An Organic FET SRAM for Braille Sheet Display with Back Gate to Increase Static Noise Margin

<u>M. Takamiya</u>, T. Sekitani, Y. Kato, *H. Kawaguchi, T. Someya, and T. Sakurai

> University of Tokyo *Kobe University

Outline

- Large Area Electronics Using Organic FETs
- Braille Sheet Display (BSD)
- Key Circuit Technologies for BSD
 - (1) 5-transistor SRAM Cells and Pipelining for Write-Operation
 - (2) Control of SRAM Static Noise Margin with A Back Gate

(3) Overdrive Techniques for Driver Transistors

Organic FETs (OFETs)

	OFETs	Si MOSFETs
Design rule	50 μm	90 nm
Hardness	Flexible (a)	Solid
Drive current	25 nA / μm @ 40 V	1 mA / μm @ 1 V
Gate delay	0.3 ms	10 ps
Cost / area	Low (b)	High
Cost / transistor	High	Low
Lifetime	Days	Years

➡

What is the application of OFETs that utilizes (a) and (b)?

Large Area Electronics

 Functional units are distributed on a square, 10 cm – 10 m on a side.

Pressure sensors + OFETs Photodetectors + OFETs

Artificial skin (ISSCC2004)

Scanner (ISSCC2005)

This work

Actuators + OFETs Braille display

Outline

Large Area Electronics Using Organic FETs

- Braille Sheet Display (BSD)
- Key Circuit Technologies for BSD
 - (1) 5-transistor SRAM Cells and Pipelining for Write-Operation
 - (2) Control of SRAM Static Noise Margin with A Back Gate

(3) Overdrive Techniques for Driver Transistors

Summary

Plastic Actuators

Developed Braille Sheet Display

6 x 4 Braille characters

Each Braille character consists of 2 x 3 dots, and the display has a total of 144 dots.

Device Structures

Why SRAM?

Outline

Large Area Electronics Using Organic FETs

Braille Sheet Display (BSD)

Key Circuit Technologies for BSD

(1) 5-transistor SRAM Cells and Pipelining for Write-Operation

(2) Control of SRAM Static Noise Margin with A Back Gate

(3) Overdrive Techniques for Driver Transistors

Summary

Unit Circuit for An Actuator

5-Tr SRAM Cell

Compared with the conventional 6-Tr SRAM cell, 5-Tr SRAM cell reduces the cell area by 20%.

Issue of 5-Tr SRAM Cell

Pipelining for Write-Operation

Design target for the write-time of the whole SRAM (= 144 cells) is within 2 s.

The slow transition time can be hidden by pipelining the write-operation.

Outline

Large Area Electronics Using Organic FETs

Braille Sheet Display (BSD)

Key Circuit Technologies for BSD

(1) 5-transistor SRAM Cells and Pipelining for Write-Operation

(2) Control of SRAM Static Noise Margin with A Back Gate

(3) Overdrive Techniques for Driver Transistors

Summary

PMOS OFET with Back Gate

The V_{TH} control technology using a back gate compensates for the immature V_{TH} control process technology and achieves a reliable SRAM operation.

Butterfly Curves of SRAM

Static Noise Margin (SNM) of SRAM

Chemical Degradation of OFETs

• OFETs are chemically degraded by the oxygen and the moisture in the atmosphere.

The most serious problem with OFETs

Aging of Inverter in SRAM

Compensation for Aging

Aging of SNM and Compensation

• A constant SNM can be achieved with the back gate.

The proposed compensation technology is essential to OFET applications.

 Manufacturing variation can also be compensated.

Outline

Large Area Electronics Using Organic FETs

Braille Sheet Display (BSD)

Summary

Key Circuit Technologies for BSD

- (1) 5-transistor SRAM Cells and Pipelining for Write-Operation
- (2) Control of SRAM Static Noise Margin with A Back Gate

(3) Overdrive Techniques for Driver Transistors

Overdrive Techniques for Driver

Operation of Braille Sheet Display

Summary of Speeding Up Braille Sheet Display

Developed circuit technologies increased the speed of the Braille sheet display 1580 times, and achieved the practical 3.1-ns operation.

Summary

- OFETs were integrated with actuators, and a Braille sheet display was demonstrated.
- Pipelining the write-operation reduced the SRAM writetime by 74%.
- Threshold voltage control technology using a back gate increased the SNM of SRAM from 2.5 V to 5.9 V and successfully compensated for the chemical degradation of the OFETs after 15 days.
- The overdrive techniques for the driver OFETs reduced the transition time of the actuator from 34 s to 2 s.
- These developed circuit technologies will be essential for the future large area electronics made with OFETs.