of overlap
is set to 2 p, and a programmable timer is put at the gate of the
power switch in order to adjust the period of overlap. Another
implementation issue is to assure the processor to be connected
to V0omw when it is powered on. Thus, VC,, should be asserted
to connect VDD” to VDJJ line at boot up process.

4 Experiments
To evaluate CVS, we perform simulations with two examples

and compare the average power consumption with CVS against
that with RMS. In RMS, the processor executes NOP instructions
when it is not being occupied by any task. The first example,
called vpda, is constructed based on a task set in [lo]. It consists
of 4 tasks with two multimedia and two protocol applications.
They are subdivided into 10, 15, 10, and 10 slices respectively.
The second example [ll], called cnc, consists of 8 tasks with
each task subdivided into 20 slices.

Figure 7 shows the simulation results when we vary the exe-
cution time of each slice from 0.1 to 1 .O of its WCET. Power con-
sumption is normalized with respect to the case when tasks are
scheduled with RMS and they always execute in their WCETs.
Power saving with CVS depends on the combination of periods
of tasks, which in turn determines how much we can benefit from
virtual deadline. It is also dependent on the extent of variation
of execution time. Considering the fact that multimedia appli-
cations frequently have a lot of variations due to data-dependent
execution, over-estimation of WCET, and so on, we can expect
significant saving with CVS.

5 Conclusion
In this paper, we introduce a cooperative power optimization

method involving design of power conscious OS, development of

(8) (b)

Figure 7. Simulation results of (a) vpda. (b) cnc

applications with concept of application slicing, and supporting
hardware platform. Our method of voltage scaling, CVS, obtains
a power reduction for a processor by exploiting the slack times
inherent in the system and those arising from variation of execu-
tion times of task instances. We present a run-time mechanism to
use these slack times efficiently for power reduction for a proces-
sor that supports a power-down mode and can change the clock
frequency and the supply voltage dynamically. Experimental re-
sults show that CVS obtains a significant power reduction across
several applications.

We are currently integrating all components: customized
RTOS, applications developed with concept of application slic-
ing, and supporting hardware platform developed for CVS.

Acknowledgement
This work was supported by Grants from Hitachi, Ltd. and the

Japan Society for the Promotion of Sciencc.

References
C. L. Liu and lames W. Ldyland. “Scheduling algorithms for multiprogram-
ming in a hurd real lime environment,” Journal (@the ACM, vol. 20, no. I , pp.
4 6 4 1 , Jun. 1973.
Y. Shin and K. Choi. “Power conscious fixed priority scheduling for hard
real-time systems.” in Proc. Design Automaf. Cont. June 1999, pp. 134-139.
M. Wciser, B. Welch, A. Demcrs, and S. Shenkcr. “Scheduling for rcduced
CPU energy:’ in Pmc. USENIX Symposium on Operaling Systems Design and
Implemenfution, 1994, pp. 13-23.
E Yao, A. Demers, and S. Shenker, “A scheduling model for reduced CPU
energy,” in Pmc. IEEE Annual Foundations of Compufer Science, 1995, pp,
374-382.
C. Hwang and A. Wu. “A predictive system shutdown method for energy
swing of event-driven computation,’’ in Pmc. Inr’l Conf un Computer Aided
Design. Nov. 1997, pp. 28-32.
Y. Lee and C. Krishna, “Voltage-clock scaling for low energy consumption in
real-time embedded systems,” in Pmc. Int’l Workshop on Real-Time Comput-
ing systems and Applications. 1999.
S . Lee and T. Sakurai. “Run-time power control scheme using software feed-
back loop for low-power real-time applications.” in Pmc. Asia South Pacific
Design Automaf. Cunj. Jan. 2w0, pp. 381-386.
Hitachi, Ltd.. HI7750 Hituchi Industrial Reulfime Operufing System f o r SH:
User’sManuul, 1998.
Hitachi. Ltd.. SuperH homepage htfp://www.superh.com/.
Y, Shin, D. Kim, and K. Choi. “Schedulability-driven performance analysis of
multiple mndcembedded real-time systems,” in Pmc. Design Automot, ConJ,
June 2000. pp. 495-500.
N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and H. Shin, “Visual as-
sessment of a real-time system design: A case study on a CNC controller:’ in
Pmc. IEEE Real-lime Systems Symposium. Dec. 1996.

556
25-5-4

http://htfp://www.superh.com

