#6.3

A 0.5-V, 400-MHz, V_{DD}-Hopping Processor with Zero-V_{TH} FD-SOI Technology

Hiroshi Kawaguchi, Kouichi Kanda, Koichi Nose¹, Sadaaki Hattori², Danardono Dwi Antono, Daisuke Yamada, Takayuki Miyazaki, Kenichi Inagaki, Toshiro Hiramoto, and Takayasu Sakurai

University of Tokyo, Tokyo, Japan
¹NEC Corporation, Kanagawa, Japan
²KDDI Corporation, Tokyo, Japan
Outline

• Introduction & motivation

• V_{DD}-hopping

• Circuit design

• Experimental results

• Summary
Introduction

• Low-power processor
 – PDA, cell phone

• In 2013, $V_{DD} = 0.5V$.

• Fully-depleted silicon-on-insulator (FD-SOI)
 – Steep s-factor ($\approx 0.06V/\text{dec}$)
 – Small junction capacitance
Motivation

• Target: 0.5V, 400MHz as processor system
 – 0.5V, 100MHz FD-SOI adder was reported*.

• 0.5V V_{DD} & zero V_{TH} in logic part
 – V_{TH} must be $<20\%$ of V_{DD} for high speed.

• Higher V_{DD} & V_{TH} for memories
 – To suppress cell leak

• 800MHz (x2 speed) is also possible.
 – V_{DD}-hopping

V_{DD}-hopping

• Introduction & motivation

• V_{DD}-hopping

• Circuit design

• Experimental results

• Summary
V_{DD}-hopping in MPEG4 system

- f for low V_{DD} & $2f$ for high V_{DD}
- Suitable for multimedia application
- 75% power save in MPEG4 encoding
V_{DD}-hopping in leaky environment

• V_{DD}-hopping*
 – Dynamic power management
 – \(f \) for low V_{DD} & \(2f \) for high V_{DD}

• V_{TH}-hopping**
 – \(f \) for high V_{TH} & \(2f \) for low V_{TH} with body bias
 – Cannot be applied to FD-SOI.

↓

• With help of DIBL, V_{DD}-hopping is effective even in leakage-dominant environment.

\textbf{V}_{\text{DD}}\text{-hopping mechanism}

- At least, 2 kinds of \(V_{\text{DD}} \)s & \(f \)s must be provided.

\begin{itemize}
 \item \(V_{\text{DD}} \) (power supply)
 \item DC/DC converter
 \item \(V_{\text{DD}} \) 0.5<>1.0V
 \item DC/DC converter
 \item \(V_{\text{DD}} \) 0.5<>1.0V
 \item \(f \) (frequency)
 \item VCO
 \item \(f, 2f \)
\end{itemize}

- \(V_{\text{DD}} \) is externally changed.
- In terms of transient time, on-chip device is better.
- VCO can output \(f \) & \(2f \).
- frequency selector is implemented.
Circuit design

• Introduction & motivation

• V_{DD}-hopping

• Circuit design

• Experimental results

• Summary
Block diagram

- Dual V_{DD} & V_{TH} scheme
 - Low V_{DD} & V_{TH} for logic, high V_{DD} & V_{TH} for memories
- $V_{DDH}=2V_{DDL}$.
16bit Kogge-Stone adder in ALU

- Critical path in logic part
- 6-gate path
- 1.5ns w/o F/Fs at 0.5V V_{DDL}
- 2.1ns with F/Fs
- ALU also has shifter & bit operator.

Carries

Generates & propagates
SRAM block diagram

- High V_{DD} & V_{TH} cells
 - To suppress cell leak
- High V_{DD} WL & BL
- Low V_{DD} buffers & predecoder
- Level-up converters are needed.

- Low V_{DD} & V_{TH} (V_{DDL} & V_{THL})
- High V_{DD} & V_{TH} (V_{DDH} & V_{THH})
Replica-biasing level-up converter

Replica biasing

Conventional

Voltage divider

Decoder

Global word line

Other decoders

+ x2 faster
- Large static current & small input margin

Experimental results

• Introduction & motivation

• V_{DD}-hopping

• Circuit design

• Experimental results

• Summary
Measurement setup

- LSI tester
- Slow testing
 - External memory I/F

- VCO output
 - 1/64 of internal operation f
- 0.5V, 400MHz operation
• 0.25µm, 3-metal FD-SOI

• Dual-V_{TH}
 ($V_{THL}=0.0V$ & $V_{THH}=0.3V$)

• 2000 gates in logic part

• Memories account for 85% of transistor count.
Compact cell library

• Small number of logic gates doesn't degrade performance much*.

