
Experimental Evaluation of Cooperative Voltage Scaling (CVS): A Case Study
Hiroshi Kawaguchi, Youngsoo Shin, and Takayasu Sakurai

Center for Collaborative Research, University of Tokyo
4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, JAPAN

Abstract

Power-efficient design of real-time embedded systems
becomes more important as the system functionality is
increasingly realized through software. This paper
presents a dynamic power management method called
cooperative voltage scaling (CVS) and its experimental
implementation. The implementation includes design of
an operating system, applications, and a supporting
hardware platform. We study several factors that are
important in implementing CVS and discuss efficiency
of CVS through experiment.

1. Introduction

Design of modern digital systems is a painstaking
process due to various interrelated constraints involving
high speed and low power. An increasing amount of
system functionality tends to be realized through
software there, which is leveraged by high performance
processors. Re-programmable processors are frequently
used in the systems in the form of off-the-shelf devices
or cores. Consequently, power-conscious design of
software components including an operating system
(OS) and applications is important for high power
efficiency.

Cooperative voltage scaling (CVS) is a dynamic power
management method, which encompasses interaction
between an OS and an application to reduce power
consumed by a processor [1]. The OS is modified so
that it maintains and provides timing information to the
application. The application is also modified so that it
consists of a sequence of slices and some additional
code fragments are inserted at the head of each slice,
which determine clock frequency (f) and supply voltage
(VDD) of the processor based on the timing information
provided by the OS. The rationale of CVS lies in the
fact that only the OS knows global information such as
dynamic task interaction while each application has
better knowledge about its own behavior.

In this paper, we address an experimental
implementation of CVS to evaluate feasibility of model,
implementation pitfalls, and efficiency. The
implementation consists of three components: design of
an power-conscious OS based on the Hitachi HI7750
industrial real-time OS (RTOS), design of an
application following the concept of application slicing,
and design of an hardware platform based on the
Hitachi SH-4 microprocessor [2]-[3]. The designed

system is evaluated by using an example of a task set
and the power is reduced to less than 25% compared to
the original system.

The remainder of this paper is organized as follows. In
the next section, we briefly explain the concept of CVS.
In Section 3, implementation details are presented and
in Section 4, we discuss experimental results to evaluate
CVS. Finally, conclusions with future research direction
follows in Section 5.

2. Cooperative Voltage Scaling

As shown in Fig. 1, software architecture of CVS
consists of an OS and applications. The applications are
designed according to the concept of application slicing
that will be shortly explained later on and the power-
conscious version of the HI7750 is used. In the model
of CVS, a set of applications consists of real-time tasks
with its period (the minimum inter-arrival time between
successive requests in case of sporadic tasks), deadline,
and worst-case execution time (WCET). The real-time
tasks are scheduled according to the fixed-priority
preemptive scheduling algorithm even though other
scheduling algorithms can be used.

OS

ApplicationApplicationApplication

Processor

Determine
ƒ & VDD

Timing
information

System calls Scheduler

ƒ & VDD
information

VDD supply
board

VDD
information

VDD

Fig. 1. Structural model of CVS.

The main function of the OS is to predict exact interval
during which there is no activity on a processor, to
provide virtual deadline to each task so that deadlines
of all tasks are always guaranteed, and to put a
processor into a sleep mode for idle time. This can be
done based on status of queues1.

1 There are two queues: a READY queue and a DORMANT
queue. The READY queue holds tasks in order of priority,
which are waiting to run. The DORMANT queue holds tasks
in ascending numerical order of the time at which their
initiation is due, which have already run in their periods and
are waiting for their next periods to initiate again. If a task
currently occupies a processor, it is called a RUN task. It
should be noted that the RUN task is still in the READY
queue even though it is in the RUN state.

