
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.12 DECEMBER 2006
3623

PAPER Special Section on VLSI Design and CAD Algorithms

A Sub-mW H.264 Baseline-Profile Motion Estimation Processor
Core with a VLSI-Oriented Block Partitioning Strategy and
SIMD/Systolic-Array Architecture

Junichi MIYAKOSHI†a), Yuichiro MURACHI†, Tetsuro MATSUNO††, Student Members, Masaki HAMAMOTO†,
Takahiro IINUMA†, Tomokazu ISHIHARA†, Hiroshi KAWAGUCHI†, Nonmembers, Masayuki MIYAMA††,

and Masahiko YOSHIMOTO†, Members

SUMMARY We propose a sub-mW H.264 baseline-profile motion es-
timation processor for portable video applications. It features a VLSI-
oriented block partitioning strategy and low-power SIMD/systolic-array
datapath architecture, where the datapath can be switched between an
SIMD and systolic array depending on processing flow. The processor sup-
ports all the seven kinds of block modes, and can handle three reference
frames for a CIF (352 × 288) 30-fps to QCIF (176 × 144) 15-fps sequences
with a quarter-pixel accuracy. It integrates 3.3 million transistors, and occu-
pies 2.8×3.1 mm2 in a 130-nm CMOS technology. The proposed processor
achieves a power of 800 µW in a QCIF 15-fps sequence with one reference
picture.
key words: low power, motion estimation, H.264, SIMD, systolic array

1. Introduction

H.264/AVC (hereafter, H.264) [1] provides two times higher
coding efficiency than the previous standards such as H.263
and MPEG-4, while a computational cost of H.264 reaches
a dozen-fold workload of the previous standards. This is
because motion estimation in H.264 employs seven kinds of
motion compensations whose block sizes range from 16×16
to 4 × 4 pixels with a quarter-pel motion vector accuracy.
Therefore, the H.264 algorithm requires complicated hard-
ware, which causes power increase.

Many algorithms have been presented to save a work-
load and power in H.264. Adaptive search algorithms re-
duce an average workload by early-termination methods.
However, they can not save the worst-case workload [2], [3].
Besides, they have unnecessary idle cycles due to branch
processes if implemented in hardware. An algorithm named
UMHexagonS (hybrid unsymmetrical-cross multihexagon-
grid search) [4] is an eminent ME algorithm reducing an av-
erage workload, and thus adopted in the H.264 joint model
(JM) [5]. The UMHexagonS is, however, not suitable for
hardware implementation because it performs adaptive mo-
tion searches that can not carry out a next step until a current

Manuscript received March 10, 2006.
Manuscript revised June 13, 2006.
Final manuscript received August 1, 2006.
†The authors are with the Graduate School of Science and

Technology, Kobe University, Kobe-shi, 657-8501 Japan.
††The authors are with the Graduate School of Natural Science

and Technology, Kanazawa University, Kanazawa-shi, 920-1192
Japan.

a) E-mail: mjun1@cs28.cs.kobe-u.ac.jp
DOI: 10.1093/ietfec/e89–a.12.3623

step is completed by branch processes. This implies that a
pipelined architecture can not be simply implemented. Con-
sequently, the UMHexagonS algorithm causes increase of
operating frequency and power in hardware. Another algo-
rithm adopts the sub-sampling full search [6] that is a kind
of exhaustive search methods, which can operate without
any idle cycles and search the seven kinds of modes at the
same time. However, the sub-sampling full search requires
a larger workload than the UMHexagonS in the worst case,
and needs to access all pixels in a search window, which
raises power.

The conventional architecture with the adaptive search
implemented is comprised of a parallelized SIMD or
systolic-array (SA) datapath [6]–[8]. The SIMD architec-
ture is suitable for a random block-matching because it has
a wide bandwidth. On the other hand, the SA architecture
is appropriate for a serial block-matching since it has a high
reusability of pixels. However, this implies that the SA ar-
chitecture can not run many data through its datapath, and
thus it have to operate at a high frequency. In any case, these
conventional configurations cause power increase due to the
wide bandwidth or high frequency.

This paper describes a low-power motion estimation
processor for the H.264 baseline profile with a VLSI-
oriented block partitioning algorithm and SIMD/systolic-
array architecture. The worst-case workload of the pro-
posed partitioning algorithm is reduced to 4.5% of that of
a full-search method while maintaining high picture qual-
ity. This algorithm is explained in Sect. 2. The datapath
in the SIMD/systolic-array architecture can be switched be-
tween an SIMD and systolic array depending on processing
flow, which is mentioned in Sect. 3. Chip implementation
and performance comparison are described in Sect. 4. Sec-
tion 5 summarizes this paper.

