
Impact of Aggregation Efficiency on GIT Routing for Wireless Sensor Networks

Takafumi Aonishi, Takashi Matsuda
Graduate School of Science and Technology, Kobe University

1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, JAPAN
tkfm@cs28.cs.kobe-u.ac.jp

Shinji Mikami
Graduate School of Natural Science and Technology, Kanazawa University

Kakuma, Kanazawa, Ishikawa 920-1192, JAPAN

Hiroshi Kawaguchi, Chikara Ohta, Masahiko Yoshimoto
Faculty of Engineering, Kobe University

1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, JAPAN

Abstract

In most research work for sensor network routings, per-
fect aggregation has been assumed. Such an assumption
might limit the application of the wireless sensor networks.
We address the impact of aggregation efficiency on energy
consumption in the context of GIT routing. Our questions
are how the most efficient aggregation point changes ac-
cording to aggregation efficiency and the extent to which
energy consumption can decrease compared to the origi-
nal GIT routing and opportunistic routing. To answer these
questions, we analyze a two-source model, which yields re-
sults that lend insight into the impact of aggregation ef-
ficiency. Based on analytical results, we propose an im-
proved GIT: “aggregation efficiency-aware GIT”, or AGIT.
We also consider a suppression scheme for exploratory mes-
sages: “hop exploratory.” Our simulation results show that
the AGIT routing saves the energy consumption of the data
transmission compared to the original GIT routing and op-
portunistic routing.

1 Introduction

Sensor networks are expected to operate under severe en-

ergy constraints because it is not practical to replace their

batteries because of the large number of sensor nodes. A

salient issue is reduction of the amount of transmitted data

because wireless communications at sensor nodes consume

more power than any other activity[8, 9, 10, 11, 12].

Data centric routing is a promising paradigm for sen-

sor network routing[10]. With data centric routing, rout-

ing decisions are based on the contents of the payloads of

packets rather than their destination addresses. A sensor

node might aggregate receiving packets that are temporally

buffered, generate a new packet, and then send it to the next

hop. Such a means of operation is expected to reduce the

amount of transmitted data, engendering remarkable power

savings. An example of data centric routing is directed dif-

fusion (DD)[7].

In most studies, perfect aggregation has been assumed

(e.g. [3, 5, 8, 9]). In this case, the most efficient data

paths from sources to a sink form a Steiner tree and/or min-

imal spanning tree. This fact encourages research of heuris-

tic distributed algorithms such as Greedy Incremental Tree

(GIT)[8] and the Nearest Neighbor Tree (NNT)[9]. How-

ever, perfect aggregation is not universal and possibly limits

applications of sensor networks, as mentioned above. Un-

fortunately, we do not have sufficient insight into the influ-

ence of the diversity of the aggregation to sensor network

routings.

In this work, we address the impact of aggregation ef-

ficiency on the energy consumption in the context of the

GIT routing[8]. The original GIT routing is a heuristic al-

gorithm to find a Steiner tree on a hop-count basis. Our

questions are how the most efficient incremental aggrega-

tion point changes according to aggregation efficiency and

how much energy consumption can decrease compared to

the original GIT routing. We analyze a simple two-source

model to answer these fundamental questions. Based on

results of our analysis, We improve the GIT routing algo-

rithm to find a more efficient aggregation point according to

aggregation efficiency. In this paper, we call the improved

GIT “aggregation efficiency-aware GIT (AGIT).”

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

This paper is organized as follows: Section 2 describes

the original GIT algorithm. In Section 3, we analyze a sim-

ple two-source model to investigate the impact of the effi-

ciency of aggregation on energy consumption. In Section

4, we propose AGIT routing. Section 5 shows some sim-

ulation results. Finally, we present conclusions in Section

6.

2 Greedy Incremental Tree

2.1 Directed Diffusion

GIT routing is based on directed diffusion (DD), which is

a typical data-centric routings for sensor networks. Before

describing GIT routing, we briefly explain DD.

