An Organic FET SRAM

 for Braille Sheet Display with Back Gate to Increase Static Noise Margin
M. Takamiya, T. Sekitani, Y. Kato,

*H. Kawaguchi, T. Someya, and T. Sakurai

University of Tokyo *Kobe University

Outline

- Large Area Electronics Using Organic FETs
-Braille Sheet Display (BSD)
\checkmark Key Circuit Technologies for BSD
(1) 5-transistor SRAM Cells and Pipelining for Write-Operation
(2) Control of SRAM Static Noise Margin with A Back Gate
(3) Overdrive Techniques for Driver Transistors
-Summary

Organic FETs (OFETs)

	OFETs	Si MOSFETs
Design rule	$50 \mu \mathrm{~m}$	90 nm
Hardness	Flexible (a)	Solid
Drive current	$25 \mathrm{nA} / \mu \mathrm{m} @ 40 \mathrm{~V}$	$1 \mathrm{~mA} / \mu \mathrm{m} @ 1 \mathrm{~V}$
Gate delay	0.3 ms	10 ps
Cost / area	Low (b)	High
Cost / transistor	High	Low
Lifetime	Days	Years

What is the application of OFETs that utilizes (a) and (b)?

Large Area Electronics

Functional units are distributed on a square, 10 cm 10 m on a side.

Pressure sensors + OFETs Photodetectors + OFETs

Scanner (ISSCC2005)

Actuators + OFETs
Braille display

Outline

- Large Area Electronics Using Organic FETs
\rightarrow Braille Sheet Display (BSD)
\checkmark Key Circuit Technologies for BSD
(1) 5-transistor SRAM Cells and Pipelining for Write-Operation
(2) Control of SRAM Static Noise Margin with A Back Gate
(3) Overdrive Techniques for Driver Transistors

Summary

Plastic Actuators

Real-time movie

Down

- The displacement of the actuators to read Braille is 0.2 mm .

Developed Braille Sheet Display

- 6×4 Braille characters
- Each Braille character consists of 2×3 dots, and the display has a total of 144 dots.
- Thickness: 1 mm

Device Structures

Why SRAM?

12×12 Braille dots array

w/o SRAM

T1: Time to change 144 Braille dots
 actuators
$\mathrm{T} 1=34 \mathrm{~s} \times 144=4896 \mathrm{~s}$

1/122

First, SRAM writiting.
Then, simultaneous
drive of all actuators. \downarrow
$\mathrm{T} 1=5.76 \mathrm{~s}+34 \mathrm{~s}=40 \mathrm{~s}$

Outline

- Large Area Electronics Using Organic FETs

- Braille Sheet Display (BSD)

- Key Circuit Technologies for BSD
(1) 5-transistor SRAM Cells and Pipelining for Write-Operation
(2) Control of SRAM Static Noise Margin with A Back Gate
(3) Overdrive Techniques for Driver Transistors

Unit Circuit for An Actuator

5-Tr SRAM Cell

Back Gate

$50-\mu \mathrm{m}$ design rule

\bullet Compared with the conventional 6-Tr SRAM cell, 5-Tr SRAM cell reduces the cell area by 20%.

Issue of 5-Tr SRAM Cell

- Slow write-operation was measured, when $B L$ is high.

Pipelining for Write-Operation

\bullet Design target for the write-time of the whole SRAM (= 144 cells) is within 2 s .

- The slow transition time can be hidden by pipelining the write-operation.

Outline

Large Area Electronics Using Organic FETs

- Braille Sheet Display (BSD)

\checkmark Key Circuit Technologies for BSD
(1) 5-transistor SRAM Cells and Pipelining for Write-Operation
(2) Control of SRAM Static Noise Margin with A Back Gate
(3) Overdrive Techniques for Driver Transistors

PMOS OFET with Back Gate

- The V_{TH} control technology using a back gate compensates for the immature V_{TH} control process technology and achieves a reliable SRAM operation.

Butterfly Curves of SRAM

Static Noise Margin (SNM) of SRAM

- When $V_{D D}$ is 40 V , SNM increases as $V_{\text {BGATE }}$ increases.
- When V_{DD} is 30 V and 20 V , an optimum $\mathrm{V}_{\text {BGATE }}$ achieves the maximum SNM, because there is an optimum $\left|\mathrm{V}_{\mathrm{TH}}\right|$ of OFETs.

Chemical Degradation of OFETs

- OFETs are chemically degraded by the oxygen and the moisture in the atmosphere.
- The most serious problem with OFETs

Aging of Inverter in SRAM

Compensation for Aging

Aging of SNM and Compensation

- A constant SNM can be achieved with the back gate.
- The proposed compensation technology is essential to OFET applications.
- Manufacturing variation can also be compensated.

Time after fabrication (day)

Outline

- Large Area Electronics Using Organic FETs

- Braille Sheet Display (BSD)

- Key Circuit Technologies for BSD
(1) 5-transistor SRAM Cells and Pipelining for Write-Operation
(2) Control of SRAM Static Noise Margin with A Back Gate
(3) Overdrive Techniques for Driver Transistors
- Summary

Overdrive Techniques for Driver

Operation of Braille Sheet Display

Summary of Speeding Up Braille Sheet Display

Time to change 144 Braille dots

- Developed circuit technologies increased the speed of the Braille sheet display 1580 times, and achieved the practical 3.1-ns operation.

Summary

OFETs were integrated with actuators, and a Braille sheet display was demonstrated.

- Pipelining the write-operation reduced the SRAM writetime by 74\%.
- Threshold voltage control technology using a back gate increased the SNM of SRAM from 2.5 V to 5.9 V and successfully compensated for the chemical degradation of the OFETs after 15 days.
- The overdrive techniques for the driver OFETs reduced the transition time of the actuator from 34 s to 2 s .
- These developed circuit technologies will be essential for the future large area electronics made with OFETs.