2. VLSI-Oriented Algorithm

The simulation conditions in this paper are as follows (Ta-
ble 1). Modes used on the simulation are Mode 1 (16 × 16),
Mode 2 (16 × 8), Mode 3 (8 × 16), Mode 4 (8 × 8), Mode 5
(8 × 4), Mode 6 (4 × 8) and Mode 7 (4 × 4).

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers



3624
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.12 DECEMBER 2006

Table 1 Simulation conditions.

Fig. 1 Flow chart of integer-pel motion search.

2.1 Block-Matching Methods in Integer- and Sub-Pel Mo-
tion Search

2.1.1 1D-DS for Integer-Pel Motion Search

The one-dimensional diamond search (1D-DS) [7] for an
integer-pel motion search is a kind of gradient methods,
whose flowchart is shown in Fig. 1. Step 1 is an initial vec-
tor search where an initial motion vector is chosen from a
predicted vector, 0-vector, a vector of a macroblock (MB)
with the same position in a previous frame and four vec-
tors of the neighboring MBs. The initial vector search is to
calculate the seven block-matchings located in random co-
ordinate. At Step 2, a search direction is selected out of four
points (diamond shape) surrounding the initial vector, ac-
cording to the minimum sum of absolute difference (SAD).
Then, at Step 3, a one-dimensional search is carried out to-
ward the search direction, where eight SADs are computed
at eight pixels and the vector that has the smallest SAD is se-
lected as the minimum vector. Next, the minimum vector is
compared with the initial vector. If the vectors are not equal,
the initial vector is reset to the minimum vector, and the 1D-
DS are iterated. Alternatively, if it is equal, the 1D-DS is
terminated. The motion vector which indicates the smallest

Fig. 2 Normalized worst-case workload and PSNR of sub-pel algo-
rithms.

SAD is obtained in this search.
In the 1D-DS, the initial vector is properly determined

in Step 1. Also the number of search points in Step 2 and the
number of iterations in Step 5 are each restricted to enough
value to keep video quality [7]. In this case, the number of
search points is eight and the number of iterations is two.
This makes the number of block-matching small allowing a
low worst-case workload.

Although the 1D-DS is a kind of adaptive search, it
includes only three branch processes in Steps 2, 4 and 5
as shown Fig. 1. Step 2 has a branch process which de-
cides a search direction after searching all the four points.
Steps 4 and 5 also have branch processes after the minimum
SAD detections. On the other hand, the UMHexagonS in-
cludes seven branch processes (initial vector search, four-
point search, un-symmetrical crossing search, full search,
six-point search, hexagon search, diamond search) [4]. As
a result of the simulation, it is confirmed that the 1D-DS re-
duces the number of branch processes to 51% compared to
the UMHexagonS. By reducing the number of branch pro-
cesses, idle cycles which occur as a result of a pipeline stall
caused by the branch process decrease. In other words, the
1D-DS is suitable for VLSI implementation, since it can
reduce the worst-case workload, and operates at lower fre-
quency on hardware by less branch processes.

2.1.2 35-Point Full Search for Quarter-Pel Motion Search

The 35-point full search method is adopted to obtain a mo-
tion vector of a quarter-pel accuracy. This method performs
a full search in a narrow search area (±0.5 × ±0.75) whose
center is a resultant vector in the 1D-DS integer-pel search.
The workload for full search is kept low by restricting the
search area. Generally, a full search can realize simultane-
ous matching calculations for all the seven kinds of modes,
because it can reuse SAD or SATD of results of one mode.
In other words, the seven motion vectors in the seven modes
can be obtained by the one-time execution, which denotes
that an operating frequency can be lowered in hardware.
Furthermore, a full search is easily implemented in hard-
ware due to the simple processing flow. Figure 2 shows nor-
malized workload and PSNR of sub-pel algorithms. The



MIYAKOSHI et al.: A SUB-mW H.264 BASELINE-PROFILE MOTION ESTIMATION PROCESSOR CORE
3625

Fig. 3 R-D curves for variable block sizes.

2-step search which has been implemented in [5] is put on
Fig. 2 for the comparison. We chose the 35-point full search
method as sub-pel algorithm examining trade-off between
picture quality and workload.

2.2 Block Partitioning Strategy

It is important to choose the optimum mode and its opti-
mum vector as early as possible for low computation cost. In
this subsection, the fast block mode decision algorithms for
the integer-pel search method (1D-DS) and sub-pel search
method (35-point full search) are proposed.

Figure 3 illustrates rate-distortion (R-D) curves that in-
dicate coding efficiency in several sets of modes, obtained
by a simulation with the JM encoder [5]. The R-D curves
show that coding efficiency is improved more as the number
of modes to be utilized increases. The figure also indicates
that the efficiency difference between Mode 1 and other is
large, and thus a set of Modes 1–3 is a good design choice.