For instance, first, if a RUN task (say task A) is the only
task in a READY queue, we set virtual deadline of A to
earlier time between deadline of A and initiation time of
the task at the head of a DORMANT queue. Second, if
there are more than one tasks in the READY queue, A
completes its execution within its WCET. It is notable
that there is still possibility to decrease f and VDD

because some slices might complete their execution
earlier than their WCET and thereby, time margin to the
subsequent slices might be provided. Third, if all tasks
are in the DORMANT queue, we put the processor into
a sleep mode.

The application-slicing algorithm to adaptively change f
and VDD according to workload of a processor is also of
importance. In case of multimedia applications, since
the workload depends strongly on data and execution
time of the tasks frequently deviates from its WCET
sometimes by a large amount, the control should be
dynamic in run-time and should not be static in
compile-time [4]. It is too late to notice that past task
was an easy task that could be done much less than its
WCET because once the task has completed, there is no
way to change f and VDD to lower the power. On the
other hand, it is impossible to predict workload of tasks
to be done in future without error. In order to solve this
problem, the following algorithm as shown in Fig. 2 is
used.

A task is assumed to be chopped into N slices, which
potentially have different length one another. By
checking the current time and time margin to execute
the next slice, the optimum f is adaptively selected.

1. The following parameters are obtained by static
analysis of an application or direct measurement [5].

• TWCET: WCET of a task.

• TWi: WCET of the i-th slice.

• TRi: WCET from the (i + 1)-th to the N-th slice.

2. At the i-th slice, the target execution time (TTARi) is
calculated as TTARi = TVd – TRi – Ttr where Ttr is the sum
of additional code fragment to determine appropriate f
and VDD and their transition time. Besides, calculation
time of the code fragment is negligible because the
calculation is easy. TVd is the time between the current
time and virtual deadline, which is a dynamic variable
and obtained from an OS via system call. Usually, TVd

means starting point of the next task. The detail of the
virtual deadline will be explained in the next section. It
should be noted that TVd might change due to
preemptive scheduling.

3. For each candidate fj = fmax / j (j = 1, 2, 3…), the
estimated maximum execution time is calculated as TLi,fj

= Ttr + Twi x j. If fj is equal to one at the (i – 1)-th slice,
TLi,fj = Twi x j.

4. f at the i-th slice (fVARi) is selected as the minimum fj

whose TLi,fj does not exceed TTARi.

Thus, f and VDD are dynamically controlled on a slice-
by-slice basis in each task by software. The relationship
between f and VDD is obtained by measurements.

TL3,f3=TW3x3+Ttr

...

3

1 2 3 N4

TR3

TR1
TR2

TR4

TWCET = TR0

1 2
TTAR3

ƒVAR3: ƒ1=ƒmax

Ttr

ƒVAR3: ƒ2=ƒmax/2

ƒVAR3: ƒ3=ƒmax/3

ƒVAR3: ƒ4=ƒmax/4

Ttr

Ttr

TL3,f4=TW3x4+Ttr

In case ƒ1==ƒVAR2

TWi

TACC3

TL3,f2=TW3x2+Ttr
TL3,f1=TW3x1

TVd

Current
time

Virtual
deadline

TR3

Ttr

Fig. 2. Application slicing method to determine f. fmax

means that the maximum f of a processor.

3. Implementation of CVS

3.1 Hardware platform

Fig. 3 shows a snapshot of the CVS experimental
system and the SH-4 embedded system board. Fig. 4
corresponds to a block diagram of the system board.
The processor has a clock frequency control register
called FRQCR. f that is synchronized with the external
clock of 33MHz can be instantaneously changed by
accessing FRQCR. Since we use f of 200MHz and
100MHz that are divisible by the external clock, there is
no synchronization problem with external devices at
interface of the processor.

Altera EPM7064

Swing amp.

Power sw.

VDD to
SH-4

(B)

(A)

Fig. 3. (A) System. (B) SH-4 embedded system board.

