Cut-and-Paste Organic FET Customized ICs for Application to Artificial Skin

<u>Takao Someya</u>, Hiroshi Kawaguchi, and Takayasu Sakurai

University of Tokyo, Tokyo, Japan

Outline

Introduction & motivation

Manufacturing process

Circuit design

Results & discussion

•Summary

- Attributes of organic transistors
 - -Mechanically flexible
 - -Large area manufacturability
 - -Potentially low cost manufacturing

Motivation

- •Two driving applications of organic FETs RF ID tags and displays
- Our proposal: flexible, large-area sensors
 Organic FET + pressure sensor = artificial skin

Tactile sensors for robots

 A sensitive skin with 1,000~1M pressure sensors requires flexible, large-area switches.

Static drivers (Existing devices) Active matrix drivers (Present study)

Manufacturing process

Introduction & motivation

Manufacturing process

Circuit design

Results & discussion

Picture of artificial skin

Manufacturing process (I)

Manufacturing process (II)

The device is manufactured with laminating four different sheets.

One sensor cell (Sencel)

Sensor cell (Sencel)

Via holes by laser drilling machine

Circuit design

Introduction & motivation

Manufacturing process

Circuit design

Results & discussion

Summary

Concept

Cut-and-paste feature (scalable circuit concept)

Row

Column selectors

Circuit scalability (row decoder)

Circuit scalability (column selector)

Connecting tape to paste

- Connects sheet to sheet
- PET film with 0.1inch pitch Au lines
- Silver paste

Cut-and-paste feature (16x16 sencels)

Cut-and-paste feature (convex shape)

^{© 2004} IEEE International Solid-State Circuits Conference © 2004 IEEE

Cut-and-paste feature (4x4 sencels)

Row4x4 FETdecodersmatrix

Column selectors

Results & discussion

Introduction & motivation

Manufacturing process

Circuit design

Results & discussion

V_{DS}-I_{DS} characteristics

•Match level 1 SPICE MOS model with 200k Ω

Measured & simulated waveforms

I_{DS} dependence on pressure

• Resistance changes between 10M Ω (off) & 1k Ω (on). ₃₀ **V**_{DS}=-40V V_{BL} Access FET 20 V_{WL} With pressure (2N) I_{DS} [µA] Senso 10 V_{DD} No pressure -40 -30 -20 -10 0 10 20 V_{GS} [V]

Bit-out when pressed

• Pressed sencel pulls bit line up to V_{DD} .

Access time dependence on $V_{\mbox{\scriptsize DD}}$

- Access time reduces to half @100V V_{DD} .
- Simulation agrees with measurement.

Bending test

Remaining issues

- Enhancing reliability and stability
 - Current lifetime: days ———> months, years

Encapsulation

– Initial transistor yield > 99% for t_{insulator}=500 nm

Lowering operation voltage

- Currently 40V \longrightarrow <10V

Shorter L Thinner insulator

Summary

- An electronic artificial skin system
 - A large-area pressure sensor matrix
 - Column selectors and row decoders
 - Laser via process for circuit implementation
- Cut-and-paste customization
- Mechanical flexibility down to r=5 mm
- 23 ms delay for read-out