To the set of Modes 1–3, we apply the 1D-DS method
as an integer-pel motion search. If it was applied to all the
seven modes, hardware would become complicated and re-
sult in large power. To the contrary, the 35-point full search
is carried out in a set of Modes 4–7 with a sub-pel accuracy,
in order to enhance picture quality. The 35-point full search
for smaller blocks (Modes 4–7) can implemented at a low
frequency and low power, which is discussed in Sect. 3.

2.2.1 Fast Search for Larger Blocks (FSLB) with Integer-
Pel Accuracy

The four rectangles in Fig. 4 indicate block segmentations
in Mode 2 and Mode 3. At first, the integer-pel motion
search finds four motion vectors (MVs) in the four block
using the 1D-DS method (top Block A in Mode 2 (MVA),
bottom Block B in Mode 2 (MVB), left Block C in Mode 3
(MVC), and right Block D in Mode 3 (MVD). Then, the MV
in Mode 1 (MVMode1) should be founded. The fast search
for larger blocks (FSLB) is the proposed algorithm for an
integer-pel motion search, which supposes that the MVMode1

is inside the quadrilateral pointed by MVA, MVB, MVC, and

Fig. 4 Optimum MV for mode 1 by FSLB.

MVD, as depicted in Fig. 4.
In concrete terms, MVMode1 is selected from the fol-

lowing set of eight candidate MVs (CMVs), which means
that the integer-pel motion search in Mode 1 is carried out
only around the eight points.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CMV1 = PMV
CMV2 = MVA

CMV3 = MVB

CMV4 = MVC

CMV5 = MVD

CMV6 = (MVA +MVB)/2
CMV7 = (MVC +MVD)/2
CMV8 = (MVA +MVB +MVC +MVD)/4

PMV in the first equation indicates a predicted MV.
The latter three equations are derivations of the four MVs
in Modes 2 and 3. Therefore, MVMode1 sometimes happen
to be equal to either of MVA, MVB, MVC, or MVD, in which
case, the sub-pel motion search explained in the following is
not carried out around MVMode1. As a result the worst-case
workload can be reduced.

2.2.2 Fast Search for Smaller Blocks (FSSB) with Sub-pel
Accuracy

Next, we proceed to the sub-pel motion search with the re-
sults of the FSLB. That is, the 35-point full searches are
carried out around the five integer-pel MVs in Modes 1–3
(MVA, MVB, MVC, MVD, MVMode1) shown in Fig. 4. The
salient feature in the proposed algorithm for the sub-pel mo-
tion search (FSSB: fast search for smaller blocks) is that the
sub-pel motion search even in Modes 4–7 is simultaneously
performed during the motion search in Modes 1–3. This im-
plies that there is no additional computation cost to obtain
the sub-pel MVs in Modes 4–7 by reusing SATDs in Modes
1–3.

In the FSSB, a sum of absolute transformed difference
(SATD) in Modes 1–3 is accumulated in every 4 × 4-pixel
block. Each SATD is reused in a motion-vector calculation
in Modes 4–7. The procedure in the FSSB to obtain the
minimum SATD has five steps as follows.

1) Sub-pel ME in Mode 1
In Blocks E, F, G, and H in Fig. 5, an SATD is obtained ev-
ery 4× 4-pixel block. The 8× 8-pixel SATDs in Mode 4 are
obtained by accumulating four the 4×4-pixel SATDs. In the
same way, The SATDs in Mode 4–7 are obtained by reusing



3626
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.12 DECEMBER 2006

Fig. 5 Sub-pel ME procedure to obtain SATDs in Modes 1–7.

the 4 × 4-pixel SATDs. The hardware structure achieving
this feature is described in the next section. Once the accu-
mulation is done, the SATD in Mode 1 is eventually gained.
Note that the SATDs in Mode 4–7 in all the steps are up-
dated anytime if a smaller value is found in another CMV
calculation.

2) Sub-pel ME for the top blocks in Mode 2 (Block A in
Fig. 4)

In Blocks E and F, SATDs in Mode 4–7 are obtained as well.
The SATD for the top blocks in Mode 2 is gained once the
accumulation in Blocks E and F is done.

3) Sub-pel ME for the bottom blocks in Mode 2 (Block B in
Fig. 4)

In the block G and H, calculation and accumulation similar
to the previous step are carried out.

4) Sub-pel ME for the left blocks in Mode 3 (Block C in
Fig. 4)

In Blocks E and G, SATDs in Mode 4–7 are obtained as
well. The SATD for the left blocks in Mode 3 is gained
once the accumulation in Blocks E and G is done.

5) Sub-pel ME for the right block in Mode 3 (Block D in
Fig. 4)

In the block F and H, calculation and accumulation similar
to the previous step are carried out.

Finally, the minimum SATDs in Modes 1–7 are gained as
sub-pel MVs. Consequently, picture quality is enhanced,
compared to the case that only Modes 1–3 are utilized.