In DD, a task described as a list of attribute-value pairs

is flooded into a network as an interest. Through the inter-

est diffusion process, a sensor node receives the interest sets

(or updates) a gradient toward the neighbor which sends the

interest, and resends the interest to some subset of its neigh-

bors (or broadcast) if it is different from the previously re-

ceived one. A sensor node to take the task described in the

interest sends an exploratory message to each neighbor to

whom a gradient is set. Intermediate nodes relay the ex-

ploratory message toward the sink along gradients of the

interest to match the task of the exploratory message. Be-

cause the sink possibly receives multiple exploratory mes-

sages originating at a source from its neighbors, it reinforces

a preferable path by sending reinforcing messages to partic-

ular ones among the neighbors from which it received an

exploratory message. Intermediate nodes receiving this re-

inforcing message treat it similarly, so that it is relayed in

the reverse direction on the path. As a result, a data path

is established from the source to the sink. Refer to [7] for

more detail on DD.

2.2 Finding of Aggregation Point in GIT
routing

In fact, GIT routing is a heuristic distributed algorithm

to construct a Steiner tree on a hop-count basis. Also, GIT

routing assumes perfect aggregation. Each source, one by

one, tries to find the shortest hop from itself to the existing

path tree or the sink.

To realize this process, each exploratory message in GIT

routing involves an additional attribute E, which denotes

the additional cost (hop-count) from the source originating

itself to the current node. The value of E is set to zero

initially. Whenever resending an exploratory message, the

nodes increment the value of E by one. The exploratory

message is distributed through the network according to the

gradient of the corresponding interest; it will arrive at nodes

on the existing path tree. Consequently, the nodes on the

(a) An incremental cost message

(b) Reinforcement

Source2

E = 1

Sink

E = 0

E = 3 E = 2

E = 2

E = 3 E = 3

E = 1 E = 3

E = 3

E = 4
Source1

Source2

Sink

Source1

C = E =3

(Initialization)

C = 2
C = 2

C = 2

 Aggregation point

 (Minimum cost in GIT)

: Data path

 Incremental

 cost message
:

 Reinforcement

 Message
:

E = 2

Figure 1. An example of path establishment
in GIT routing

existing path tree can know the hop-count from the source

that initiated the exploratory message.

Each source involved in the existing path tree initiates an

incremental cost message whenever it receives a previously

unseen exploratory message that was initiated by other

sources. The incremental cost message conveys two addi-

tional attributes: the random identifier of its corresponding

exploratory message and the cost (hop-count) from the ad-

ditional source (which initiated the exploratory message) to

the existing path. The incremental cost message is relayed

on the existing path from its originating source to the sink.

The intermediate nodes update if the value of C in the incre-

mental cost message is greater than or equal to the cached

value of E.

The sink waits directly and late-arriving exploratory

messages and other incremental cost messages for the pre-

defined interval immediately after the arrival of the first in-

cremental cost message. Then, the sink reinforces a neigh-

bor, which sends an exploratory message or an incremental

cost message with a lower additional energy cost C or E,

respectively. In the case where an incremental cost mes-

sage has the lowest additional energy cost C, the reinforc-

ing message containing the value of C travels toward to the

initiator of the incremental cost message on the existing es-

tablished path until it encounters an intermediate node with

E = C. This intermediate node becomes the aggregation

point for the additional source that initiated the exploratory

message. Then, the reinforcing message is diverted to the

additional source.

As a result of the procedure described above, the low-

est cost (minimal hop-count) branch is added to the existing

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

path tree. Refer to [8] for more details regarding GIT rout-

ing.

2.3 Discussion

In the case of perfect aggregation, the energy consump-

tion for data transmission on the newly added branch can be

regarded as the net increase of that on the entire data path.

This fact, however, is not always true in different aggrega-

tion schemes.