• Only 20 kinds of logic gates
 – Detailed design tuning is possible.
 – INVx3, NANDx3, NORx3, AOIx2, OAIx2, EXOR, EXNOR, MUXx2, DFFx2, CLKBUF

• On 2NOR, \(\frac{I_{ON_P}}{I_{OFF_N}} = 33 \) when \(V_{DDL} = 0.5V \).
 – Sizing is critically important.

SRAM delay breakdowns - critical path

<table>
<thead>
<tr>
<th>V_{DDL} [V]</th>
<th>V_{DDH} [V]</th>
<th>Address-in</th>
<th>Data-out</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: 0.5</td>
<td>0.5</td>
<td>Memory core</td>
<td>5.5ns=180MHz</td>
</tr>
<tr>
<td>B: 0.5</td>
<td>1.0</td>
<td></td>
<td>2.5ns=400MHz</td>
</tr>
<tr>
<td>C: 1.0</td>
<td>2.0</td>
<td></td>
<td>1.25ns=800MHz</td>
</tr>
</tbody>
</table>

- V_{DDH} should be $2V_{DDL}$.
 - For high speed
- V_{DDH} should not be 2.0V.
 - Level-up converter fails when $V_{DDL}=0.5V$.

$V_{DDH}=2V_{DDL}$

$V_{DDH}=V_{DDL}$

Simulation

Measurement

$T_a=30^\circ$C
Operation frequency - measurement

- 0.5V-400MHz & 0.9V-800MHz

- In sub-1V with moderate V_{TH}, delay has negative temperature coefficient*.

- However, with 0 V_{TH}, positive temperature dependence is observed.

Leakage dependence on V_{DDL}

- Leakage is strong function of V_{DDL}.
- Drain induced barrier lowering (DIBL) effect

![Graph showing leakage current (I_{LEAK}) as a function of V_{DDL}](image)

$V_{DDH} = 2V_{DDL}$

Clock: stopped

$T_a = 100^\circ C$

Measurement

$V_{DDH} = 2V_{DDL}$

$Ta=100^\circ C$

x3.6

30$^\circ C$

0 0.5 1

0 10 20 30 40 50

I_{LEAK} [mA]

V_{DDL} [V]
Power - measurement

- P_{TOTAL} & P_{LEAK}
 - Similar dependence

- Possible to scale power by changing only V_{DDL}

- V_{DD}-hopping is effective even in sub-1V FD-SOI.

V_{DDL} [V]

P_{TOTAL}, P_{LEAK} [mW]

Hopping

$V_{\text{DDH}} = 2V_{\text{DDL}}$

- 30°C
- 100°C

Power scaling in V_{DD}-hopping - analysis

\[P_{\text{LEAK}} \propto V_{DDL} \cdot I_0 \cdot 10 \]
\[\frac{V_{TH} - \lambda \cdot V_{DDL}}{s} \]
\[P_{\text{DYNAMIC}} \propto f \cdot V_{DDL}^2 \]
\[\propto \frac{(V_{DDL} - V_{THL})^\alpha}{V_{DDL}} \cdot V_{DDL}^2 \]
\[\propto V_{DDL}^{2.5} \]

$V_{THL} = 0$
$\lambda = 0$ or 0.1 (DIBL coefficient)
$s = 0.08$ (s-factor)
$\alpha = 1.5$
Summary

• Introduction & motivation

• V_{DD}-hopping

• Circuit design

• Experimental results

• Summary
Summary

• 0.5V, 400MHz, 3.5mW, FD-SOI processor with compact cell library

• Design methodology in 0.5V generation
 – Zero V_{TH}
 – Dual V_{DD} & V_{TH}, low for logic & high for memory
 – Replica-biasing level converter
 – With help of DIBL, V_{DD}-hopping is effective even in leakage-dominant environment.