
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 1, FEBRUARY 2005 67

�ITRON-LP: Power-Conscious Real-Time OS
Based on Cooperative Voltage Scaling for

Multimedia Applications
Hiroshi Kawaguchi, Member, IEEE, Youngsoo Shin, Member, IEEE, and Takayasu Sakurai, Fellow, IEEE

Abstract—This paper presents a cooperative dynamic power
management method and its implementation. The implementa-
tion consists of design of a real-time OS, applications including
MPEG-4, and development of a supporting hardware platform
with an off-the-shelf processor. We describe several factors that
are important in the implementation and discuss its efficiency
through experiment. The experimental results with the prototype
system shows that 74% power saving is possible in multi-task
multimedia environment.

Index Terms—Application slicing, dynamic voltage scaling, em-
bedded system, low power, MPEG-4, multimedia application, real-
time OS.

I. INTRODUCTION

FOR MULTIMEDIA mobile systems powered by a battery
such as a 3G cellphone, power-efficient design managing

both low power and high speed is required. As processor per-
formance improves, the power management of the systems is
increasingly realized through software [1]–[6]. Consequently,
the design of the software components including an operating
system and applications is becoming important for the high
power efficiency.

Crusoe adopts software power management called LongRun
[7], [8], which basically relies on its workload history. Crusoe,
however, cannot reduce power by making use of data-dependent
nature of multimedia applications nor guarantee real-time fea-
ture. Thus, LongRun works fine in PC environment, but is not
suitable for embedded systems.

On the other hand, cooperative voltage scaling (CVS) [9] is
a dynamic power management method, which encompasses in-
teraction among a real-time operation system (RTOS), applica-
tions, and hardware to reduce power consumed by a processor.
The RTOS is modified so that it maintains and provides timing
information to the applications. The application is also modified
so that it consists of a sequence of slices, and additional code

Manuscript received November 20, 2002; revised May 17, 2003. This work
was supported by grants from Hitachi and the Japan Society for the Promotion
of Science. The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Ryoichi Komiya.

H. Kawaguchi is with the Institute of Industrial Science, University of Tokyo,
Tokyo 153-8505, Japan (e-mail: kawapy@iis.u-tokyo.ac.jp).

Y. Shin was with the IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598 USA. He is now with the Department of Electrical Engi-
neering, Korea Advanced Institute of Science and Technology (KAIST), Dae-
jeon 305-701, Korea (e-mail: youngsoo@ee.kaist.ac.kr).

T. Sakurai is with the Center for Collaborative Research, University of Tokyo,
Tokyo 153-8505, Japan (e-mail: tsakurai@iis.u-tokyo.ac.jp).

Digital Object Identifier 10.1109/TMM.2004.840592

Fig. 1. Structural model of CVS. A task gets timing information and sends
speed information to external f -V control hardware via processor. By using
this speed information, a combination of f andV is supplied to the processor.

fragments are inserted at the head of each slice. The code frag-
ments of the application determine the operation frequency ()
and supply voltage () of the slices based on both the timing
information provided by the RTOS and its own worst-case exe-
cution time (WCET). The rationale of the CVS is that the RTOS
knows only global timing information among tasks while each
application has better knowledge about its own structure and be-
havior.

In this paper, we address experimental implementation of the
CVS to evaluate feasibility and efficiency of its model. The im-
plementation consists of three components: design of a power-
conscious RTOS, design of applications with the concept of ap-
plication slicing, and design of a hardware platform.

The remainder of this paper is organized as follows. In the
Section II, we explain the CVS from the software point of
view. In Section III, the hardware implementation details are
presented. In Section IV, we discuss the experimental results to
evaluate the CVS. Finally, a summary follows in Section V.

II. COOPERATIVE VOLTAGE SCALING

A. Model

Fig. 1 shows the structural model of the CVS. The soft-
ware architecture of the CVS consists of a power-conscious
RTOS and applications. In order to realize the RTOS, Hi-
tachi HI7750 [10] that is based on the specification
[11] is redesigned, which we call -LP in this paper.
In -LP, real-time tasks are scheduled according to

1520-9210/$20.00 © 2005 IEEE

68 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 1, FEBRUARY 2005

Fig. 2. Example of workload histogram of MPEG-4 codec. This shows the
case where H.263 standard image sequence “carphone” is used as input data.
The total number of video frames is 72. This sequence is also used in the
experiment described in Section IV.

fixed-priority preemptive scheduling algorithm even though
other scheduling algorithm can be used.