2.3 Flowchart

Again, we explain the flowchart of the proposed block-
partitioning algorithm with Fig. 6. The 1D-DS produces the
four MVs in Modes 2–3 with an integer-pel accuracy. Then,
the eight block-matching for Mode 1 is carried out to ob-
tain MVMode1. These two steps are included in the FSLB.
Next in the FSSB, the 35-point full searches are made using
the resultant MVs, which computes sub-pel MVs in all the
seven modes.

Fig. 6 Flowchart of proposed algorithm.

Fig. 7 R-D curves in the conventional and proposed algorithms.

2.4 Simulation Result

We compared the proposed algorithms with the conventional
algorithms that have been adopted in the JM. Proposed-1
indicates UMHexagonS and 2-step search algorithm with
FSLB and FSSB. Proposed-2 indicates 1D-DS and 35-point
search algorithm with FSLB and FSSB.

The R-D curves in Fig. 7 indicate that, in a low-bitrate
region, the picture quality degradation in the proposed algo-
rithm is within 0.10 dB compared with Conventional-1. On
the other hand in a high-bitrate region, the picture qualities
are almost equal.

As shown in Fig. 8, the worst-case workload in
Proposed-1 with FSLB and FSSB is 10.5% of that of
Conventional-1. Furthermore, by using the 1D-DS method,
the worst-case workload of Proposed-2 is lowered to 4.5%
of the Conventional-1. Although the workload for the sub-
pel search is increased by use of the 35-points full search,
the total worst-case workload in the Proposed-2 is decreased
due to the reduction of workload for the integer-pel search
by use of the 1D-DS, as shown in Fig. 8. Here, these aver-
age workloads are calculated from an average of seven se-
quences with 150 frames each, in Table 1.

The normalized operating frequencies of the conven-



MIYAKOSHI et al.: A SUB-mW H.264 BASELINE-PROFILE MOTION ESTIMATION PROCESSOR CORE
3627

Fig. 8 Workload comparison.

Fig. 9 Comparison of operating frequency assuming conventional 16-
way SIMD.

tional and proposed algorithms are shown in Fig. 9 when
they are implemented with the SIMD architecture [7]. The
normalized frequency in the adaptive algorithm is larger
than the worst-case workload by a grayed portion due to
idle cycles (compared to Fig. 8). The idle-cycle overheads
in the proposed algorithms are 1.9% and 0.4%, respectively,
which are much smaller than that of Conventional-2 (6.3%).
This is caused by reduction of branch processes as well as
workload, as descried in Sect. 2.1.1. Namely, the proposed
method reduces idle cycles as well as calculation cycles, so
that it lowers the operating frequency allowing low-power
processor realization with picture quality maintained.

3. SIMD/Systolic-Array Architecture

The architecture of an H.264 motion estimation processor
(ME) to which the proposed algorithm is implemented is il-
lustrated in Fig. 10. An integer-pel motion estimation (IME)
processor performs the initial vector search and the 1D-DS
method with an integer accuracy. The Sub-pel motion es-
timation (SME) processor executes the 35-point full search
with a quarter-pel accuracy. Two three-port (two read ports
+ one write port) SRAMs are also implemented as im-

Fig. 10 A block diagram of the proposed ME.

age data caches. One is for reference pictures (SWRAM:
search window RAM), and the other is for a current picture
(TBRAM: template block RAM). The IME and SME pro-
cessors share these two SRAMs. By adaptively switching
the read ports between the two processors, they can operate
in parallel. The proposed processors are connected to an ex-
ternal CPU bus (32 bits) and memory bus (64 bits) through
a controller.

3.1 IME Architecture

3.1.1 Structure of IME Processor

The SIMD architectures [6] have been presented as a paral-
lel datapath as well as parallelized systolic-array (SA) archi-
tectures [7], [8] in the conventional motion estimation pro-
cessors. The conventional SIMD does not need idle cycles
to transfer data from an SRAM, since all the processor el-
ements in the SIMD can directly get data from an SRAM.
It, however, requires wide internal memory bandwidth, in
otherwise, more pixels from an SRAM. The conventional
SA has data-transfer-paths between the processor elements,
so that the memory bandwidth can be reduced, however, its
operating cycles increase. This is because the idle cycle oc-
curs to fill all the processor elements with data. In order
to achieve low power characteristics, we developed a novel
architecture which can adaptively change datapath configu-
ration to either SIMD or SA according to processing flow of
integer-pel search, as shown in Table 2. The proposed ar-
chitecture named SIMD/SA works as a low operating-cycle
SIMD configuration during the initial vector search which is
a kind of random block-matching, while it changes its data-
path to a little memory-access SA during 1D-DS which is a



3628
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.12 DECEMBER 2006

Table 2 Datapath configuration of SIMD/SA corresponding to process-
ing flows of integer-pel search.