VDD is selected out of 2.0V or 1.2V by power switches
located at a VDD supply board. The measured falling

and rising time for VDD transition are less than 200µs
and 100µs respectively. In order to avoid malfunction,
the processor keeps in a sleep mode during the VDD

transition. This is carried out by using one of three
timers in the processor. Before the VDD transition, the
timer is set to expire at the end of the VDD transition and
then, the processor is brought to the sleep mode. The
timer wakes up the processor by an interrupt when the
preset time comes.

(16MB)

2.0V

1.2V

Altera
EPM7064

SH-4 embedded
System board
SolutionEngine

SH-4

FRQCR

E
xt

en
si

o
n

I/O
b

u
s

SH-4 I/O bus

Bus
buffers

Local I/O bus

Sync.

DRAM

EPROM
(boot)

Flash ROM

VDD supply board
VDD

RGB out

Freq. control
register

PC

SCI
(RS-232C)

-8V
8V

-8V

8V

Power
switchesSwing amp.

Controller
& timers

Bus
buffers

Q2-SD

Video
RAM

Video
board

Fig. 4. Block diagram of system board.

vsys_clk()
fail

vsys_clk()
issue

vsys_clk()
issue

2

Sleep

vsys_clk()
issue

1 43

Lag

vsys_clk()
issue

vsys_clk()
issue

vsys_clk()
issue

2

vsys_clk()
issue

1 53 4

Sleep

Sleep Sleep

Hardware
clock

System
time

System
time

VDD

VDD

(A) NG

(B) OK

Ttr01 Ttr10 Ttr10

Ttr01

Ttr01 Ttr10

Fig. 5. (A)System clock goes wrong if VDD is changed
at will. (B) VDD must be changed just after an timer
interrupt service routine (vsys_clk()) has ended.

Since the absolute time called system clock is
maintained by the OS whose accuracy is dependent on
the time interval between successive interrupts from
another timer, care should be taken to change VDD.
Specifically, if the VDD transition is allowed without
limitation, some of timer interrupts might not be served.
If the processor is in a sleep mode due to the VDD

transition at the timer interrupts, the consistency of the
system clock might be destroyed. Thus, in CVS, the
number of the VDD transition is limited to the only one
time at every system clock just after the timer interrupt
service routine. This ensures the proper system time as
shown in Fig. 5.

It should be noted that in the first system clock just after
a task is dispatched to a processor, the task could not
change VDD at will since VDD in the first system clock
stays as it was in the previous system clock. This results
from the VDD transition mechanism and task state
transition described in the next subsection. The task can
change VDD from the next system clock. On the other
hand, f can be changed anytime unless VDD is 1.2V.

3.2 Software

In order to realize CVS, several modifications are made
in the conventional HI7750. First, extended task control
block (ETCB) is created to contain specific information
while task control block (TCB) contains the
conventional information such as priority, start address,
and so on. Second, several new system calls are created
to support CVS mainly for maintaining and providing
virtual deadline, f, and VDD. Third, scheduler in the OS
is customized to perform necessary action during task
state transition. These include managing timing
information in the ETCB, computing virtual deadline,
and putting the processor into a sleep mode.

3.2.1 ETCB

Each task is associated with the ETCB. Fig. 6 shows a
pseudo code of the ETCB.

structure ETCB{

Period; // Task initiation period

Tn; // Next initiation time

Tsta; // Time when dispatched

Texe; // Time executed already

Vd; // Virtual deadline

};

Fig. 6. Pseudo code of ETCB structure.

• Period; refers to interval in which a task is initiated
in principle. Period has fixed value and does not
changed unlike the other members

• Tn; refers to the relative time at which a task should
be initiated next time. Tn of any task in any state is
always decremented by one in every vsys_clk() except
for the case where Tn has become 0 (Tn timeout). In the
OS, a new queue called Tn queue is adopted to monitor
Tn timeout where all tasks are sorted in ascending
numerical order of Tn to easily find Tn timeout. If Tn
timeout happen in the DORMANT queue, the task is
initiated.

