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Abstract: This paper describes a low-power object recognition processor

VLSI for HDTV resolution video at 60 frames per second (fps) using an

object recognition algorithm with Sparse FIND features. The VLSI processor

features two-stage feature extraction processing by HOG and Sparse FIND, a

highly parallel classification in the support vector machine (SVM), and a

block-parallel processing for RAM access cycle reduction. Compared to the

accuracy by the original Sparse FIND algorithm, the two-stage object

detection demonstrates insignificant accuracy degradation. Using this archi-

tectural design, a 60 fps performance for object recognition of HDTV

resolution video was attained at an operating frequency of 130MHz. This

3.35 × 3.35mm2 chip, designed with 40 nm CMOS technology, contains

8.22M gates and 5Mb SRAM in the chip of 3.35 × 3.35mm2. The simulated

power consumption at 133MHz were 528mW and 702mW at the slow

process condition (SS, 0.81V, −40°C) and typical process condition (TT,

0.9V, 25°C), respectively.
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1 Introduction

Real-time object recognition is an important task for many computer vision

applications such as surveillance cameras, automobile systems, and robots. The

histogram of oriented gradients (HOG) [1, 2], which is widely known as a feature

descriptor, is robust to changes in luminance and scale. Moreover feature descrip-

tors obtained by computing the correlation between histogram elements have been

proposed. They have achieved accurate object recognition. Among them, the

Sparse FIND feature has higher capability of object recognition than HOG and

CoHOG [3]. Advances in high-performance general-purpose processors in recent

years make it possible to recognize real-time objects using these features. However,

it is difficult to apply these processors to applications for mobile systems that

require low power consumption because of battery restrictions and in-vehicle

systems that have constraints on severe thermal design. For that reason, low-power

and high-performance object recognition processor VLSI is desired for use in

widely various applications. Particularly, in-vehicle systems require detection of

distant objects while traveling at high speed. Under such circumstances, it is

necessary to recognize objects with a high frame rate at high resolution, such as

that of HDTV (1920 � 1080) [2, 4].

High-resolution video offers the capability of capturing detailed shapes of

objects with a wide field angle, but with the important difficulty that large amounts
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of computation are necessary for real-time processing. Currently, object recognition

using a neural network yields excellent results in terms of recognition accuracy

[5, 7]. Nevertheless, the computational cost is very high, making it difficult to

produce a high-resolution and high-speed processing system with low power

consumption. For example, the multiscale object recognition algorithm SSD using

deep learning provides excellent accuracy for object recognition, but even when

processing an input image of 300 � 300 pixels at 46 fps, GPGPU dissipates several

hundred watts because the throughput exceeds 1 TOPs [7]. Therefore, a VLSI

accelerator that can achieve real-time object recognition for HDTV resolution video

is strongly requested.

As described in this paper, we present the Sparse FIND algorithm introduced in

VLSI design in Chapter 2 and the proposed design technique in Chapter 3.

Chapter 4 presents a description of the entire architecture and explains its perform-

ance evaluation. These are followed by an explanation of VLSI implementation in

Chapter 5 and presentation of the conclusion in Chapter 6.

2 Sparse FIND algorithm and design issue for VLSI implementation

Sparse FIND [8] is a feature descriptor which reduces the number of dimensions of

the FIND [9] feature created using the HOG feature. The FIND feature is obtained

by computing the correlation among all histogram elements of the HOG feature and

performing normalization of the correlation. The object shape can be expressed

more finely. Therefore, the accuracy of detection achieved with the FIND feature is

superior to that achieved with HOG feature. However, high computational costs are

incurred. To overcome this issue, among the elements of the HOG feature, only

elements with high validity in identification are used for feature extraction (sparsi-

fied) and correlation is taken to reduce the number of dimensions. Consequently,

compared with the FIND feature, computational costs are reduced while maintain-

ing accuracy of detection.