Let us consider the case where a packet has size

Lpacket = Lheader + Lpayload, where Lheader is the header

length and Lpayload is the payload length in bytes and N
packets are incoming and one packet is outgoing at an ag-

gregation point. In the case of the perfect aggregation,

the outgoing packet after aggregation has the same size

Lheader + Lpayload as an incoming packet. On the other

hand, in the case of linear aggregation, the outgoing packet

has larger size Lheader + N × Lpayload than that of per-

fect aggregation. Consequently, the linear aggregation con-

sumes more energy on the path from the aggregation point

to the sink than the perfect aggregation, thereby implying

that a node near to the sink on the path tree might be more

efficient as the aggregation point. But, how much energy

can be saved if we choose the aggregation point more care-

fully? We analyze a simple two-source model in the next

section to estimate the possible improvement.

3 Analysis of a Two-Source Model

This section shows the analysis for the simple two-

source model. We also have the result for the three-source

model, but we omit it because of space limitations.

3.1 Model Description

Figure 2 shows the two-source model that we analyze.

In this model, we assume that the nodes exist densely. In

this figure, however, we show only two sources – one sink

and one aggregation point – for simplicity. The aggregation

point is denoted as “p” in the figure. From the above as-

sumption, the hop-count between two nodes can be propor-

tional to Euclidean distance between them. In this model,

we assume that the distance between a source and the sink

is equal to one. We also assume that the energy consump-

tion to transfer a data packet per hop is proportional to the

packet size. Furthermore, we assume that the path between

the first source and the sink is an existing path and that the

second source is going to establish the path. Note that, in

the case of the original GIT routing, the second source will

have a perpendicular line as the additional path to the exist-

ing path.

Source1Sink
p

1 y

x 1-x

Source2

Figure 2. Two-source model.

Here we introduce the following notations: Let x and y
respectively denote the distances between the aggregation

point and the sink and the distance between source 2 to the

aggregation point, (0 ≤ x ≤ 1). We denote by θ the angle

between source 1 to source 2, as seen from the sink (0◦ ≤
θ ≤ 90◦). Let r denote the aggregation ratio of the size of

the aggregated packet to the total size of the original packets

(1
2 ≤ r ≤ 1). In the case of the perfect aggregation, the

value r of the aggregation ratio is equal to 1
2 . Let E denote

the energy consumed to transfer the data packets from the

sources to the sink on the path tree.

3.2 Aggregation Point and Energy Con-
sumption

The above assumptions suggest the following relation-

ship:

E ∝ 2rx + (1 − x) + y, (1)

where

y =
√

x2 − 2x cos θ + 1. (2)

By performing some algebra for dE
dx = 0, we obtain

the value x′ to minimize the energy consumption for data

packet transmission on the path tree:

x′

=

{
0, cos θ+1

2 ≤ r < 1,

cos θ − sin θ
√

1
4r(1−r) − 1, 1

2 ≤ r < cos θ+1
2 .

(3)

By substituting x = x′ in (1), we have the scaled value

E′ of the energy consumption for data packet transmission

on the path tree in the case of the efficiency aggregation

point. We have the value EGIT expected for GIT routing,

as

EGIT ∝ 2r cos θ + (1 − cos θ) + sin θ. (4)

In the case of r = 0.5,

EGIT ∝ 1 + sin θ. (5)

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

0

0.2

0.4

0.6

0.8

1

 0.5 0.6 0.7 0.8 0.9 1

A
g
g
re

g
a
ti
o
n
 p

o
in

t,
 x

'

Aggregation ratio, r

15

45

75

Figure 3. Aggregation point in two-source
model.

0

1

2

3

4

5

 0.5 0.6 0.7 0.8 0.9 1

G
a
in

,G
 (

%
)

Aggregation ratio, r

15

45

75

Figure 4. Gain by aggregation point in a two-
source model.

Since the aggregation point becomes nearer to the sink,

the path tree will become similar to that of “opportunistic

routing”[8], where data from different sources can be op-

portunistically aggregated at intermediate nodes along the

established paths. In the case of x = 0, y = 1, we have the

value Eopp expected for opportunistic routing, as

Eopp ∝ 2. (6)

To evaluate how much the aggregation point saves en-

ergy compared to the original GIT routing and opportunistic

routing, we introduce the following metric, “gain”, G:

G(r, θ) =
min(EGIT, Eopp) − E′

min(EGIT, Eopp)
× 100. (7)

3.3 Numerical Results

Figure 3 shows how the aggregation point changes ac-

cording to the values of the aggregation ratio and the angle

between the first and second sources. Figure 4 shows how

much gain can be achieved.

