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Abstract 

 
We propose a GMM processor for large vocabulary 

real-time continuous speech recognition. This 
processor achieves low operating frequency and low 
memory bandwidth using parallelization and vector 
look-ahead schemes, which are suitable to FPGA 
implementation. We designed the proposed processor 
on a Celoxica RC250 FPGA board, and confirmed that 
the required frequency and memory bandwidth for 
real-time operation are reduced by 89.8% and 84.2%, 
respectively. The 20,000-word real-time GMM 
computation is made at a frequency of 30.4 MHz and 
memory bandwidth of 47 Mbps, on the prototype. 
 
 
1. Introduction 
 

There are some software-based recognition systems, 
but they are not suitable for mobile devices because 
those solutions require high-performance processors 
that consume far more power than mobile processors 
[1, 2]. Therefore, a hardware approach, such as a VLSI 
or FPGA, which is superior to the general software-
based implementation in terms of power and speed, is 
needed. 

Yoshizawa et al. implemented a real-time 
recognition system onto a VLSI for 800-word isolated 
word recognition [3]. Edward C. Lin et al. investigated 
FPGA implementation for 1,000-word continuous 
speech; but it did not run in real time [4]. S J Melnikoff 
et al. implemented real-time continuous recognition 
system, but the recognition accuracy was impractical 
less than 60% [5]. As far as the authors know, large 
vocabulary (more than 5,000 words) real-time 
continuous speech recognition (LVRCSR) in high 
accuracy using hardware approaches is not realized yet. 

In LVRCSR, computation of GMM occupies more 
than 60% of whole execution time. In this paper, in 
order to achieve LVRCSR in practical accuracy, we pr 
embed a novel GMM processor on an FPGA. 
 

2. Speech recognition overview 
 
2.1. Hidden Markov model (HMM) 
 

The HMM algorithm is de facto of the speech 
recognition. The HMM is shown in Fig. 1. It is 
modeled as follows: � is initial-state probability, aij is 
transition probabilities from state i to state j and bj(xt) 
is output probability density functions of GMM), 
where xt is a feature vector extracted from speech. For 
instance, if we assume that a feature vector sequence is 
x1, x2, x3 and transition sequence is q1, q2, q3, q4, then 
the probability of the transition from q1 to q4, P(q1�q4), 
can be calculated with (1).  
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Figure 1. Left-right HMM. 
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In the HMM algorithm, each HMM corresponds to a 
phone. Each word is expressed as a sequence of phones, 
and each sentence is represented as sequence of words. 
 
2.2. Time-synchronous Viterbi search 
 
Initialization: 

πδ log)0(0 = (2) 
Recursion: 

)(log]log)([max)( 1,1 tjijtjjit xbaij ++= −−=
δδ  

for stateNjTt ≤≤≤≤ 1,1  
(3) 

Termination: 
)]([max),,,|( 21 ixxxwP TNT

f

δ=� , for Tt =  (4) 

The above formulas show the log-Viterbi algorithm. 
To prevent from underflow, logarithms are taken. Here, 
T is the number of frames, Nstate is the number of all 
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HMM states, Nf is the states set that correspond to 
word end, and i and j are state indexes. δt(j) is a 
likelihood value at a time index t and state j. w is a 
recognition output sentence. First in the HMM 
algorithm, the likelihood value is initialized as 
log[π].Speech is divided into frames (15-25 ms), and a 
feature vector is calculated in each frame. Equation (3) 
shows that, once a feature vector is obtained, each state 
in the HMM move to the next state that maximizes the 
likelihood value. This is the reason why the transition 
sequence is uniquely determined. 
 
2.3. N-gram model 
 

To achieve high-accuracy recognition, a language 
model is added to (3) as P(w). w is a sentence and a 
language model represents grammatical accuracy of 
sentences. Generally N-gram model is used. 
 
2.4. Speech recognition flow with HMM 
 

Fig. 2 shows a speech recognition flow with HMM. 
The following items describe concrete steps. 
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Figure 2. Speech recognition flow 
1. Feature vector extraction: a feature vector is 

extracted on a frame-by-frame basis. 
2. GMM calculation: compute GMM probabilities 

log[bj(xt)] of all active states. 
3. Viterbi beam search: calculates δt(j) by using the 

GMM probabilities and N-gram model, P(wi). 
4. Recursion: repeats Steps 1-3 in all frames. 
5. Output: after the final frame, the transition 

sequence of the word-end state that has the 
maximum likelihood value is output as the result 
of recognition. 