Fig. 11 IME (SIMD/SA) block diagram.

kind of a serial block-matching.
Figure 11 shows the proposed IME architecture con-

sisting of the SIMD/SA. The SIMD/SA is comprised of two
IPUs (integer-pel processing units) including an eight-way
SIMD module. The MUX in the IME switches datapath
connection between the IPU and SRAMs to reconfigure its
composition to either the SA or SIMD according to the pro-
cessing flow in Table 2. Thus, there are two kinds of datap-
aths as follows.

1) 16-way SIMD datapath
The MUX makes a connection between IPU1 and SRAMs.
Both IPU 0 and IPU 1 are connected to the read ports of both
TBRAM and SWRAM, and thus both operate in parallel.
This structure is utilized for the initial vector search (random
block-matching).

2) SA datapath
The MUX makes a connection between IPU0 and IPU1.
The IPU 0 forwards TBRAM data and SWRAM data to the
IPU 1. The 1D-DS method (serial block-matching) are per-
formed in both IPU 0 and IPU 1 as SA datapath.

3.1.2 1D-DS Implementation with SA

Figure 12 illustrates a template block and reference blocks

Fig. 12 A template block and reference blocks utilized for the 1D-DS
execution.

utilized for the 1D-DS execution. The number of search
points is eight as am example. TBN (TB0, TB1, . . . ) rep-
resents eight pixels in the N-th row in the TBRAM (origi-
nal picture). SWN (SW1, SW2, . . . , SW12) indicates eight
pixels in the N-th row in the SWRAM (reference picture).
The data used to calculate SAD are TB0 to TB7 and SW0
to SW7 in the first block-matching in the one-dimensional
search (Step 3 in Fig. 1), and in the second block-matching,
TB0-7 and SW1-8 are utilized. In this manner, 1D-DS pro-
ceeds toward the search direction.

The 1D-DS computation flow in the SA configuration
is illustrated in Fig. 13. TBN (TB0, TB1, . . . ) are stored in
a register, REGTB. SWN (SW1, SW2, . . . , SW8) are stored
in REGSW as well. An SAD can be obtained by calculations
between REGTB and REGSW. Note that, as already shown
in Fig. 11, data in the IPU 0 are forwarded to the IPU 1 in
the SA mode, and thus data in REGSW (IPU 0) is transferred
to REGSW (IPU 1) in the next cycle.

As shown in Fig. 12, in the first cycle, data TB0
and SW0 are transferred to the IPU0 from TBRAM and
SWRAM, respectively. In the second cycle, data TB1 and
SW1 are fed into IPU0 from the above SRAMs, and at the
same time, data TB0 and SW0 are transferred to the IPU 1
from IPU0. Thus the 1st point of block matching is started
and a partial SAD using 2 × 8 pixels is obtained in the
second cycle. In the same manner, the 2nd point of block
matching is initiated using data TB1 and SW2 in IPU0 and
data TB0 and SW1 in IPU1 in the third cycle. Each block
matching is begun one after another. In the 11th cycles, the
second partial SAD in the 1st block mathing is calculated
and accumulated. Repeating the above-mentioned opera-
tion, the 1-dimensional search of 8 search points is accom-
plished. Reference pixel data which are read from SWRAM
can be reduced. Furthermore, current pixel data in TBRAM
are read out only once in one dimensional search. There-



MIYAKOSHI et al.: A SUB-mW H.264 BASELINE-PROFILE MOTION ESTIMATION PROCESSOR CORE
3629

Fig. 13 1D-DS Computing flow in SA mode.

fore, proposed SIMD/SA can lower pixel data accessed from
SWRAM and TBRAM.

Eight pixel data should be packed and fed into REGTBs
and REGSWs properly, depending on a search direction in
the 1D-DS process. If the search direction is horizontal,
TBN and SWN include pixels in N-th column while they
include pixels in N-th row if vertical. Here, RAMs which
can read out successive pixel data either on horizontal line
or on vertical line at a cycle are required as SWRAM and
TBRAM in order to transfer pixels data to the SIMD/SA.
The custom SRAM was tailored for search window buffer
and template buffer [9]. Figure 14 shows configuration of
the RAM and data mapping. Pixels data on vertical line in a
picture are spirally mapped to memory plane to avoid the ac-
cess conflict which is caused by storing vertical pixels data
in the same column block, as shown in Fig. 14. Therefore,
any successive eight pixels on horizontal line or on vertical
line can be read out at a cycle.

3.1.3 Effects of the Adaptive SIMD/SA Switching

A comparison of operating cycles and the number of re-
quired pixels among three types of IME architectures is
summarized in Fig. 15. The cycle counts to execute the ini-
tial vector search with the SIMD/SA architecture are as low
as that with the SIMD architecture and 53% of that with the
SA architecture. Furthermore, the pixels counts required to
perform the 1D-DS with the proposed SIMD/SA are as low
as that with the SA, and 40% of that with the SIMD. Conse-
quently, in case of the proposed, the total cycle count is de-
creased by 25% compared with the SA architecture, and the
required pixel count is reduced by 66% compared with the

Fig. 14 An access method for port 1 of the SRAM. (accessing A0 to I0
pixels on a vertical line)

Fig. 15 Performance comparison in operation cycle and the number of
required pixels in integer-pel search with FSLB among three kinds of IME
architectures.

