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SUMMARY This paper presents an algorithm for a physical activity
(PA) classification and metabolic equivalents (METs) monitoring and its
System-on-a-Chip (SoC) implementation to realize both power reduction
and high estimation accuracy. Long-term PA monitoring is an effective
means of preventing lifestyle-related diseases. Low power consumption
and long battery life are key features supporting the wider dissemination of
the monitoring system. As described herein, an adaptive sampling method
is implemented for longer battery life by minimizing the active rate of ac-
celeration without decreasing accuracy. Furthermore, advanced PA classi-
fication using both the heart rate and acceleration is introduced. The pro-
posed algorithms are evaluated by experimentation with eight subjects in
actual conditions. Evaluation results show that the root mean square er-
ror with respect to the result of processing with fixed sampling rate is less
than 0.22 [METs], and the mean absolute error is less than 0.06 [METs].
Furthermore, to minimize the system-level power dissipation, a dedicated
SoC is implemented using 130-nm CMOS process with FeRAM. A non-
volatile CPU using non-volatile memory and a flip-flop is used to reduce
the stand-by power. The proposed algorithm, which is implemented using
dedicated hardware, reduces the active rate of the CPU and accelerometer.
The current consumption of the SoC is less than 3-µA. And the evaluation
system using the test chip achieves 74% system-level power reduction. The
total current consumption including that of the accelerometer is 11.3-µA on
average.
key words: adaptive sampling, normally off computing, physical activity
classification, sensor fusion, SoC

1. Introduction

Recently, lifestyle diseases have come to pose an impor-
tant social issue, highlighting the importance of lifestyle
disease prevention. To support prevention efforts, monitor-
ing of physical activity intensity (PAI) during daily lifestyle
activities has become extremely important. Such measure-
ments must monitor PAI data continuously and longitudi-
nally. Coleman et al. [1] reported that long-term monitoring
can reveal differences deriving from changes in health sta-
tus. Ensuring correct long-term PAI data and step counting
is one method for monitoring and confirming lifestyle im-
provements. Such data can also improve health guidance to
facilitate lifestyle disease prevention. Accordingly, strong
demand persists for devices to monitor lifestyle habits in
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terms of PAI data.
Recently, many wearable devices have been proposed

for PAI monitoring [2]–[4]. However, the size and battery
life of such devices must be improved to enhance their us-
ability. A tradeoff exists between device size and battery
capacity. Especially, short battery life is an extremely im-
portant issue to address for long-term PAI monitoring and
continuous recording. Reducing the power consumption is
one means to lengthen battery life. So we develop a low-
power and high-accuracy algorithm and a System-on-a-chip
(SoC) to implement the algorithm.

Generally, an accelerometer is used for PAI estima-
tion [5]–[9]. To improve the estimation accuracy, a physi-
cal activity (PA) classification algorithm incorporating heart
rate and tri-acceleration signals was proposed in the previ-
ous work [10]. The previous algorithm classifies locomo-
tive activities into a high-intensity group (HIG) and middle-
intensity group (MIG) using percentage Heart Rate Re-
served (%HRR). Algorithm results demonstrate its avail-
ability for improving the estimation accuracy of Metabolic
Equivalents (METs).

To implement the previous algorithm [10], a low-power
heart rate monitoring SoC using the normally-off comput-
ing technology was produced [11]. Although this SoC can
reduce the stand-by power and heart rate sensing power, a
difficulty arises: the power consumption of the external ac-
celeration sensor remains high. To overcome this issue, an
adaptive sampling method for acceleration signal process-
ing was proposed in our earlier study [12]. As another adap-
tive sampling method, a US Patent [13] by Seiko has also
been proposed. The adaptive acceleration sampling method
can reduce the average power consumption without decreas-
ing the PAI estimation accuracy. Results of PA classification
and the standard deviation of the acceleration signal are used
for sampling rate optimization.

This study proposes a PA classification and METs es-
timation algorithm combining the two algorithms described
above [10], [12] to achieve both low power consumption and
higher estimation accuracy. The proposed algorithm is im-
plemented in a dedicated SoC to minimize the power con-
sumption.