The Sparse FIND feature extraction method is described sequentially as

follows. First, the gradient magnitude and direction are calculated using the

luminance value of each pixel of the input image. Using these, the gradient

histogram in the d direction in a cell of p � p pixels is created. A group of q � q

cells is defined as one block. The histograms for a block are arranged in a row to

create HOG feature vectors:

H ¼ ðh1; h2; � � � ; hmÞ ð1Þ
as depicted in Fig. 1. The number of dimensions per block is mð¼ d � q � qÞ.

Fig. 1. HOG feature extraction
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Next, the sparsification threshold th and the dimensionless coefficient a are

calculated from the block-level histogram. Using the sparsification threshold th,

elements with high validity for identification are selected from the HOG features

(Fig. 2). The sparsification threshold th and the dimensionless coefficient a are

calculated using the following equations.

th ¼ k � 1
m

X
hi2H

hi ð2Þ

a ¼ 1

� X
hi2H

jhij2 ð3Þ

Here, the coefficient k in equation (2) is a sparsification rate that determines the

number of dimensions of Sparse FIND feature. The dimensionless coefficient in

equation (3) makes normalization processing unnecessary. The Sparse FIND fea-

ture is calculated (4) by taking correlation with only elements which exceeds th as

illustrated in Fig. 2.

fðhi; hjÞ ¼ a � hi � hjjhi 2 HD ^ hj 2 HD ^ i ≠ j ð4Þ
HD is defined as HD ¼ fhijhi > thg.
In the VLSI implementation, the processor was designed with p ¼ 4, d ¼ 8,

q ¼ 2 and k ¼ 1:0.

Fig. 3 presents data demonstrating the extraction accuracy of HOG, FIND and

Sparse FIND with sparsification rate k from 0.5 to 2.0 in 0.5 increments. The

Sparse FIND exhibits better characteristics than HOG.

Fig. 2. Sparse FIND Feature extraction

Fig. 3. Recognition accuracy cited from reference [1, 6]. FIND [6] is a
special case of Sparse FIND with k ¼ 0:0, which computes the
full feature interaction for each pair of all possible combinations
of H.
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The number of features of Sparse FIND per detection window is about 1.4

times as numerous as the number of features of HOG (Table I). The number of

features is a factor determining the RAM size for the SVM coefficient. It is also

related to the magnitude of the workload. It is fewer than that of FIND, but the

shortcomings remain: a workload of 322 GOPS is required. The number of

processing cycles is also large. Solutions to these issues are proposed in Section 3.

Although the differences between the numbers of Sparse FIND features and the

HOG features are not large, a difficulty exists in hardware design to attain high

speed processing. Fig. 4 presents an example of RAM block access randomness

when acquiring SVM coefficients. For simplicity of explanation, let the number of

histograms in the block and the number of RAM blocks, respectively be 10 and 5

blocks. Each box in the RAM block stores SVM coefficients corresponding to the

Sparse FIND feature calculated from the combination of the histograms written in

the boxes. In this example, because ðh0; h1; h3; h6; h8Þ are histograms exceeding the

threshold, yellow boxes contain the SVM coefficient corresponding to the Sparse

FIND features calculated using the histogram pair among the above. Consequently,

it is necessary to access all yellow boxes to read all SVM coefficients required for

block processing. For that reason, the access count in each RAM block fluctuates

dynamically. In the example portrayed in Fig. 4, five cycles are necessary for

processing this block. This factor impedes the speeding up of object recognition

using the Sparse FIND feature. Increasing the number of RAM blocks can reduces

dispersion but it entails area overhead.

3 Proposed technique

To resolve the difficulty of hardware implementation, three design techniques are

newly introduced in the proposed architecture.

Table I. The number of features per a detection window

HOG Sparse FIND FIND

# of features 2400 3300 76800

Fig. 4. Example of RAM access when classification using Sparse
FIND feature
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3.1 Block-based two-stage object recognition algorithm

The first technique is two-stage processing by HOG and Sparse FIND. Using

classification results by the HOG features, the detection windows that are highly

likely to be a target object (e.g. Pedestrian) are narrowed down; the windows

unlikely to be a target object are rejected. When the SVM score in the HOG

classification for a detection window exceeds a threshold ¡, the window is rejected.