From Fig. 3, we can see that the aggregation point

changes widely according to the value of r as the angle

becomes narrower. Furthermore, the aggregation point be-

comes nearer to the sink compared to the foot of perpendic-

ular from the additional source to the existing path in the

case of 1
2 < r.

Fig. 4 shows that the larger the aggregation ratio is

(in other words, the smaller aggregation efficiency is), the

larger the gain is obtained by choosing the optimal aggre-

gation point. This tendency becomes noticeable in the case

where the angle is around 45◦. Figure 4 shows that the value

of gain has a peak in the middle region of r, and the larger

the peak value is (up to 4.5% for 15◦), the smaller the angle

is. The value r to give the peak gain increases as the angle

decreases. That is, the AGIT routing is more effective in the

case where sources exist near and the aggregation efficiency

is not so high. The value of gain converges to zero toward

to the both ends. This is because the path tree becomes sim-

ilar to that of the GIT routing for r = 0.5 and that of the

opportunistic routing for r = 1.

Although we do not show the results of the three-source

model, more gain is obtained compared to the two-source

model.

4 Aggregation Efficiency-Aware GIT

In this section, we propose “aggregation efficiency-

aware GIT (AGIT)” routing in order to find a more efficient

aggregation point to reduce the energy consumption inher-

ent in transmitting data packets.

4.1 Suppression of Exploratory Messages

In the DD, which is the basis of GIT routing, exploratory

messages are distributed widely according to the nodes’

gradients because interests do not contain any information

about a sink. As a result, the gradients are set in many di-

rections. (See Section 2.2.2 in [7].)

To some extent, GIT-like routing necessarily distributes

exploratory messages in order to determine the aggrega-

tion point for the existing path tree. Results of our anal-

ysis showed, however, that the aggregation point becomes

nearer to the sink than the foot of the perpendicular from the

additional source to the existing path in the case of 1
2 < r.

In the AGIT routing, we consider the following scheme

to suppress the excessive exploratory messages: “hop ex-

ploratory.” In the following, we assume that each node

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

can know the hop-count from the sink through interest dis-

semination. Each node caches the hop-count from the sink

for each interest as “own hop.” To do so, we also assume

that each interest has a random identifier to be distinguished

from the others.

4.1.1 Hop Exploratory

Each exploratory message contains the additional field

‘previous hop” to store the value own hop of its sender’s.

In addition, each exploratory message also contains the field

“hop” to store the hop count from the source that initiated

the exploratory message. Whenever a source initiates the

exploratory message with both previous hop and hop set

to own hop.

When the node receives the exploratory message with

previous hop, it rebroadcasts the exploratory messages

with previous hop set to own hop and with hop decre-

mented by one if

own hop ≤ previous hop and hop > 0. (8)

Figure 6 shows the phenomenon of dissemination of the

exploratory messages, where an arrow denotes the direc-

tion in which an exploratory message is sent. From this

figure, we can see that this scheme prevents network-wide

diffusion compared to traditional scheme in Fig. 5, which

indicates the dissemination of exploratory messages using

original scheme described in [7].

4.2 Adjustment of the Incremental Cost
Message Phase

The above suppression scheme involves some adjust-

ments of the incremental cost message phase because the

source nodes on the existing path tree might not receive the

exploratory messages. Consequently, the incremental cost

message is issued in such a case.

We take the following approach to overcome this prob-

lem. The intermediate nodes aside from the sources on the

existing path tree can initiate the incremental cost message.