A preliminary version of this work has been pub-
lished [14]. The Ref. [14] only proposed adaptive sampling
implementation and evaluation with only a few subjects. On
the other hand, this paper describes the novel algorithm us-
ing both the heart rate and the accelerometer and SoC im-
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Fig. 1 Flow chart of PA classification, METs estimation and deciding sampling rate.

plementation, and presents evaluation results.

2. PA Classification and METs Estimation

The decision tree proposes in this study is shown in Fig. 1.
The algorithm which classifies the PA group and estimates
METs uses adaptive sampling. This algorithm uses two in-
dexes: filtered synthetic acceleration (ACC f il) and percent-
age heart rate reserve (%HRR). The PA is classified into
three groups: sedentary, household, and locomotive. Us-
ing %HRR in addition to acceleration, the locomotive activ-
ity is classifiable further into two sub-groups: high intensity
group (more than 6 METs) and middle intensity group (less
than 6 METs). By doing that, a PA with lower estimation
accuracy, such as stair ascent, is expected to be improved.

The measured triaxial acceleration is processed in the
same manner as that described for our fundamental stud-
ies [15], [16]. First, each signal from the triaxial accelerom-
eter was passed through a high-pass filter with a 0.7 Hz cut-
off frequency to remove the gravitational acceleration com-
ponent. Next, synthetic acceleration along the three axes
(vector magnitude

2√
X2 + Y2 + Z2) is calculated.

Then, ACC f il was defined as the mean value of the syn-
thetic acceleration in each epoch. An epoch is a period for
conducting PA classification and METs estimation. For this
study, it is defined as 10 [sec.]. Furthermore, to decide the
sampling rate, VARi denotes the variance of the synthetic
acceleration in the same epoch. VARi−1 represents the value
of VAR in the prior epoch.

Our methodology uses %HRR to increase the classifi-
cation numbers, as presented in Eq. (1).

%HRR =
HRact − HRrest

HRmax − HRrest
× 100 (1)

The heart rate beats per minute [bpm] was converted from
the recorded R–R interval. The heart rate during activity
(HRact) represents the mean value of the averaged heart rate

in every epoch. The heart rate at rest (HRrest) was defined
as the mean value of the averaged heart rate in a seating
situation. The maximum heart rate (HRmax) was calculated
using the Karvonen formula (Eq. (2)).

HRmax = 220 − Age (2)

Although conventional methods [15], [16] have used a
fixed sampling rate, they entail constant power consump-
tion. This paper presents the adaptive acceleration sampling
to reduce the active rate of a monitoring system and the av-
erage power consumption without decreasing its estimation
accuracy. The lower sampling rate is acceptable if the PA
intensity is low [12]. As presented in Fig. 1, the sampling
rate is chosen automatically according to the past indexes of
synthetic accelerations. The values of ACC f il, VARi, and
VARi−1 respectively show that the system raises, lowers,
and maintains the sampling rate for the subsequent epoch.
The sampling rate during locomotive activity is defined as
the base sampling rate (BSR). The variation of the sampling
rate in the proposed adaptive sampling algorithm is chosen
as 50%, 25%, or 12.5% of the sampling rate for that BSR.
The sampling rate on each epoch changes to one of those at
the end of epoch.

When the sampling rate is changed, coefficients and de-
lay values in the high-pass filter should be adjusted for the
subsequent sampling rate. Delay values in the Butterworth
filter are calibrated by multiplying the coefficients directly
to the delay values. Details are described in Sect. 3.

3. Hardware Implementation

The proposed algorithm is implemented into the SoC. Fig-
ure 2 portrays a block diagram of the SoC, which contains a
heart rate sensor, an accelerometer interface, a non-volatile
CPU (NV-CPU), oscillators, a timer block, and dedicated
hardware intended for the proposed algorithm. The SoC
is designed to maximize the effect of low active rate using
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Fig. 2 Block diagram of the proposed SoC.