In -LP, an absolute time called system clock is
maintained by cyclic interrupt from a hardware timer, whose
interval is set to 1 ms, meaning 1 ms is the time resolution of
the system. Since the timer interrupt involves interrupt service
routines that consume certain processor cycles, we cannot
arbitrarily decrease the time resolution.

A RTOS kernel is frequently realized with task control blocks
(TCBs) and a set of priority queues. The TCB holds task-spe-
cific information such as priority and start address. Each queue
maintains a list of tasks under the same scheduling status. We
add the READY queue and (next initiation time) queue to

-LP. The READY queue holds a currently running task
as well as tasks waiting to run in order of priority. If a task cur-
rently occupies a processor, it is called a RUN task, which is at
the head of the READY queue. It should be noted that the RUN
task is still in the READY queue even though it is running. The

queue holds all tasks in ascending numerical order of the
time, at which their next initiation is due.

We also extend the traditional TCB, which we call the ex-
tended task control block (ETCB) to contain specific timing in-
formation.

In addition, the scheduler in -LP is customized to
perform necessary actions during task state transition. These in-
clude managing the READY queue and queue, computing
timing information in the ETCB, and putting the processor into
a sleep mode if there is no task in the READY queue. The pro-
cessor, however, wakes up in every system clock to keep the
system clock counting and after that, return to the sleep mode.
The details will be explained later in Section II-C.

B. Application Slicing

Multimedia applications usually synchronize with their own
regular periods, for instance, 60 Hz for MPEG2 and 44.1 kHz
for CD audio. The period itself is always larger than the WCET
of the application. The execution time of the application, how-
ever, is frequently less than the WCET, sometimes by a large
amount since workload strongly depends on data imposed on a
processor [2]. As an example of MPEG-4 codec, the workload
becomes higher as objects in an image move fast. However, as
shown in Fig. 2, the worst-case data seldom occur in MPEG-4
codec and in most cases, the task finishes well before the WCET.

Fig. 3. Two-level application slicing. At the head of each slice, a code fragment
is inserted to determine speed of a processor. T indicates transition time of f
and V .

In addition, even if the worst-case data occurs, we still have a
time margin because the WCET is less than the period.

This is one of motivations for the CVS; execution time is not
constant, that is, it does not always take the WCET to execute a
task. At the start of each application, however, we do not have
any information about its future execution time and hence, it is
impossible to predict future workload without an error. We solve
this problem by introducing application slicing in the manner
of the -hopping [12]. If a task is sliced, unused time from
the previous slices can be exploited by the following slices. By
checking the current time and slack time to execute the next
slice, the application slicing adaptively selects optimum and

at run time to minimize power.
Although application slicing incurs much engineering ef-

fort, this can be done by application designers or middleware
providers once and for all. Furthermore, recognizing the fact
that a processor is occupied mostly by highly demanding appli-
cations such as MPEG-4, and the number of such applications
is small in nature, system designers can compose systems with
the sliced applications provided by the middleware providers
and their own custom applications, which can be designed
either by application slicing or not.

With the help of Fig. 3, we explain the concept of the applica-
tion slicing under the assumption that only one task is running
on a processor. In the figure, an application is periodic and its
period is . If applications are not periodic, application
slicing is not applicable, however, fortunately multimedia appli-
cations are periodic as described at the beginning of this subsec-
tion. In other words, the CVS is suitable for synchronous tasks
like multimedia applications, and not suitable for asynchronous
tasks like communication processing. In the MPEG-4, although
communication between terminals may be needed, communica-
tion rate is low, say 64 kbps and the overhead of the communica-
tion is estimated at less than 1%, which is negligible compared
to the MPEG-4 itself.