In order to suppress the multiple incremental cost message,

the more distant intermediate node from the sink issues the

incremental cost message earlier. To do so, each intermedi-

ate node sets up an incremental cost message timer as

ti = (max hop − own hop) × δ, (9)

where max hop and δ respectively denote the predefined

network diameter and the timer granularity. The intermedi-

ate node issues the exploratory message if its timer expires

before receiving another exploratory message; otherwise it

suspends the issue.

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50
(m)

 (
m

)

: Sink

: Source

Figure 5. Phenomenon of dissemination of
exploratory messages in the traditional ap-
proach.

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

: Sink

: Source

(m)

 (
m

)

Figure 6. Phenomenon of dissemination of
exploratory messages in the hop approach.

4.3 Finding of Aggregation Point in AGIT
routing

In the following, we assume that linear aggregation is

employed, whereby a packet has size Lpacket = Lheader +
Lpayload where Lheader is the header length and Lpayload is

the payload length in bytes. Furthermore, we assume that all

sources send the data packet at the same rate. The procedure

shown here can be extended easily to function in different

cases.

In the AGIT routing, the incremental cost message con-

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

tains an additional field to store the hop-count H from an

interim aggregation point. Whenever the source and/or the

intermediate nodes issue a new incremental cost message,

they set H = 1.

The intermediate nodes receiving the incremental cost

message execute the following:

if(E ≤ C + H · d) C = E, H = 1,
else H = H + 1,

(10)

where d = Lpayload/Lpacket. Recall that E denotes the

additional cost (hop-count) from the source joining to the

existing path tree to the current node.

In (10), C + H · d represents the net increase of power

consumption from the source nodes to the current node

when using the current interim aggregation point. If this

value is greater than or equal to the value of E, the current

node is more efficient than the interim aggregation point.

In such a case, the current node substitutes for the interim

aggregation point, so that it sets C = E and H = 1. Other-

wise, it increments the value of H by one.

Figure 7 shows the search procedure of the efficient ag-

gregation point. Here we assume that the packet length

is one and the payload length is 0.6. The first source re-

ceives the exploratory message from the second source, sets

C = E = 3 and H = 1 in it, and then forwards it the neigh-

bor node on the path from the first source and the sink. The

neighbor receiving it compares the value of E and the value

of C + H · d, where E = 3, C = 2, H = 1 and d = 0.6.

In this case, the node merely increments the value of H ,

and forwards the incremental cost message to its neighbor

to the sink. This manner is repeated until the incremental

cost message arrives at the sink.

The overhead of AGIT routing compared to the original

GIT routing merely comprises the hop-count field to store

H ; it can be negligible.

5 Simulation

In this section, we briefly explain our simulation condi-

tions; then we show some simulation results. The aim of

the simulation experiments is to confirm the effectiveness

of the AGIT routing in more complicated situations.

5.1 Model and Assumption

We implemented the original GIT routing, opportunistic

routing and the AGIT routing on a self-developed event-

driven simulator engine.

In this simulator, 500 sensor nodes are deployed ran-

domly in a 50 × 50 m2 field. The transmission range is

5 m. One sink is located at (45, 45) of the two-dimensional

coordinate. The number of sources is varied from two to

ten; they are arranged randomly in the field.

(a) An incremental cost message

(b) Reinforcement

Source2

E = 1

Sink

E = 0

E = 3 E = 2

E = 2

E = 3 E = 3

E = 1 E = 3

E = 3

E = 4
Source1

C =E= 3 C = 2
C = 2

C = 3
: Data path

 Incremental

 cost message
:

 Reinforcement

 Message
:

Source2

Sink

Source1

H = 1 H = 1
H = 2

H = 1

 Aggregation point

Source2

Source1

E(=3) < C+H*d(=2+2*0.6)

E = 2 C = 3(Updating minimum cost)

E = 2

(Initialization)

Figure 7. An Example of Path Establishment
in AGIT

The packet has a 36-byte header. The payload length is

varied as 4, 36, 108, and 216 bytes.

We implemented two schemes of the dissemination of

the exploratory messages: “traditional exploratory” and

“hop exploratory.”

We implemented the ideal media access control (MAC)

on our simulator, where no collisions occur.