Fig. 3 Example of active state and sleep state.

the proposed algorithm in Sect. 2. To implement METs es-
timation and PA classification with the adaptive sampling
algorithm into a small and low-power sensor device, a NV-
CPU is introduced [11]. The NV-CPU, which integrates of
a non-volatile memory (NVRAM) and a non-volatile flip-
flop (NVFF) based on a ferroelectric capacitor, can retain
memory and register data when its power source is gated.
Figure 3 shows that Tactive is the period of the active state
in which power source is supplied. Furthermore, Tsleep is
the period at which the power source is gated, so that the
power consumption during Tsleep is zero. The active rate is
calculated as shown in Eq. (3).

Active Rate =
Tactive(

Tactive + Tsleep

) (3)

Reducing the active rate is an effective power reduction ap-
proach for biosignal monitoring because the biosignal in-
cluding acceleration has much lower frequency than that of
the CPU. Table 1 summarizes the active rate of each func-
tion block on the SoC. The active rate of NV-CPU and ADC
in ECG sensing block are remarkably low, 0.1% and 2.14%,
respectively. Especially, the low active rate of NV-CPU con-
tributes to low power consumption because NV-CPU con-
sumes higher power than other function blocks. To reduce

Table 1 Active rate of each function block

their active rate, the following two circuit configurations
were newly developed and implemented into the SoC.

The one of additional circuit configurations include the
Data buffer SRAM to store acceleration data. In the con-
ventional implementation [11], the acceleration data were
stored by the NV-CPU within the sampling cycle. On the
contrary, a dedicated SRAM that can store the accelera-
tion signal independently of the NV-CPU operations is in-
troduced into the SoC. So, NV-CPU can maintain the sleep
state independently from the data sampling and minimize
the active rate of NV-CPU. This scheme contributes to lower
the SoC power consumption.

The second additional circuit executes the high pass fil-
tering and synthesis of tri-acceleration. In the conventional
implementation [11], these were processed by the software.
By adding the filtering and synthesizing hardware, active
rate of NV-CPU can be reduced. An IIR filter is designed
as a high-pass filter, as explained in Sect. 2. It is a second-
order Butterworth high-pass filter with a cutoff frequency of
0.7 Hz. Only one digital filtering circuit can processing high
pass filtering of tri-axial acceleration with time multiplexing
manner, which can minimize the size of the filtering hard-
ware.

To realize adaptive sampling, the high-pass filter block
can change its coefficient dynamically according to the cho-
sen sampling rate. Even though the sampling rate changes,
the two delay values (Z−1) inside the IIR filter (see Fig. 2)
retain their values held before the sampling rate changes.
Immediately after changing, large errors arise in the filtered
signals because they are influenced strongly by those delay
values. Figure 4 shows the IIR filter response for input of the
gravitational acceleration component. For example, when
changing from BSR to 50% BSR, drastic overshooting oc-
curs immediately after the change. It takes time to stabilize
for about 2.2 [sec.] thereafter. It decreases the estimation
accuracy. To minimize this influence, the digital filter was
designed to adjust the delay values when the sampling rate
changes. Therefore the filtered signals are not influenced
even if the sampling rate is changed, as shown in Fig. 4.
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Fig. 4 Influence of sampling rate change.

Table 2 Physical activity list and time of experimental test

4. Assessment of the Proposed Algorithm

To assess the proposed algorithm, in this study, the tri-axial
accelerations and R–R intervals were measured by eight vol-
unteer test subjects during various activities. The measure-
ments were conducted according to guidelines presented in
the Declaration of Helsinki. Details of this experimental
purposes and procedures were explained to all subjects be-
fore measurements were taken. Then consent was obtained
from each.

Test subjects performed six distinct activities, includ-
ing resting in a seated position, during which their triaxial
acceleration and R–R interval values were recorded using a
device that includes an accelerometer and R–R interval sen-
sor (Health Patch MD; VitalConnect Inc., San Jose, CA).
Clinical validation of this device was described earlier [17].
The device was attached to the upper left-side chest ribs on
the left of each subject. After the activities, the recorded
acceleration and R–R interval are analyzed using software
(MATLAB 2015b; The MathWorks, Inc.).