• Tsta; refers to system clock at which a RUN task is
dispatched. Tsta is valid only when the task is in the
RUN state.

• Texe; refers to accumulated time that has been
already executed. It should be noted that Texe is
incremented by the difference between system clock
and Tsta only when the task is preempted. Texe is reset
when the task is initiated.

• Vd; refers to virtual deadline of a RUN task. Vd is
valid only when the task is in RUN state. Vd becomes 0
if there are more than one tasks in the READY queue.
On the other hand, if the RUN task is the only in the
READY queue, the scheduler takes smaller Tn between
Tn of the RUN task and the smallest Tn in the
DORMANT queue as Vd of the RUN task. Fig. 7 shows
how to determine Vd. The smallest Tn of the tasks in the
DORMANT queue can be easily obtained because the
tasks are sorted in ascending numerical order of Tn as
well as the Tn queue. Incidentally, Vd is also renewed in
every vsys_clk() because Tn is renewed.

READY
(Executable)

RUN
(Execution)

Task B: Tn = x
Task C: Tn = x

Task D: Tn = 30
Task E: Tn = 40

DORMANT
(Inactive)

Task A: Tn = x
Task A: Vd = 0

(A)

READY
(Executable)

RUN
(Execution)

Task B: Tn = 20
Task C: Tn = 30
Task D: Tn = 40
Task E: Tn = 50

DORMANT
(Inactive)

Task A: Tn = 10
Task A: Vd = 10

(B)

READY
(Executable)

RUN
(Execution)

Task B: Tn = 10
Task C: Tn = 30
Task D: Tn = 40
Task E: Tn = 50

DORMANT
(Inactive)

Task A: Tn = 20
Task A: Vd = 10

(C)

Fig. 7. (A) There are more than one tasks in the
READY queue. Vd of the RUN task becomes 0
regardless of Tn of the tasks in the READY queue. If
the RUN task is the only in the READY queue, (B)
Tn of the RUN task become its own Vd in case where
Tn of the RUN task is smaller than the smallest Tn of
tasks in the DORMANT queue. (C) In the opposite
case, the smallest Tn of the tasks in the DORMANT
queue becomes Vd.

3.2.2 Global symbols

Some global symbols are prepared for the additional
system call.

• G_FRQ_NOW, G_FRQ_NEXT; refer to flags of f of
the present and the next system clock. HIGH (0) means
200MHz and LOW (1) means 100MHz.

• G_VDD_NOW, G_VDD_NEXT; refer to flags of
VDD of the present and the next system clock. HIGH
means 2.0V and LOW means 1.2V.

• G_READY_Q_COUNT; refers to the number of
tasks in the READY queue. This is used when Vd is
determined. If it is more than one, Vd becomes 0.

3.2.3 Additional system calls

There are several system calls to support CVS.

• get_sta_time(); returns Tsta of the RUN task as the
system clock at which the task has been dispatched.

• get_exe_time(task_id); returns Texe of the task
whose id is task_id as the accumulated time that has
been already executed before the last preemption.

• get_vd(); returns Vd of the RUN task as the virtual
deadline.

• get_frq(); returns G_FRQ_NOW as a flag of the
present f.

• get_vdd(); returns G_VDD_NOW as a flag of the
present VDD.

• set_frq(Frq); changes f instantaneously by the
FRQCR register and set Frq to G_FRQ_NOW if Frq is
greater than or equal to G_VDD_NOW. In case where
Frq is less than G_VDD_NOW, that is, only in case
where Frq is HIGH (0) and G_VDD_NOW is LOW (1),
f cannot be change to 200MHz because the processor
cannot run at 200MHz when VDD is 1.2V. set_frq(Frq)
can be described as shown in Fig. 8 in a pseudo code.

set_frq(Frq){

if(Frq >= G_VDD_NOW){

if(Frq == HIGH)

Make f 200MHz by FRQCR register;

else // if(Frq == LOW)

Make f 100MHz by FRQCR register;

G_FRQ_NOW = Frq;

}

}

Fig. 8. Pseudo code of set_frq(Frq). This is prepared
for flexible power management to decrease only f
without decreasing VDD.