The threshold ¡ is defined as the rejection threshold in this paper. Then, Sparse

FIND features are extracted only in the block in squeezed detection windows; the

second classification is performed. The HOG features are calculable in the process

of extracting Sparse FIND features. In the proposed architecture, HOG and Sparse

FIND stage are performed as block-based which means they are performed for each

block in order to adapt to the highly parallel processing of the SVM calculation

described in Section 3.2. Fig. 5 presents an example of two-stage processing block-

based. In this example, it is assumed that there is no block overlap and the detection

window comprises of 4 vertical blocks and 3 horizontal blocks. At the HOG stage,

blocks are processed in the vertical direction in order from the left column. When

classification for detection windows at the HOG stage is completed and some

windows are not rejected, processing at Sparse FIND stage is performed sequen-

tially in the vertical direction for blocks belonging to the windows. Two-stage

pipeline processing reduces the total computation amount by 19.7% without

degrading the accuracy in comparison to detection by Sparse FIND alone.

3.2 High parallelization of computing for SVM

The second technique is highly parallel processing of SVM operation. The SVM

operation is performed on a block-level. Since the detection window consists of 75

blocks. One block belongs to a maximum of 75 detection windows. The SVM

classification circuit presented in Fig. 6 comprises of five SVM calculation cores, a

detector, an SRAM for intermediate classification results, and an SRAM for SVM

coefficients. The SVM calculation core comprises of 15 MAC modules, and carries

out multiply-accumulate operations for 15 blocks: the MAC module in the SVM

classification circuit has 75 parallel configurations (5 cores � 15). This number is

equal to the total number of blocks per detection window. Each time the SVM

calculation of the block is completed, the SVM score obtained from the block is

Fig. 5. Flow of block-based two-stage processing for VLSI imple-
mentation
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cumulatively added to the SVM score sent from the MAC module at the preceding

row and transferred to the MAC module at the next row. At that time, the SVM

score output from the MAC module at the last row in the “SVM calculation core” is

written to “SVM calculation Intermediate result RAM”, and when calculating the

block of the next column, the SVM score is read out to the MAC module at the first

row of the next column. Finally, when the SVM operation of the block 74 of a

certain detection window is performed, the processing of the detection window is

ended. The intermediate result of the SVM operation of the window is stored in the

RAM and is invoked from the RAM at any time when the data of the block

belonging to the window is inputted if the calculation of all the feature in the

window is not completed and data of a new block belonging to the window is not

input. In this way, high-speed operation is achieved by executing the SVM

operation at maximum 75 parallels. However, in the classification in Sparse FIND

stage, each MAC module is controlled by enabling the signal to reduce power

consumption because all detection windows to which a block belongs are not

always classified as described in section 3.2. This method reduced the processing

cycle of the SVM operation by 98.6%.

3.3 Block-parallel processing for RAM access cycle reduction

The third technique is a block-parallel processing for RAM access cycle reduction

at the Sparse FIND stage. In the SVM operation, to calculate the sum of products

with the Sparse FIND feature, the SVM coefficient is accessed and read out from

the RAM. The tendency of features excluded from computation by sparsifying

process is random for each block and has no regularity. In the feature calculation

and the SVM operation for each block, the randomness causes dispersion in the

number of accesses for each RAM block, so that efficient computation can be not

performed. Fig. 7 presents the proposed block-parallel processing scheme. First,

addresses for the SVM coefficient RAM and selection signals are generated by the

sparsifying processing using the histogram of the block A and B. The selection

signal determines which histogram is used to generate the Sparse FIND feature.

After Sparse FIND features are generated, SVM operation is performed. In this

way, the proposed block-parallel processing requires no duplication of feature

extraction and classification circuits. An example is shown in Fig. 8. When two

blocks A and B are processed consecutively, the access cycle is the sum of the

Fig. 6. Block diagram of SVM classification circuits
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maximum number of RAM accesses of each block. If the maximum access number

of the block A is 6 and the maximum number of accesses of the block B is 5, then

11 cycles in all are required. When two blocks A and B are executed at the same

time, the access cycle is the maximum sum of the number of RAM accesses: 9

cycles are required in the case shown in right side of Fig. 8. Consequently, the

maximum access cycle for two blocks is changed from the sum of the maximum

access cycle of two blocks to the maximum sum of access cycle of 2 block

processing. Using this method, the average access cycle of SVM coefficient to

RAM in the SVM operation was reduced by 28.5%.