SIMD. Therefore the adaptive switching between the SIMD
and the SA can reduce both operating cycle counts and re-
quired pixel counts. It lowers the power consumption for
both logic and memory circuits.

3.2 SME Architecture

As illustrated in Fig. 10, the SME consists of an SPG (sub-
pel generator), PU (processor unit), and MCG (motion cost
generator). The SPG has an FIR-filter which generates pix-



3630
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.12 DECEMBER 2006

Fig. 16 Block diagram of SPG in SME.

els with a half- and quarter-pel accuracy in a reference pic-
ture. The PU is comprised of a 64-way SIMD which calcu-
lates SATDs. The motion cost that indicates a criterion to
obtain the optimum motion vector is generated by the MCG
module.

Figure 16 illustrates a block diagram of the SPG which
consists of 14 half-pel blenders and a quarter-pel blender.
The half-pel blender contains six-tap filters to generate half
pixels. Figure 17 shows generated integer- and half-pel data.
Vertical half pixel is calculated from six integer pixels in
REGis on vertical direction, and it is stored in REGv. Hor-
izontal half pixel is also computed from six interger pixels
in REGis on horizontal direction, and it is stored in REGh.
Center half pixel is generated from six horizontal half pix-
els in REGc. These all registers, REGi, REGv, REGh and
REGc, transfer the integer and half pixel data to the quarter-
pel blender. The quarter-pel blender generates quarter pix-
els, and supplies 64 pixels with integer-, half- and quarter-
pel accuracy to the PU.

Figure 18 shows a block diagram of the PU which per-
forms four 4 × 4-SATDs computations in a cycle. The SPE
(sub-pel processor element) handles a 4 × 4-SATDs compu-
tations. The HDM represents a one-dimensional Hadamard
transformer. The cross-wiring between two HDM stages

Fig. 17 Integer and half pixel data.

Fig. 18 PU datapath of SME.

makes two-dimensional Hadamard transforms.

3.3 Concurrent Operation of IME and SME

IME processor operates concurrently with SME processor
by a macroblock pipeline. When IME processes N-th mac-
roblock, SME handles (N −1)-th macroblock. Figures 19(a)
and (b) shows an SRAM read-port allocation to the IME and
SME circuits in the 16 way-SIMD mode and the SA mode,
respectively. Also Fig. 20 compares timing schedules of the
entire motion estimation process assuming three types of
IME architecture. Suppose that IME has only SIMD mode.
In that case, the number of operation cycle to complete the
process is 1177 cycles that is largest, as shown in Fig. 20(a).
This is because it uses both the read ports #0 and #1, so that
the SME can not obtain pixels to execute the sub-pel search
from the SRAMs. As a result, the SME can not operate until
the IME processing finishes, and these two processors have
to be operated sequentially. On the other hand, suppose that
IME has only SA mode. In that case, the number of opera-
tion cycle to complete the process is 1098 cycles, as shown
in Fig. 20(b). This is because the parallel operation of the
IME and the SME processor is possible, allowing decrease
of the total operation cycle count. However, the integer-pel



MIYAKOSHI et al.: A SUB-mW H.264 BASELINE-PROFILE MOTION ESTIMATION PROCESSOR CORE
3631

(a)

(b)

Fig. 19 (a) Datapath configuration in 16way-SIMD mode. (b) Datapath
configuration in SA mode.

search itself requires larger operating cycle because of idle
cycles caused by the SA configuration.

Figure 20(c) shows timing schedules in case of the pro-
posed SIMD/SA configuration which demonstrates the min-
imum cycle counts, 878 cycles. As illustrated in Fig. 19(a),
in the 16-way SIMD mode, the IME occupies both the read
ports #0 and #1 to perform a parallel processing during the
initial vector search. Furthermore, when the processor con-
figure SA mode, the IME and SME can operate in parallel to
execute the 1D-DS and 35-point full search. The concurrent
operation by the proposed SIMD/SA architecture attains the
minimum power since the required cycle is less, and thus an
operating frequency can be lowered. The operating frequen-
cies in three types of configuration are shown in Fig. 21. It is
seen that 25% to 34% reduction of the operating frequency
in the proposed is achieved compared with the SIMD and
the SA configuration.

Fig. 20 Comparison of timing schedule for the entire motion estimation
process among three kinds of IME architecture.

Fig. 21 Operating frequency and required pixel counts for the entire mo-
tion estimation process.