• set_vdd(Frq); just sets Frq to G_FRQ_NEXT and
G_VDD_NEXT to change f and VDD from the next
system clock. This mechanism limits the number of the
VDD transition to the only one at every system clock.
set_vdd(Frq) can be described as shown in Fig. 9 in a
pseudo code.

set_vdd(Frq){

G_FRQ_NEXT = Frq;

G_VDD_NEXT = Frq;

}

Fig. 9. Pseudo code of set_vdd(Frq). Changing f and
VDD are actually carried out in the next vsys_clk().

3.2.4 Task states

Tasks are scheduled by the scheduler based on their
states as shown in Fig. 10.

READY
(Executable)

RUN
(Execution)

DORMANT
(Inactive)

Dispatch
(Processor allocation)

Tsta = system clock;
set_vdd(HIGH);

Preemption
(Waiting for processor allocation)

Texe += get_sta_time(); Exit
ext_tsk();

Initiation
(Tn timeout)
Tn = Period;

Texe = 0;

NON-EXISTENT
(Unregistered)

Creation
cre_tsk();
Tn = 0;

Tn queue

SLEEP

Fig. 10. In CVS, task states are only NON-
EXISTENT, DORMANT, READY and RUN. Task
transitions are creation, initiation, dispatch,
preemption and exit.

• Creation: A task is created in the DORMANT
queue by cre_tsk(). The task is then immediately
initiated and does not stay in the DORMANT queue
because Tn is reset.

• Initiation: In vsys_clk(), task initiation is made to
monitor Tn timeout. If Tn has become 0 in the
DORMANT queue, the task are initiated. Then, Period
is set to Tn and Texe is reset. sta_tsk() is not needed to
initiate tasks because tasks are initiated automatically
and instantaneously.

• Dispatch: In the READY queue, tasks are sorted in
order of priority. The task at the head of the READY
queue is dispatched to the processor if there is no RUN
task. When the task is dispatched, the system clock is
set to Tsta. In order to change f and VDD from the next
system clock, set_vdd(HIGH) is called. This is a kind of
safety systems keeps the task running at 200MHz to
guarantee the real-time feature even if the task is not
modified for the application slicing.

• Preemption: Texe is incremented by return value of
get_sta_time().

• Exit: Tasks are done by ext_tsk().

• Sleep: If there are no tasks to be executed, that is, all
tasks are in the DORMANT queue, set_vdd(LOW) is
called and then processor moves to the sleep mode. This
is because lower power can be achieved by decreasing f
and VDD for sleeping. The processor, however, wakes
up in every vsys_clk() to keep the system clock
counting and after vsys_clk(), return to the sleep mode
again.

3.2.5 vsys_clk()

In CVS, vsys_clk() plays a new role other than the
system clock counting. First, Tn and Vd are renewed
and Tn timeout is monitored. Then, in order to reflect
them, all queues are sorted. After vsys_clk(), the
scheduler dispatches the task at the head of the READY
queue to the processor.

In case where VDD is changed by accessing one of the
VDD switches, there are two conditions, that is, order of
changing f and VDD is different. We decrease f and then
VDD in the decreasing case while we increase VDD and
then f in the increasing case. The processor sleeps
masking any other interrupts than the VDD transition
timer to eliminate malfunction due to the VDD transition
during Ttr01 or Ttr10, which is the falling or rising VDD

transition time as shown in Fig. 11. This means that the
interrupt level of the VDD transition timer must be the
higher than the other interrupt level. vsys_clk() can be
described as shown in Fig. 12 in a pseudo code.