4 Architecture

4.1 Architectural design

Fig. 9 portrays a block diagram of the entire object recognition processor core,

which contains function blocks for common stage, HOG stage and Sparse FIND

stage. Magnitude and orientation of luminance gradient are calculated in the

Fig. 7. Block-parallel processing scheme: block A and block B are
processed in parallel. Here, N is the number of RAM blocks.

Fig. 8. Comparison of RAM access-cycle count

Fig. 9. Architectural block diagram of Sparse FIND processor core
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common pre-processing stage, which are followed by the computation of a cell

histogram and a dimensionless coefficient. In the HOG stage, HOG features are

calculated and classified. Generation of Sparse FIND features and SVM classi-

fication are performed for blocks in the window exceeding the rejection threshold ¡

among the columns where the HOG classification is completed. The HOG

classification and Sparse FIND classification can be performed concurrently. Also,

the cell histogram generation, the cell histogram addition, the dimensionless

coefficient calculation, and the HOG classification are executed in a pipeline

manner. The Sparse FIND core controller unit identifies blocks for which the

Sparse FIND feature extraction process is performed. When the Sparse FIND

classification process is delayed, the process for function block for common stage

and HOG stage in Fig. 9 are stopped, where the stop signal is sent from the Sparse

FIND core controller.

4.2 Performance evaluation

The FPGA emulation for pedestrian detection was performed using test images

(1920 � 1080 pixels) to evaluate the accuracy degradation and processing speed.

These test images are obtained by resizing the image of 4024 sheets of Caltech

Pedestrian Dataset [10, 11] from VGA resolution to HDTV resolution and perform-

ing grayscale conversion. The pyramid grayscale image data, which is transferred

into the core, is created by shrinking HDTV image sequentially by 2�1=6 (≈0.891)
times. The pyramid images are sequentially processed while the detection window

of 24 � 64 pixels is shifted every 4 pixels, and the pedestrian was detected using the

classifier with SVM coefficients learned beforehand.

In the VLSI design, we adopted the CORDIC method to calculate arctangent

and square root at histogram generation, and the NEWTON method for square root

division in calculating the dimensionless coefficient. The accuracy was improved

by the appropriate number of steps of CORDIC and NEWTON method. The

smallest number of steps of CORDIC and NEWTON methods maintaining the

accuracy was chosen. As a result, the number of CORDIC steps was 11, and the

number of NEWTON was 4.

The rejection rate, which is the ratio of rejected windows to all windows, is

strongly related to processing speed. As the number of blocks rejected after the

HOG classification increases, the number of blocks to be processed by Sparse

FIND can be reduced, allowing speed performance enhancement. On the contrary,

Fig. 10. Processing speed distribution versus rejection threshold
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if rejected too much, the accuracy can be degraded. The rejection rate depends on

the rejection threshold ¡. Table II shows the accuracy (average miss rate), the

average processing speed, and the worst processing speed when the threshold is

incremented by 0.1 from the −1.18 to −0.68. The initial value of −1.18 is a value

determined when learning is executed by the original C++ source code. It also

contains the results of a one stage processing of Sparse FIND only.

Fig. 10 represents the distribution of the processing speed at 130MHz when

changing the rejection threshold ¡. The processing speed exceeds 60 fps even in the

worst case if the rejection threshold ¡ is −0.88 or more. As the rejection threshold ¡

is increased, the distribution narrows with less variation. The average frame rate

when ¡ is −0.68 is increased by 48.4% as compared with the one-stage processing

of Sparse FIND only. How does the rejection threshold ¡ effect on the detection

accuracy was investigated. Fig. 11 shows the normalized miss rate at each false

positives per window when the rejection threshold ¡ is changed. Here the miss rate

obtained by the FPGA emulation was normalized by that in the software imple-

mentation. The degradation of miss rate is less than 0.5%, which shows that the

hardware implementation using the proposed architecture provides a sufficient

accuracy. It is understood that the precision varies depending on the rejection

threshold ¡, but there is no great difference. Therefore, we investigated the SVM

score obtained when the Sparse FIND classification was performed for windows

rejected after the HOG classification.