4. Chip Implementation Design

Figure 22 shows a chip layout of the motion estimation pro-
cessor core in a 130-nm CMOS technology. It integrates
3.3 M transistors, and occupies in 2.8 × 3.1 mm2. The ME
core can operate at 54 MHz when a nominal supply voltage
is 1.0 V. The chip specification is shown in Table 3.

The power estimated with a post-layout simulation is
shown in Fig. 23. The proposed ME core consumes 800 µW
in a QCIF (352 × 288), 15-fps sequence with one reference
picture. On the other hand, the conventional one which
adopts a full search method using sub-sampling [6] dissi-
pates 3.9 mW, which means that a power reduction of 20%
is achieved. The conventional power is estimated by scaling
a process technology, a resolution and the number of refer-
ence pictures.



3632
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.12 DECEMBER 2006

Fig. 22 Layout of H.264 motion estimation processor core.

Table 3 Specification of the core.

Fig. 23 Power consumption comparison.

Area overhead of the proposed SIMD/SA is 5% of
IME, and 0.2% of the whole.

5. Conclusions

This paper proposed an 800-µW H.264 baseline profile mo-
tion estimation processor core. The processor supports all
the seven kinds of block modes, and can handle three refer-

ence frames for a CIF (352×288) 30-fps to QCIF (176×144)
15-fps sequences with a quarter-pixel accuracy.

The processor features the adaptive block-matching al-
gorithm and novel block partitioning strategy to reduce both
the worst-case workload and operating frequency. By apply-
ing the SA architecture to the 1D-DS algorithm, pixels read
from SRAMs can be lowered. Furthermore the SIMD/SA
architecture enables a parallel operation of the IME and
SME processors so that the operating frequency decreases.
It is expected to be applicable to an SoC with H.264 codec
function for energy-aware portable video terminals.

Acknowledgments

This work was supported by VLSI Design and Education
Center (VDEC), the University of Tokyo in collaboration
with Cadence Design Systems, Mentor Graphics and Syn-
opsys, Inc.

References

[1] ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC, Draft ITU-T Recom-
mendation and Final Draft International Standard of Joint Video Spec-
ification, 2003.

[2] W.I. Choi, B. Jeon, and J. Jeong, “Fast motion estimation with mod-
ified diamond search for variable motion block size,” IEEE Interna-
tional Conference on Image Processing (ICIP), vol.3, pp.371–374,
Sept. 2003.

[3] L. Yang, K. Yu, J. Li, and S. Li, “An effective variable block-size early
termination algorithm for H.264 video coding,” IEEE Trans. Circuits
Syst. Video Technol., vol.15, no.6, pp.784–788, June 2005.

[4] ISO/IEC | ITU-T VCEG, Fast Integer Pel and Fractional Pel Motion
Estimation for JVT, JVT-F017, 2002

[5] JM 8.5, http://iphome.hhi.de/suehring/tml/
[6] Y.-W. Huang, T.-C. Chen, C.-H. Tsai, C.-Y. Chen, T.-W. Chen, C.-S.

Chen, C.-F. Shen, S.-Y. Ma, T.-C. Wang, B.-Y. Hsieh, H.-C. Fang,
and L.-G. Chen, “A 1.3TOPS H.264/AVC single-chip encoder for
HDTV applications,” IEEE International Solid-State Circuit Confer-
ence, pp.128–129, Jan. 2005.

[7] Y. Murachi, K. Hamano, T. Matsuno, J. Miyakoshi, M. Miyama,
and M. Yoshimoto, “A 95 mW MPEG2 MP@HL motion estimation
processor core or portable high-resolution video application,” IEICE
Trans. Fundamentals, vol.E88-A, no.12, pp.3492–3499, Dec. 2005.

[8] J. Miyakoshi, Y. Murachi, K. Hamano, T. Matsuno, M. Miyama, and
M. Yoshimoto, “A low-power systolic array architecture for block-
matching motion estimation,” IEICE Trans. Electron., vol.E88-C,
no.4, pp.559–569, April 2005.

[9] J. Miyakoshi, Y. Murachi, M. Hamomoto, T. Iinuma, T. Ishihara, H.
Kawaguchi, and M. Yoshimoto, “A power- and area-efficient SRAM
core architecture for super-parallel video processing,” 14th IFIP In-
ternational Conference on Very Large Scale Integration VLSI-SoC,
pp.192–197, Oct. 2006.



MIYAKOSHI et al.: A SUB-mW H.264 BASELINE-PROFILE MOTION ESTIMATION PROCESSOR CORE
3633

Junichi Miyakoshi received the B.E. de-
gree in electrical and information engineering
in 2002 and the M.E. degree in electronics
and computer science from Kanazawa Univer-
sity, Ishikawa, Japan, in 2004. He is cur-
rently a Ph.D. candidate at Kobe University,
Kobe, Japan. His current research interests in-
clude high-performance and low-power multi-
media VLSI designs. He is a student member
of IEEE.