 
2.5. Computation Time Analysis 
 

To identify the highest-load part in speech 
recognition, we estimated each execution time by using 
a well-known Japanese speech recognition system 
software, Julius [1]. Julius has two phases: The first 
phase (hereafter, we call “the 1-path”) is based on a 
frame synchronized with a Viterbi beam search. The 
second phase (hereafter, we call “the 2-path”) is based 

on a heuristic search, which reuses the output of the 1-
path as a heuristic function. 

 
Table 1. Parameters and models used in Julius. 

1-path 2-path

Phonemic model Gaussian 16 mixture tri-phone model

Language model 20000 word bi-gram 20000 word tri-gram  

Others
26.7%

Compute output 
probabilities

73.3%
Others 1.9% 
Load model 2% 
2-path 7.7%

1-path

88.4%

(a) (b)  
Figure 3. Computation time breakdowns 

in (a) whole flow and (b) 1-path. 
 
As well, Table 1 shows the parameters and models 

in the estimation. Fig. 3 (a) illustrates that the 1-path 
dominates 88.4% of the total computation time, in 
which computing output probabilities occupies 73.3%. 
For LVRCSR recognition, minimizing the computation 
time of the output probabilities is effective. 
 
3. Design of GMM processor 
 
3.1. GMM computation 
 

The GMM computation obtains log[bj(xt)] from a 
feature vector xt and parameters of a GMM, which is 
used in the Viterbi search algorithm. As expressed in 
(5), log[bj(xt)] is expressed as logarithm of a sum of the 
Gaussian distribution multiplied by weight functions. 
We assume �� is diagonal matrix and simplify it. 
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where each parameter is as follows: bj(xt) is a GMM 
PDF, N is a Gaussian distribution PDF, P is the 
number of dimensions in a feature vector, mix is the 
number of mixtures in the GMM, xt is a feature vector, 
μ is a mean parameter, Σ is a variance-covariance 
matrix, and λ is a weight function. wij is a constant 
number, and can be computed before speech 
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recognition, offline. Equation (6) indicates that the 
GMM computation at one dimension consists of one 
addition, one subtraction, two multiplications, P 
summations, and taking a logarithm of them. 
 
3.2. Implementation of GMM computation 
 

The GMM calculations occupy over 60% of whole 
execution time as shown in Section II. To achieve 
speech recognition in real time yet at a lower operating 
frequency than an FPGA, we propose parallel 
architecture with low memory bandwidth. Our 
proposed scheme features the following three points. 
• Parallel computing of Gaussian distributions as to 

the number of GMM mixtures. 
• Parallelization in taking logarithms based on a 

look-up table 
• Pipeline architecture for reading Gaussian 

distribution parameters and calculating them. 
In the first feature, the parallelism can be 

theoretically increased up to the number of the 
mixtures in the GMM; however, it linearly increases 
memory bandwidth. For this reason, in our FPGA 
implementation, the parallelism in computing the 
Gaussian distributions is limited to four. 

As the second one, we prepare 2-input addlog units. 
The 2-input addlog unit calculates an approximate 
logarithmic value of a sum of two inputs. For instance, 
to carry out four “addlog”s, four data are divided into 
two groups; each group is input to two 2-input addlog 
units, and individually calculated at the same time. The 
two 2-input addlog units output two results. Repeating 
this operation, we can obtain a desired output for any 
number of data. This way reduces computation cycles. 
The number of parallelism in taking logarithms is four 
by the restriction of our FPGA. 

The third one means that, in our dedicated hardware, 
reading memory and calculating Gaussian distributions 
are simultaneously performed. 
 
3.3. Vector look-ahead scheme 
 

The GMM calculations require high memory 
bandwidth because many GMM parameters should be 
read from memory. For a low memory bandwidth 
suitable to an FPGA, we propose a novel vector look-
ahead scheme using locality of GMM data. 