ƒ: G_FRQ_NOW

VDD: G_VDD_NOW

Ttr01 Ttr10

LOW: 1
HIGH: 0

HIGH: 0
LOW: 1

Hardware clock: vsys_clk()

Fig. 11. Order of changing f and VDD is different in
case of decreasing or increasing them.

vsys_clk(){

Renew system clock, Tn, and Vd

Sort DORMANT, READY and Tn queues; //Reflect them

/* Change only f */

if(G_VDD_NOW == G_VDD_NEXT)

set_frq(G_FRQ_NEXT);

else{

/* Decrease f and then VDD */

if(G_VDD_NOW < G_VDD_NEXT){

/* First, decrease f */

set_frq(G_FRQ_NEXT);

/* Then, decrease VDD */

Set Ttr01 to VDD transition timer;

set_imask(level of VDD transition timer –1); // Activate
timer

*VDD_SW_ADDRESS = G_VDD_NEXT;

Sleep;

}

/* Increase VDD and then f */

else{ // if(G_VDD_NOW > G_VDD_NEXT)

/* First, increase VDD */

Set Ttr10 to VDD transition timer;

set_imask(level of VDD transition timer –1); // Activate
timer

*VDD_SW_ADDRESS = G_VDD_NEXT;

sleep;

/* Then, increase f */

set_frq(G_FRQ_NEXT);

}

G_VDD_NOW = G_VDD_NEXT;

set_imask(0); // Unmask all interrupts

}

}

Fig. 12. Pseudo code of vsys_clk(). set_imask() masks
interrupts. VDD is changed by accessing
VDD_SW_ADDRESS.

4. Experimental Results

In order to demonstrate the feasibility of CVS, we
construct a task set that consists of MPEG4 codec and
4096-points fast Fourier transform (FFT). Table 1
summarizes an example of the task set and Table 2
shows characteristics of each slice in the applications.
The applications are sliced in the number of the
function blocks and loops to be easily able to add code
fragments. The period of MPEG4 is set to 114ms to
guarantee feasibility of CVS. In the OS, MPEG4 has
higher priority.

Fig. 13 shows measured waveforms of VDD and sleep
signal of the processor from time 0 up to the lowest
common multiple (LCM) of both periods that is equal to
342ms. In the figure, since four falling and four rising
VDD transitions are observed, the overhead is less than
1.2ms.

It should be noted that 2.0V is used only during 10.5%
of the time on average that gives the average workload
of 37.5% (10.5% x 1 + 54% x 0.5 + 35.5% x 0).

TABLE 1. Example of task set.

MPEG4 FFT

Period 114ms 171ms

Deadline 114ms 171ms

WCET 79ms 35ms

slices 22 2

TABLE 2. Characteristics of slices.

Applications # slices WCET Function

1 1ms Initialization

20 64ms Macroblock calculationMPEG4

1 14ms Display

1 2ms Bit-reversal
FFT

1 33ms Danielson-Lanczos

2.0V

1.2V

GND
Sleep signal Sleep

VDD

MPEG4 MPEG4 MPEG4

FFT FFT

MPEG4

High VDD=10.5% on average

Sleep=35.5% on average

Fig. 13. Measured waveforms of VDD and sleep signal
of processor.

The behavior of the measured waveform in Fig. 13 can
be explained as follows with the help of Fig. 14. At time
0, MPEG4 is dispatched. Vd is set to 0 because FFT is
also in the READY queue, which means that MPEG4
should complete its execution within its WCET of 79ms.
With low workload for most of slices, MPEG4
completes it at 20ms. At 20ms, FFT occupies the
processor while MPEG4 exits to the DORMANT state.
Vd is set to 114ms that is equal to the next initiation
time of MPEG4. Thus, 84ms is allowed to execute FFT
of 35ms in the worst case, which means that both slices
of FFT can be executed at 1.2V. Upon completion of
FFT, the processor goes to the sleep mode until 113ms.
At 114ms, MPEG4 is dispatched again with Vd of
171ms, which is the next initiation time of FFT. Since
the time interval allowed for the execution of MPEG4
(57ms = 171ms – 114ms) is less than its WCET, the
advantage of the virtual deadline can not be exploited.
The first slice starts its execution at 2.0V and the last
slice completes its execution at time 188ms. Since the
data for this instance of MPEG4 is close to the worst

case, most slices work at 2.0V. The remaining instance
of each application can be understood similarly.