The WCET of the application, is chopped into
slices with potentially different length each other. The WCET

of the th slice, () and the WCET from
the th to the th slices, can be obtained through

KAWAGUCHI et al.: -LP: POWER-CONSCIOUS REAL-TIME OS 69

Fig. 4. Pseudo code of ETCB structure.

Fig. 5. Task state transition in �ITRON-LP. The READY queue and T

queues are renewed when a task is initiated or exits.

static analysis or direct measurement in design stage [13]. In the
code fragment at the head of the th slice, we now compute the
interval of time that is allowed to execute the slice. -LP
knows the next initiation time of this task since it is stored in
the ETCB. The task itself obtains the time interval to the next
initiation time as the virtual deadline, from -LP
with a system call.

Next, the task compares to its own WCET and chooses
larger one as the real deadline, . In Fig. 3, is essentially
larger than the WCET and thus, becomes .

Then, by using , the slack time, is checked.
is obtained by subtracting from .

Ideally, can be reduced to . In reality,
however, the arbitrary choice of causes a serious problem at
interfaces with peripheral devices. To solve this issue, in the
CVS, the candidate is limited only to or [14],
[15], where is the maximum frequency of the processor.
In this two-level application slicing, the th slice is carried out
at if .

According to the above-mentioned process, the optimum
is adaptively selected by the software on a slice-by-slice basis.
After finishing the th slice, the processor goes into a sleep
mode until the next initiation of the task. In the CVS, the timing
information including is provided by -LP through
the ETCB.

C. ETCB

Each task is associated with the ETCB. Fig. 4 shows a pseudo
code of the ETCB structure, where each element is managed
based on the task state transition as shown in Fig. 5.

• refers to a regular period of task initiation. This
is fixed and thus, does not change at run time.

• refers to relative time at which next initiation is sup-
posed to arrive. Every system clock, of any task in any
state is always decremented by one except for the case
when is 0 (time-out). In -LP, the queue
is adopted to monitor the time-out. All tasks are sorted
in ascending numerical order of to easily find the
time-out. If the time-out happens, the associated task
is automatically initiated and then, is set to .
A newly created task is also immediately initiated because
its is reset.

• refers to system clock at which a RUN task is dis-
patched. is valid only when the task is in the RUN
state.

• refers to accumulated time that had been already ex-
ecuted before the last preemption. It should be noted that

is incremented by the remainder between the system
clock and only when the task is preempted. is
reset when the task is initiated.

• refers to relative time to a virtual deadline of a RUN
task and is provided to the RUN task by a system call for
calculation of a real deadline. is valid only when the
task is in the RUN state. becomes 0 if there are two
tasks or more in the READY queue. In this event, the RUN
task should be executed in its own WCET. On the other
hand, if the RUN task is the only one in the READY queue,

-LP chooses the smallest in the queue as
of the RUN task. In this case, the RUN task can occupy

the processor at least until because there is no task
waiting for its execution. Fig. 6 shows how to determine

. The smallest of the tasks in the queue can be
easily obtained because the tasks are sorted in ascending
numerical order of . Incidentally, of the RUN task
is also renewed every system clock.

D. Real Deadline

In each slice, the code fragment has to compute its own
WCET to obtain the real deadline. Then, the code fragment
compares it to unless is 0. The longer one is the real
deadline, as mentioned above.

As shown in Fig. 7, since -LP adopts the pre-
emptive scheduling algorithm, the WCET should be ac-
quired by subtracting accumulated execution time up to
the present from , that is, the WCET becomes

– –(system clock–).

E. Example

Now, we explain how the CVS works using an example of a
task set as shown in Fig. 8. Suppose that there are three periodic
Tasks A, B, and C, and is 0. Task A consists of three slices
with each slice taking two time units in the worst case. Task B
consists of six slices with total 12 time units in the worst case.
Task C has only one slice whose WCET is two time units.

As for the workloads of the tasks in Fig. 8, we assume 50% of
the worst case for Task A, that is, it takes one time unit to execute
one slice. For Tasks B and C, 100% of workload is assumed
meaning that they run in their WCETs.