Each state in the HMM has a specific GMM. For  its 
GMM calculation, it is necessary to load GMM data 
from memory. However, each phonemic HMM has self 
transition, and fortunately the GMM data used in the 
present frame will be reused in the next frame, at high 
probability. This probability reaches more than 90%. 

In the vector look-ahead scheme, several feature 
vectors are buffered in advance, and their output 
probabilities are computed in parallel. Then, the 
answers are stored in cache. If a duplicated state 
appears at the next frame, the answer stored in the 
cache is outputted. This scheme reduces the memory 
bandwidth and cycles. The maximal number of vector 
look-ahead depth is seven and their feature vectors are 
24-bit fixed point accuracy. This is limited by the 
maximum circuit scale allowed on the FPGA. 
 
3.4. Architecture 
 

We utilized an RC250 FPGA board produced by 
Celoxica. Fig. 4 shows the proposed architecture 
implemented on RC250. Input data are the feature 
vectors and the state ID that decides which GMM is 
used. Output is the output probability that corresponds 
to the state ID. 
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Figure 4. Proposed architecture. 
First a first vector and n look-ahead vectors are 

stored in the feature vector RAM. After this, the oldest 
vector is overwritten with a new vector. Next the 
address calculator calculates a cache read address, the 
GMM address and the cache write addresses that point 
where the calculated output probabilities will be 
cached. Then the cached data are checked. If hit, the 
cached probability is output as a result. If not, the 
output probabilities of contiguous n+1 vectors are 
computed in parallel. Finally the computation result 
that corresponds to the present frame is output. The 
other probabilities regarding n look-ahead vectors are 
stored in the cache. 
 
4. Implementation results 
 

To verify the implementation and compare with a 
PC, we constructed all operations concerning the 
speech recognition. However, the FPGA 
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implementation only includes the computation of the 
GMM. So, the other operations in the speech 
recognition are implemented as software using Julius. 
The models and parameters have been listed in Table 1. 
 
4.1. Accuracy degradation by fixed point 
 

We adopted the fixed point for simple hardware; 
however, it might give a negative impact on the 
recognition accuracy. The recognition accuracy 
degradation is shown in Table. 2. In 24 bit fixed-point, 
the degradation is up to 0.3%. 

Table 2. Accuracy affected by fixed point. 
The # of bits Accuracy

PC (Floating point) 92.9

24 92.6  
 
4.2. Gate utilization 
 

Implementing the parallel computation and vector 
look-ahead scheme augments a hardware size. Table. 3 
shows the number of NAND gates used, when the 
parallel computation is implemented and the vector 
look-ahead depth is changed. 

Table 3. Gate utilizations. 
Parallel computation Don`t Do Do Do Do Do

The # of look-ahead 0 0 1 3 5 7

The # of NAND gates [106 gates] 0.55 0.83 1.5 2.4 3.4 4.3  
 
4.3. Frequency and memory bandwidth 
 

Fig. 5 shows the required frequency for real-time 
operation. As well as Table. 3, Fig. 5 shows the both 
cases that the parallelization is implemented and not. 
The vector look-ahead depth is also changed. 
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Figure 5. Required frequencies. 

 
From the figure, the required frequency is 

dramatically reduced to 86.5 MHz (70% reduction). 
This is because the parallelism is four. In addition, as 
the vector look-ahead depth is increases, the frequency 
is decreased. When the vector look-ahead depth is 
seven, the required frequency is suppressed to 89.8%. 

For the vector look-ahead scheme, we can also 
reduce the memory bandwidth as shown in Fig. 6, 
because the cache memory reduces the times of GMM 

data loading. The scheme reduces 84.2% when the 
depth is seven. 
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Figure 6. Memory bandwidths. 

 
5. Summary 

 
We proposed a novel FPGA implementation of the 

GMM computation, with a parallelization and vector 
look-ahead schemes. The required frequency and 
memory bandwidth for real-time operation are reduced 
by 89.8% and 84.2%, respectively, compared with the 
case without these schemes. As a result, our 
architecture achieves real-time GMM computing for 
20,000 words speech recognition FPGA system. The 
operating frequency is 30.4 MHz and memory 
bandwidth is 47 Mbps. 
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