Fig. 12 portrays the probability density function of SVM scores estimated for

the window rejected. The horizontal axis shows the SVM score obtained in the

Sparse FIND classification and the vertical axis shows the probability of the

detection window having the SVM score on the horizontal axis. As the rejection

Fig. 11. Detection accuracy versus rejection threshold

Fig. 12. Probability density function of SVM score for the window
rejected versus SVM score using Sparse FIND
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threshold ¡ is higher, the probability of rejecting the window in the range of the

SVM score from −4.2 to −1.0 rises slightly. However, in this study, the detection

window with −0.3 or more of SVM score in the Sparse FIND classification is not

rejected with −0.68 or less of the reject threshold ¡. That is, if the threshold in the

Sparse FIND classification is set to be equal to or greater than −0.3, the detection

result will not be affected.

Fig. 13 presents results of the pedestrian recognition using Caltech Pedestrian

Dataset. Pedestrians can be recognized correctly from recognition results. In

addition, Fig. 13(b) demonstrates possibility of recognizing a pedestrian at a

distance with benefits of HDTV resolution images.

5 VLSI implementation

The VLSI object recognition processor using the Sparse FIND feature has been

designed using 40 nm CMOS technology. It contains 8.22M gates and 5.00Mbit

on-chip SRAM in a size of 3:35 � 3:35mm 2. A chip plot is depicted in Fig. 14.

The static timing analysis after back annotation shows that 133MHz operation is

attained at the condition of 0.81V, SS corner and 125°C. Table III shows the

specifications of the chip. Commercial evaluation tools (Primetime by Synopsys

Inc.) were utilized to estimate the power consumption of the entire core with the

physical parameters extracted after placement and routing. Fig. 15 presents power

consumption obtained at two kinds of operating conditions. It is seen that the

133MHz VLSI processor dissipates 528mW and 702mW, respectively at the slow

Table II. Processing speed for Rejection threshold

Rejection
threshold

Normalized
average miss
rate

Average
processing
speed
[fps] @130MHz

Worst
processing
speed
[fps] @130MHz

Frequency
required for 60
fps processing
in worst
case [MHz]

Only Sparse FIND 1 46.36 44.26 177

−1.18 1.0257 63.56 52.11 150

−1.08 1.0259 65.84 54.71 143

−0.98 1.0270 67.43 57.62 136

−0.88 1.0261 68.28 60.73 129

−0.78 1.0270 68.65 64.05 122

−0.68 1.0286 68.79 66.65 118

(a) (b)

Fig. 13. Results of pedestrian recognition
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process condition (SS, 0.81V, −40°C) and the typical process condition (TT, 0.9V,

25°C) to realize real-time processing for HDTV resolution video at 60 fps.

6 Conclusion

In this research, VLSI implementation of an object detection algorithm using

Sparse FIND feature for HDTV resolution video was studied. The performance

evaluation result shows that when the rejection threshold at the HOG classification

is −0.68 and the operating frequency is 130MHz, the lowest frame rate 66.65 fps is

attained, allowing 60 fps operation at HDTV resolution. The power simulation

using the actual layout data results in 528mW and 702mW power consumption at

133MHz, respectively at 0.81V and 0.9V. The accuracy degradation from the

original Sparse FIND algorithm implemented on software is only 0.5%, which

means it has a sufficient accuracy for practical use.

Fig. 14. Chip layout

Table III. Chip specification

Technology 40 nm CMOS

Chip size 3:35 � 3:35mm2

Core size 2:95 � 2:95mm2

Power supply 0.81V (minimum)

Max frequency 133MHz

Gate count 8.22M gates

Memory size 0.80mm2 (5.00Mbit)

Image resolution HDTV (1920 � 1080 pixels) @60 fps

Power 528mW @ 0.81V 133MHz

Fig. 15. Power consumption for power supply voltage
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