70 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 1, FEBRUARY 2005

Fig. 6. How to determineD . (a) If there are two tasks or more in the READY
queue,D of the RUN task becomes 0 regardless ofT of tasks in theT queue.
In this event, the RUN task should finish within its WCET. It should be noted
that there is still possibility to decrease f and V because some slices might
complete their execution earlier than their WCETs. (b) If the RUN task is the
only one in the READY queue, D of the RUN task becomes T of the task
at the head of the T queue, which is the smallest T of all tasks. In this case,
D can be exploited to lower f andV ifD is longer than the WCET of the
RUN task.

Fig. 7. Method to obtain WCET. A RUN task was preempted four times.
The accumulated execution time before the last preemption is T , and
the execution time from the last dispatch time up to the present is (system
clock–T). The RUN task can get its own T and T with system calls.

In the original , the scheduling looks like Fig. 8(a),
while the scheduling in -LP is shown in Fig. 8(b) when

and are provided as available frequencies.
In -LP, at time 0, Tasks A, B, and C are initiated at

the same time. Task A starts first since it has the highest priority.
At the first slice of Task A, is 0 because there are three

Fig. 8. Scheduling example of Tasks A, B, and C. Horizontal axis indicates
time scale and height of the slice shows the magnitude of f . (a) Original
�ITRON. (b) �ITRON-LP when f is limited to two levels.

tasks in the READY queue. In this case, the real deadline,
is 6, which is of Task A. Then, as is 4,

is 2. remains since is 2.
At time 1, the first slice finishes its execution because the

workload of Task A is 50%. At the second slice, the WCET is 5
since is 0 and (system clock–) is now 1.
is 2 and then, is 3. This is not enough to reduce to
a half. Thus, the second slice is also executed at . At the
last slice of Task A, the situation is different from the previous
slices. The WCET is 4 and is also 4. Therefore, the
third slice is carried out at a half speed, and the power
saving is possible.

Task A completes at time 4. Then, Task B takes over and is
executed between time 4 and 16.

At time 16, Task C is allocated to the processor. At this time,
only Task C is in the READY queue. The real deadline is the
longer interval between the WCET of Task C and . In this
case, the real deadline is of 4, which is of Task A. Even
though this slice is the first slice, it can be executed by
unlike the other tasks. Task C finishes at time 20.

Then, Task A starts again likewise. In the case where there is
no task to execute, -LP brings the processor into the
sleep mode until the next initiation.

III. HARDWARE IMPLEMENTATION

Fig. 9 shows a snapshot of the CVS experimental system. An
embedded system board with Hitachi SH-4 is used as a target
platform. The block diagram of the target platform is shown in
Fig. 10. SH-4 has a frequency control register called FRQCR.
The internal operation frequency is synchronized with the ex-
ternal clock frequency of 33 MHz and can be changed instanta-
neously by accessing the FRQCR. Since the operation frequen-
cies of 200 MHz and 100 MHz are used and they are divis-
ible by the external clock frequency, there is no synchroniza-
tion problem at interfaces with peripheral devices. For proces-
sors that do not have a clock frequency control register, a clock
frequency should be externally changed to provide and

. In this case, the processors must be halted during set-
tling time of a clock distribution network include a PLL/DLL to
eliminate malfunction.

KAWAGUCHI et al.: -LP: POWER-CONSCIOUS REAL-TIME OS 71

Fig. 9. (a) Snapshot of CVS experimental system. An output image of
MPEG-4 codec is displayed on a monitor. (b) V supply board on SH-4
embedded system board.

Fig. 10. Block diagram of target platform.

In the CVS, must be changed according to . The speed
information is sent to the supply board through an exten-
sion I/O bus by a system call. By using this speed information,

is selected out of 2.0 V for 200 MHz or 1.2 V for 100 MHz
by power switches on the supply board. The relationship
between and is obtained by measuring physical charac-
teristics of the processor.

The measured falling and rising times for the transition
are less than 200 and 100 respectively with a decoupling
capacitor of 30 as shown in Fig. 11. In order to avoid mal-
function, the processor stays in the sleep mode during the
transition. This is realized by using a timer in the processor,
which is different from the system clock timer. Before the
transition, 200 is set to expire at the end of the transi-
tion for both the falling and rising cases and then, the processor
moves to the sleep mode. The transition timer wakes up
the processor with an interrupt when the preset time expires.
All interrupts must be masked to eliminate malfunction during
the transition except for the transition timer. This
means that the interrupt level of the transition timer should

be highest. Since the transition time is relatively long, the
CVS is not suitable for fast-response systems like servo systems.