1

78 113

MPEG4

FFT

17034

640

20 slices

22 slices

2 slices

78

113

192

227

341

(A) MPEG4

(B) FFT

(C) MPEG4

(D) FFT

(E) MPEG4

20

56

188

216

252

0

20

114

188

228

Sleep

Sleep

Sleep

Sleep

S

S Sleep

171

Fig. 14. Example of schedule for MPEG4 and FFT
with CVS.

Fig. 15 shows the comparison of the power between
CVS and the conventional RMS. In RMS, the processor
is assumed to execute NOP when it is not occupied by
any task. The processor is measured to consume 0.20W
with CVS. Unfortunately, in CVS, I/O buffers of the
processor do not work below 1.2V. If the I/O buffers
were designed carefully, operation below 0.9V could be
achieved instead of 1.2V. In that case, the power would
become 0.16W and could be reduce to less than 25% of
RMS.

Conventional
RMS

CVS
(measured)

0

0.5

1

P
o

w
er

[W
]

Sleep
100MHz
“NOP”

200MHz
0.66

0.20

Fig. 15. Comparison of power. The processor
consumes 0.8W at 200MHz and 2.0V, 0.16W at
100MHz and 1.2V, and 0.07W in the sleep mode.

Power saving with CVS depends on combination of task
periods, which in turn determines how much we can
benefit from virtual deadline. It is also dependent on
extent of execution time variation. Considering the fact
that multimedia applications frequently have many
variations due to data-dependent execution and over-
estimation of WCET, we can expect significant saving
with CVS.

5. Conclusions and Future Work

In this paper, we introduce a cooperative power-
optimization method involving design of power

conscious OS and development of applications with the
concept of application slicing and supporting hardware.
CVS obtains power reduction for a processor by
exploiting slack times arising from variation of
execution time of task instances. We present a run-time
mechanism to use the slack times efficiently for the
power reduction. The mechanism supports a sleep mode
and can change f and VDD dynamically. The
experimental results show that CVS obtains significant
power reduction across multi-task environment.

As future work, we are studying how to slice
multimedia applications for the maximum effect. In
addition, influence of unexpected interrupt from a
keyboard or Ethernet device in CVS is considered
important.

ACKNOWLEDGMENT

The authors would like to thank Dr. K. Sasaki and Dr.
K. Ishibashi of Hitachi for fruitful discussion and Mr. H.
Yamaki of Hitachi Yonezawa Electronics for the
HI7750 modification and helpful advice. This work was
supported by Grants from Hitachi and the Japan Society
for the Promotion of Science.

REFERENCES
[1] Y. Shin, H. Kawaguchi, and T. Sakurai, “Cooperative

Voltage Scaling (CVS) between OS and Applications for
Low-Power Real-Time Systems,” Proceedings of IEEE
Custom Integrated Circuits Conference, pp. 553-556,
2001.

[2] Tron Project Official Home Page, http://www.tron.org.
[3] Hitachi Semiconductor and Integrated Circuits Web Site:

http://www.hitachi.co.jp/Sicd/English/Products/micome.
htm.

[4] Y. Shin, and K. Choi, “Power Conscious Fixed Priority
Scheduling for Hard Real-Time Systems,” Proceedings
of Design Automation Conference, pp. 134-139, 1999.

[5] S. Lim, Y. Bae, G. Jang, B. Rhee, S. Min, C. Park, H.
Shin, K. Park, and C. Kim, “An Accurate Worst Case
Timing Analysis for RISC Processors,” Proceedings of
IEEE Real-Time Systems Symposium, pp. 97-108, 1994.