Assuming the case by which the pass loss coefficient of

n = 2, we modeled the energy consumption for transmis-

sion and reception of the packet of length l bits with dis-

tance R m, Etx and Erx, as follows:

Etx = (αtx + β · R2) · l, (11)

Erx = αrx · l, (12)

where αtx and αrx respectively denote the energy consump-

tions of the transmission circuit and the reception circuit,

expressed as nanojoules per bit, and β denotes the radiation

energy in appropriate units (nJ/bit/m2)[4].

In simulation experiments, we use αtx = 50 nJ/bit,

αrx = 300 nJ/bit, and β = 1.6 nJ/bit/m2. In each case,

50 simulation trials are executed. Each source to take the

task described in the interest sends a data packet toward the

sink only once by using the data path tree. In Figs. 8, 9 and

11, we will plot out the average value of them.

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10

G
a
in

,G
 (

%
)

Number of sources

Payload size 216
Payload size 108
Payload size 36
Payload size 4

Figure 8. Gains by nodes on the path tree
in the case of the traditional exploratory
scheme.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10

G
a
in

,G
 (

%
)

Number of sources

Payload size 216
Payload size 108
Payload size 36
Payload size 4

Figure 9. Gains by nodes on the path tree in
the case of the hop exploratory scheme.

5.2 Simulation Results

Figures 8 and 9 show the characteristics of gain defined

in Section 3 as a function of the number of sources for dif-

ferent payload lengths.

Figure 8 shows the results of the traditional exploratory

scheme. In this case, the exploratory messages are dis-

tributed network-wide. In the case of the small payload,

4 bytes, the gain is quite low because the aggregation ra-

tio of the linear aggregation is almost identical that of the

perfect aggregation. However, in the case of the medium

payload, 36 bytes, which is the same as the header, the gain

increases concomitant with the number of sources. This ten-

dency is more remarkable in the case of the large payload,

108 bytes. However, in the case of too large payload, 216
bytes, the path tree will become similar to that of the op-

portunistic routing. Therefore, the gains decrease. These

results coincide with predictions by our analysis shown in

Section 3.

Figure 9 shows results of the hop exploratory scheme.

From this figure, we can see that the AGIT routing is still

more efficient than GIT routing and opportunistic routing,

but the values of gain are decreased in comparison to those

of the traditional exploratory scheme because the spread

area of the exploratory messages is smaller than the tradi-

tional exploratory scheme.

The gain values are smaller than the expected values ob-

tained from analysis. For analysis, we assume a dense net-

work. However, in the simulation, the nodes are deployed in

a discrete fashion. For that reason, the range of choices for

the efficient aggregation point in the simulation is smaller

than that for the analysis.

Figures 8 and 9 show the gain in the data transmission

phase. From this viewpoint, the traditional exploration is

preferable. However, it includes the most overhead to con-

struct the path tree. For that reason, we investigate the

amount of the overhead. Figure 10 shows the total en-

ergy consumption of the entire network between the issue

of the interest and the completion of the receptions of one

data packet from every source. This figure indicates that

the traditional exploratory scheme has more overhead than

the others. A trade-off exists between the gain of the data

transmission phase and the overhead of the path tree con-

struction phase. The answer to the problem depends on the

applications: more precisely, it depends on how long the

data transmission phase lasts.

6 Conclusions

This paper presented the aggregation efficiency-aware

GIT (AGIT), and also described analyses incorporating the

suppression scheme for exploratory messages: hop ex-

ploratory.

The AGIT routing can construct a more efficient path

tree than the original GIT routing and the opportunistic rout-

ing. The improvement becomes more remarkable as the

payload packet length becomes larger and/or more sources

exist. Our simulation results demonstrate that the AGIT

routing achieves about 8% of the gain for the energy con-

sumption of the data transmission compared to the original

GIT routing. Our simulation results also emphasize that the

suppression scheme, hop exploratory, reduces energy con-

sumption up to 40%.