In the calculation of the timing information, the transi-
tion time, is set to 1 ms instead of 200 since the resolution
of the system clock recognized in -LP is as coarse as
1 ms. It should be noted that must be smaller than the system
clock resolution to preserve accuracy of the system clock. Alter-
natively, interrupts from the system clock timer are not properly
acknowledged because the interrupt level of the system clock
timer is lower than that of the transition timer.

The power characteristics of SH-4 are shown in Fig. 12. The
power at 200 MHz is 0.8 W while the power at 100 MHz is
0.16 W. This means that the energy at 100 MHz is 2.5 times as
efficient as the energy at 200 MHz. The sleep mode is operated
at 100 MHz and 1.2 V in order to suppress standby power. The
power in the sleep mode is 0.07 W. In the original , a
NOP loop is carried out in place of the sleep mode when there
is nothing to do. In the NOP loop, the processor consumes 0.58
W.

By using Fig. 12, we can obtain ideal CVS behavior and
power characteristics as shown in Fig. 13. The power consump-
tion of the original falls on Line A in the right graph.
Line B shows the case where the processor can enter the sleep
mode if there is no task to execute. In the sleep mode, the pro-
cessor is clock-gated and completely cut off dynamic power.
Unfortunately, the original does not support the sleep
mode. This is because next initiation time of a real-time appli-
cation cannot be generally predicted and a sleep mode is depen-
dent on hardware. If the CVS works ideally as shown in the left
graph, the power dependence on workload becomes Line C. The
power of the CVS theoretically lies somewhere in Region S be-
tween Lines B and C.

IV. EXPERIMENTAL RESULTS

In order to demonstrate the feasibility of the CVS, we
construct a task set that consists of KEYBOARD routine,
MPEG-4 codec, and 4096-points fast Fourier transform (FFT).
H.263 standard image sequence “carphone” is used as MPEG-4
input data. Table I shows characteristics of each slice in the
applications. The applications are sliced into the number of the
functional blocks to be able to add the code fragments.

Fig. 14 shows the measured waveforms of and a sleep
signal of the processor. There are five falling and five rising

transitions. Thus, the overhead of the transition is just 2
ms during 360 ms.

It should be noted that 2.0 V is used only 14% of the total
time while the sleep takes 38% of the time. This means that the
remaining 48% of the time is used for the low-power operation
at 1.2 V. This gives us the average workload of 38% (

).
The behavior of the measured waveform can be explained as

follows with the help of Fig. 15. The absolute time is used for
simplicity.

1) At the beginning, the KEYBOARD routine is dispatched.
The virtual deadline, is set to 0 because MPEG-4 and
FFT are also in the READY queue waiting for running.
Therefore, KEYBOARD should complete its execution in

72 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 1, FEBRUARY 2005

Fig. 11. Measured waveforms of (a) fallingV and (b) risingV . In the case of the fallingV , we should decrease f first and then, decreaseV . On the
other hand, in the case of the rising V , we increase V first and then, increase f .

Fig. 12. Power characteristics of SH-4.

Fig. 13. Ideal CVS behavior and power characteristics. The left graph shows
temporal ratio in the ideal case when T is 0 andN is infinite. In the ideal case,
at 0% workload, 100% sleep. At 50% workload, 100% f =2 operation. At
100% workload, 100% f operation.

its WCET of 2 ms, which means the real deadline, .
KEYBOARD finishes at 2 ms since KEYBOARD does
not have data dependency and its execution time is always
fixed.

2) At 2 ms, MPEG-4 is executed. is also set to 0 because
FFT is still in the READY queue. Then, becomes 81
ms because the WCET of MPEG-4 is 79 ms. In this task,
since the workload is much lighter than the worst case,

TABLE I
CHARACTERISTICS OF SLICES

Fig. 14. Measured waveforms of V and sleep signal. KB indicates the
KEYBOARD routine. When the sleep signal is high, the processor is in the
sleep mode.

some slices are executed at 200 MHz and the remaining
slices are done at 100 MHz. Eventually, MPEG-4 ends at
22 ms.