Yuichiro Murachi was born on November
1, 1980. He received a B.S. degree from Kana-
zawa University in 2003. He received an M.E.
degree from Kanazawa University, Ishikawa,
Japan, in 2005. He is currently enrolled in the
Doctoral course in Kobe University. His re-
search interests are VLSI systems and imple-
mentation of multimedia communication sys-
tems.

Tetsuro Matsuno received a B.E. degree
from Kanazawa University in 2004. He received
an M.S. degree in Electrical and Computer Engi-
neering from Kanazawa University in 2006. He
is currently a doctoral course student of Kobe
University. His present research focus is design
techniques of mixed-signal LSI.

Masaki Hamamoto was born on June 1,
1982. He received a B.E. degree from Kana-
zawa University, Ishikawa, Japan in 2005. He is
currently on the master course at Kobe Univer-
sity. His research interests include low-power
VLSI algorithms and architectures, and multi-
media signal processing.

Takahiro Iinuma received a B.E. degree in
Computer and Systems Engineering from Kobe
University, Hyogo, Japan in 2006. He is cur-
rently on the master course at Kobe Univer-
sity. Since 2005, he has been involved in the
research and development of low-power multi-
media VLSI.

Tomokazu Ishihara was born on Decem-
ber 28, 1983. He received a B.E. degree from
Kobe University, Hyogo, Japan in 2006. He is
currently on the master course at Kobe Univer-
sity. His research interests include low-power
VLSI algorithms and architectures, and multi-
media signal processing.

Hiroshi Kawaguchi was born in Kobe,
Japan, in 1968. He received the B.E. and M.E.
degrees in electronic engineering from Chiba
University, Japan, in 1991 and 1993, respec-
tively. He joined Konami Corporation, Japan, in
1993, in which he developed arcade entertain-
ment systems. He moved to the Institute of In-
dustrial Science, the University of Tokyo, Japan,
in 1996 as a technical associate, and was ap-
pointed to be a research associate in 2003. He
moved to the Department of Computer and Sys-

tems Engineering, Kobe University, Japan, in 2005, as a research asso-
ciate. He is also a collaborative researcher of the Institute of Industrial Sci-
ence, the University of Tokyo. He is a recipient of the IEEE ISSCC 2004
Takuo Sugano Award for Outstanding Paper. He has served as a program
committee member for IEEE Symposium on Low-Power and High-Speed
Chips (COOL Chips). He is a guest associate editor of IEICE Transac-
tions on Fundamentals of Electronics, Communications and Computer Sci-
ences. His research interests include low-voltage VLSI designs, low-power
hardware systems, wireless circuits, and organic-transistor circuits. He is a
member of IEEE and ACM.

Masayuki Miyama was born on March
26, 1966. He received a B.S. degree in Com-
puter Science from the University of Tsukuba in
1988. He joined PFU Ltd. in 1988. He received
an M.S. degree in Computer Science from the
Japan Advanced Institute of Science and Tech-
nology in 1995. He joined Innotech Co. in 1996.
He received the Ph.D. degree in electrical engi-
neering and computer science from Kanazawa
University in 2004. He is a research assistant at
the Department of Electrical and Electronic En-

gineering at Kanazawa University. His present research focus is low-power
design techniques for multimedia VLSI.

Masahiko Yoshimoto received the B.S. de-
gree in electronic engineering from Nagoya In-
stitute of Technology, Nagoya, Japan, in 1975,
and the M.S. degree in electronic engineer-
ing from Nagoya University, Nagoya, Japan, in
1977. He received a Ph.D. degree in Electrical
Engineering from Nagoya University, Nagoya,
Japan in 1998. He joined the LSI Laboratory,
Mitsubishi Electric Corp., Itami, Japan, in April
1977. From 1978 to 1983 he was engaged in
the design of NMOS and CMOS static RAM in-

cluding a 64 K full CMOS RAM with the world’s first divided-word-line
structure. From 1984, he was involved in research and development of
multimedia ULSI systems for digital broadcasting and digital communica-
tion systems based on MPEG2 and MPEG4 Codec LSI core technology.
Since 2000, he has been a Professor of the Dept. of Electrical and Elec-
tronic Systems Engineering at Kanazawa University, Japan. Since 2004, he
has been a Professor of the Dept. of Computer and Systems Engineering
at Kobe University, Japan. His current activity is focused on research and
development of multimedia and ubiquitous media VLSI systems including
an ultra-low-power image compression processor and a low power wireless
interface circuit. He holds 70 registered patents. He served on the Program
Committee of the IEEE International Solid State Circuit Conference from
1991 to 1993. In addition, he has served as a Guest Editor for special issues
on Low-Power System LSI, IP, and Related Technologies of IEICE Trans-
actions in 2004. He received the R&D100 awards from R&D Magazine
for development of the DISP and development of a realtime MPEG2 video
encoder chipset in 1990 and 1996, respectively.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