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10

T
o
ta

l
e
n
e
rg

y
 i
n
 n

e
tw

o
rk

 (
J
)

Number of sources

Traditional exploratory
Hop exploratory

Figure 10. Total energy consumption in whole
network until the reception of the data pack-
ets from all sources.

Acknowledgment

This research work was partially supported by Strate-

gic Information and Communications R&D Promotion Pro-

gramme (SCOPE), Ministry of Internal Affairs and Com-

munications, Japan, by the Ministry of Education, Culture,

Sports, Science and Technology (MEXT), Grant-in-Aid for

Scientific Research (C), No. 18500052, by the Ministry of

Education, for Grant-in-Aid for Young Scientists (B), No.

16700066 and No. 16760271, and by the Kayamori Foun-

dation for Advancement of Information Science.

References

[1] T. F. Abdelzaher, T. He, and J. A. Stankovic, “Feed-

back Control of Data Aggregation in Sensor Net-

works,” IEEE Conference on Decision and Control,
Dec. 2004.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and

E. Cayirci, “Wireless Sensor Networks: A Sur-

vey,” Computer Networks (Elsevier) Journal, vol.38,

pp.393–422, March 2002.

[3] K. Akkaya, M. Younis, and M. Youssef, “Efficient Ag-

gregation of Delay-Constrained Data in Wireless Sen-

sor Networks,” Proc. of Internet Compatible QoS in
Ad Hoc Wireless Networks 2005, Jan. 2005.

[4] M. Bhardwaj, T. Garnett, A. P. Chandrakasan, “Upper

Bounds on the Lifetime of Sensor Networks,” Proc. of
ICC, pp.785–790, June 2001.

[5] M. Enachescu, A. Goel, R. Govindan, and R. Mot-

wani. “Scale Free Aggregation in Sensor Networks,”

Proc. of the First International Workshop on Algorith-
mic Aspects of Wireless Sensor Networks, pp.71–84,

July 2004.

[6] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govin-

dan, D. Estrin, and D. Ganesan, “Building Efficient

Wireless Sensor Networks with Low-level Naming,”

Proc. of the ACM Symposium on Operating Systems
Principles, Oct. 2001.

[7] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heide-

mann, and F. Silva, “Directed Diffusion for Wireless

Sensor Networking,” IEEE/ACM Transactions on Net-
working, Feb. 2003.

[8] C. Intanagonwiwat, D. Estrin, R. Govindan, and J.

Heidemann, “Impact of Density on Data Aggregation

in Wireless Sensor Networks,” Proc. of the 22nd Inter-
national Conference on Distributed Computing Sys-
tems, Nov. 2001.

[9] M. Khan, G. Pandurangan and B. Bhargava, “Energy-

Efficient Routing Schemes for Wireless Sensor Net-

works,” Tech. Rep. of Department of Computer Sci-
ence, Purdue University, CSD TR 03-013, July 2003.

[10] B. Krishnamachari, D. Estrinf, and S. Wicker, “Mod-

elling Data-Centric Routing in Wireless Sensor Net-

works,” IEEE INFOCOM, June 2002.

[11] B. Krishnamachari, D. Estrin, and S. Wicker, “The

Impact of Data Aggregation in Wireless Sensor Net-

works,” Proc. of the 22nd International Conference on
Distributed Computing Systems, July 2002.

[12] D. Petrovic, C. Shah, K. Ramchandran, and J. Rabaey,

“Data Funneling: Routing with Aggregation and

Compression for Wireless Sensor Networks,” IEEE
Sensor Network Protocols Applications, Anchorage,

May 2003.

[13] A. Wang, W. B. Heinzelman, A. Sinha, and

A. P. Chandrakasan, “Energy-Scalable for Battery-

Operated MicroSensor Networks,” Kluwer Journal of
VLSI Signal Processing, vol.29, pp.223–237, Nov.

2001.

[14] J. Zhao, R. Govindan, and D. Estrin, “Computing Ag-

gregates for Monitoring Wireless Sensor Networks,”

Proc. of IEEE International Workshop on Sensor Net-
work Protocols and Applications, May 2003.

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