3) At 22 ms, FFT occupies the processor. Because only FFT
requires the processor, and are set to 120 ms that
is equal to of both KEYBOARD and MPEG-4. Thus,
98 ms is allowed to execute FFT whose WCET is 35 ms.

KAWAGUCHI et al.: -LP: POWER-CONSCIOUS REAL-TIME OS 73

Fig. 15. Explanation of Fig. 14. Height of slices shows the magnitude of f and V . Contrast with the V waveform in Fig. 14.

This means that both slices of FFT can be executed at half
speed. At 92 ms, upon the completion, the processor goes
to the sleep mode and then, sleeps until 120 ms because
there is nothing to execute. The sleep mode is carried out
at 100 MHz and 1.2 V to save power as described in Sec-
tion III.

4) At 120 ms, the second instance of KEYBOARD is dis-
patched.

5) At 122 ms, MPEG-4 is executed again with of 180
ms, which is of FFT. Since the time interval to
(ms ms) is less than the WCET of
MPEG-4, the advantage of the virtual deadline cannot be
exploited. In this case, is set to the WCET, which is
201 ms. Here, unlike the first instance, data is close to the
worst case and most slices are executed at the high speed
of 200 MHz. Then, the last slice completes its execution
at 196 ms.

6) Next, the second FFT waiting for execution takes over.
The remaining instances can be understood similarly.

Fig. 16 shows the comparison of the average power among
the CVS and other cases including the original . In
the original , the processor executes NOPs for the
idle time and consumes 0.66 W while the CVS is measured
to consume 0.22 W when the workload is 38%. If the original

supported the sleep mode, the power consumption

Fig. 16. Power comparison. Lines A, B, and C in the right graph are the same
ones in Fig. 13.

would be estimated at 0.35 W. Unfortunately, I/O buffers of
SH-4 do not work below 1.2 V. If the I/O buffers were designed
carefully, operation below 0.9 V could be achieved instead
of 1.2 V. In that case, the power of the CVS would become
0.17 W and could be reduced to about a quarter of the original

case. Line C’ in the right graph corresponds to such

74 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 1, FEBRUARY 2005

case where the power at 100 MHz is 0.09 W and 0.05 W in the
sleep mode. The power characteristic is improved compared
to 1.2 V case particularly in a low workload region. Likewise,
even compared to the case where the original uses
the sleep mode at 0.9 V that corresponds to Line B’, the CVS
still saves about a half power.

In reality, power saving with the CVS depends on combina-
tion of task periods, which in turn determines how much we
can benefit from virtual deadline. It is also dependent on distri-
bution of execution time. Nevertheless, the CVS efficiently ex-
ploits slack time between tasks and data-dependent variations
of multimedia applications and for this reason, we can expect
power saving with the CVS.

V. SUMMARY

In this paper, we have introduced the CVS involving design
of a power-conscious RTOS, a run-time mechanism of applica-
tions with the concept of application slicing, and development of
supporting hardware including an off-the-shelf processor. The
CVS achieves power saving by exploiting slack time arising
from variation of execution time of tasks and interaction among
the tasks.

The experimental results have verified that -LP
which is a prototype realizing the concept of the CVS achieves
74% power saving across multi-task environment compared to
the original when workload is 38%.

ACKNOWLEDGMENT

The authors would like to thank K. Aisaka, K. Toyama, Dr. K.
Ishibashi, and Dr. K. Uchiyama of Hitachi for fruitful discussion
and H. Yamaki of Hitachi Yonezawa Electronics for tests and
helpful advice.

REFERENCES

[1] T. Okuma, H. Yasuura, and T. Ishihara, “Software energy reduction tech-
niques for variable-voltage processors,” IEEE Design Test Comput., vol.
18, no. 2, pp. 31–41, Mar.-Apr. 2001.

[2] Y. Shin and K. Choi, “Power conscious fixed priority scheduling for
hard real-time systems,” in Proc. Design Automation Conf., 1999, pp.
134–139.

[3] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for re-
duced CPU energy,” in Proc. USENIX Symp. on Operating Systems De-
sign and Implementation, 1994, pp. 13–23.

[4] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
CPU energy,” in Proc. IEEE Foundations of Computer Science, 1995,
pp. 374–382.

[5] C. Hwang and A. Wu, “A predictive system shutdown method for energy
saving of event-driven computation,” in Proc. IEEE/ACM Int. Conf. on
Computer Aided Design, 1997, pp. 28–32.

[6] Y. Lee and C. Krishna, “Voltage-clock scaling for low energy consump-
tion in real-time embedded systems,” in Proc. Int. Conf. on Real-Time
Computing Systems and Applications, 1999, pp. 272–279.

[7] D. R. Ditzel, “Transmeta’s Crusoe: A low-power x86-compatible micro-
processor built with software,” in Proc. Int. Symp. on Low-Power and
High-Speed Chips (Cool Chips), 2000, pp. 1–30.

[8] Transmeta’s Crusoe Web Site [Online]. Available: http://www.trans-
meta.com/technology/

[9] Y. Shin, H. Kawaguchi, and T. Sakurai, “Cooperative voltage scaling
(CVS) between OS and applications for low-power real-time systems,”
in Proc. IEEE Custom Integrated Circuits Conf., 2001, pp. 553–556.

[10] Hitachi HI Series OS Web Site [Online]. Available: http://www.re-
nesas.com/eng/products/mpumcu/tool/realtime_os/itron/

[11] TRON Project Web Site [Online]. Available: http://www.tron.org/index-
e.html

[12] H. Kawaguchi, G. Zhang, S. Lee, Y. Shin, and T. Sakurai, “A controller
LSI for realizingV -hopping scheme with off-the-shelf processor and
its application to MPEG4 system,” IEICE Trans. Electron., vol. E85-C,
no. 2, pp. 263–271, 2002.

[13] S. Lim, Y. Bae, G. Jang, B. Rhee, S. Min, C. Park, H. Shin, K. Park, and
C. Kim, “An accurate worst case timing analysis for RISC processors,”
in Proc. IEEE Real-Time Systems Symp., 1994, pp. 97–108.

[14] S. Lee and T. Sakurai, “Run-time power control scheme using software
feedback loop for low-power real-time applications,” in Proc. Asia and
South Pacific Design Automation Conf., 2000, pp. 381–386.

[15] , “Run-time voltage hopping for low-power real-time systems,” in
Proc. Design Automation Conf., 2000, pp. 806–809.

Hiroshi Kawaguchi (M’98) was born in Kobe,
Japan, in 1968. He received the B.S. and M.S.
degrees in electronic engineering from Chiba Uni-
versity, Japan, in 1991 and 1993, respectively.

He joined Konami Corporation, Japan, in 1993,
where he developed arcade entertainment systems.
He moved to the Institute of Industrial Science, Uni-
versity of Tokyo, Japan, in 1996 as a Technical As-
sociate, and is currently a Research Associate. His
research interests include low-voltage VLSI designs,
low-power hardware systems, and wireless circuits.

Mr. Kawaguchi is a member of the ACM.

Youngsoo Shin (M’00) received the B.S., M.S., and
Ph.D. degrees in electronics engineering from Seoul
National University, Korea, in 1994, 1996, and 2000,
respectively.

He is currently an Assistant Professor in the
Department of Electrical Engineering at Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon. Before joining KAIST in July
2004, he was with the IBM Thomas J. Watson Re-
search Center, Yorktown Heights, NY, from August
2001, as a Research Staff Member. Prior to joining

IBM, he worked at the University of Tokyo, Japan, as a Research Associate.
His research interests are VLSI design methodology and CAD, especially in
the field of low-power and system-level design. He has published more than 30
papers in international journals and conferences.

Dr. Shin has served as a member of Technical Program Committees of
ISLPED, ICCAD, and ASPDAC.

Takayasu Sakurai (S’77–M’78–SM’01–F’03)
received the Ph.D. degree in electronics engineering
from the University of Tokyo, Japan, in 1981.

In 1981, he joined Toshiba Corporation, where he
designed CMOS DRAM, SRAM, RISC processors,
DSPs, and SoC Solutions. He has worked extensively
on interconnect delay and capacitance modeling
known as Sakurai model and alpha power-law MOS
model. From 1988 through 1990, he was a Visiting
Researcher at the University of California, Berkeley,
where he conducted research in the field of VLSI

CAD. Since 1996, he has been a Professor at the University of Tokyo, working
on low-power high-speed VLSI, memory design, interconnects, and wireless
systems. He has published more than 250 technical papers including more than
50 invited papers and several books and holds 50 patents.

Dr. Sakurai was a conference chair and/or a technical program committee
chair for the IEEE Symposium on VLSI Circuits, IEEE ICICDT, IEEE
A-SSCC and a technical program committee member for ISSCC, CICC, DAC,
ICCAD, FPGA workshop, ISLPED, ASPDAC, TAU, and other international
conferences. He is a keynote speaker for the 2003 ISSCC. He is an an elected
Administration Committee member for the IEEE Solid-State Circuits Society
and an IEEE CAS Distinguished Lecturer.

	toc
	$\mu{\rm ITRON}$ -LP: Power-Conscious Real-Time OS Based on Coop
	Hiroshi Kawaguchi, Member, IEEE, Youngsoo Shin, Member, IEEE, an
	I. I NTRODUCTION

	Fig.€1. Structural model of CVS. A task gets timing information
	II. C OOPERATIVE V OLTAGE S CALING
	A. Model

	Fig.€2. Example of workload histogram of MPEG-4 codec. This show
	B. Application Slicing

	Fig.€3. Two-level application slicing. At the head of each slice
	Fig.€4. Pseudo code of ETCB structure.
	Fig. 5. Task state transition in $\mu{\rm ITRON}$ -LP. The READY
	C. ETCB
	D. Real Deadline
	E. Example

	Fig. 6. How to determine $D _{v}$. (a) If there are two tasks o
	Fig.€7. Method to obtain WCET. A RUN task was preempted four tim
	Fig.€8. Scheduling example of Tasks A, B, and C. Horizontal axis
	III. H ARDWARE I MPLEMENTATION

	Fig.€9. (a) Snapshot of CVS experimental system. An output image
	Fig.€10. Block diagram of target platform.
	IV. E XPERIMENTAL R ESULTS

	Fig. 11. Measured waveforms of (a) falling ${\rm V}_{\rm DD}$ an
	Fig.€12. Power characteristics of SH-4.
	Fig.€13. Ideal CVS behavior and power characteristics. The left
	TABLE I C HARACTERISTICS OF S LICES
	Fig. 14. Measured waveforms of ${\rm V}_{\rm DD}$ and sleep sign
	Fig.€15. Explanation of Fig.€14 . Height of slices shows the mag
	Fig.€16. Power comparison. Lines A, B, and C in the right graph
	V. S UMMARY
	T. Okuma, H. Yasuura, and T. Ishihara, Software energy reduction
	Y. Shin and K. Choi, Power conscious fixed priority scheduling f
	M. Weiser, B. Welch, A. Demers, and S. Shenker, Scheduling for r
	F. Yao, A. Demers, and S. Shenker, A scheduling model for reduce
	C. Hwang and A. Wu, A predictive system shutdown method for ener
	Y. Lee and C. Krishna, Voltage-clock scaling for low energy cons
	D. R. Ditzel, Transmeta's Crusoe: A low-power x86-compatible mic

	Transmeta's Crusoe Web Site [Online] . Available: http://www.tra
	Y. Shin, H. Kawaguchi, and T. Sakurai, Cooperative voltage scali

	Hitachi HI Series OS Web Site [Online] . Available: http://www.r
	TRON Project Web Site [Online] . Available: http://www.tron.org/
	H. Kawaguchi, G. Zhang, S. Lee, Y. Shin, and T. Sakurai, A contr
	S. Lim, Y. Bae, G. Jang, B. Rhee, S. Min, C. Park, H. Shin, K. P
	S. Lee and T. Sakurai, Run-time power control scheme using softw