Experiments were conducted separately for Se-
quences 1 and 2. Table 2 presents activities performed in
each sequence and time. Furthermore, an interval of about
1.5 min exists between activities. The interval includes
walking to change the location. Each activity was classified
into a PA group, as shown in Table 2.

According to the proposed algorithm, the measured
signals are classified. The sampling rate was changed for
each epoch. Table 3 presents threshold values chosen to
classify the PA group. Thresholds of ACC f il are the same
as those used in an earlier study [14]. The threshold of
%HRR is chosen according to an earlier classification al-
gorithm [10]. The sampling rate during locomotive activi-

Table 3 Threshold for PA classification

Table 4 Adjustment Coefficient Value for experimental test

ties is defined as BSR which is 31.25 [Hz]. Table 4 presents
the adjustment coefficient value to reduce the influence of
sampling rate change with BSR of 31.25 [Hz]. For example,
if sampling rate changes from BSR to 50% BSR, the delay
values in IIR filter is multiplied by 0.248 (according to Ta-
ble 4). The effect of coefficient is described in Sect. 3. Fur-
thermore, METs estimation is done using estimation equa-
tions [16] which are shown in Fig. 1. Processing was also
conducted when the sampling rate was fixed as BSR (Fixed
BSR).

Figure 5 illustrates the waveform processed with the
proposed algorithm and the earlier reported algorithm with
fixed sampling rate (Fixed BSR). There is an adequately
small difference in the ACC f il waveform. Table 5 presents
the root mean square error from the case of processing with
Fixed BSR. It can be judged that the root mean square er-
rors for ACC f il with all eight subjects were within 12 [mG].
The average is 4.86 [mG] of whole sequence 1. They
are very small errors. Moreover, the estimated METs
were evaluated simply using conventional estimation equa-
tions [16]. The root mean square error with respect to the
result of Fixed BSR is less than 0.22 [METs], and the av-
erage is 0.14 [METs]. The mean absolute error is less than
0.06 [METs] in both of sequences. It is seen that no diffi-
culty exists for practical usage.

The classification accuracy is calculated using only
those results corresponding to each activity. Table 6 presents
the classification accuracy of each activity. The proposed
method, which combined the heart rate and acceleration,
produced higher estimation accuracy than that of Fixed BSR
method. This study assesses the classification accuracy in
the Sequence 1. Because the Fixed BSR method can classify
only the locomotive group, it is classified as middle intensity
group (MIG) herein. Therefore, the classification results ob-
tained using the Fixed BSR method in sequence 2 need not
be considered. However, the classification accuracy remains
sufficiently high, although the sampling rate changes. In the
sequence 1, the classification accuracy is improved with the
adaptive sampling algorithm, and it is higher than 90%. Ac-
cording to this result, sedentary and household activities can
be classified with a lower sampling rate.

We focused on the classification results which are sur-
rounded by a circle as shown in Fig. 5. After jogging, sub-
jects waited for 30 seconds while standing and walked to
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Fig. 5 Measured and processed results using proposed algorithm during experimental tests.

Table 5 Relative Root Mean Square Error of ACCfil and estimation METs and Mean Absolute Error
of estimation METs

Table 6 Results of classification accuracy another place. Regarding the PA classification in this in-
terval, those results should be classified into sedentary and
MIG, but they were classified into sedentary and HIG. The
heart rate was high in these cases, immediately after the
end of jogging. Therefore, despite walking, they are mis-
classified as HIG. Immediately after action corresponding
to such HIG, the %HRR is often high (higher than 46 [%]).
One must consider such misclassifications when developing
a real-time algorithm.

The mean value of classification accuracy is greater
than 90% during both sequences with our proposed algo-
rithm. Furthermore, it is almost identical as a result of the
fixed sampling rate. Furthermore, regarding ACC f il and
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METs, no significant differences of the root mean square
error and the mean absolute error are found between the
previous and proposed systems. For these reasons, this pa-
per can propose an algorithm that combines the PA clas-
sification algorithm and an adaptive sampling algorithm to
achieve lower power consumption with reduction of the ac-
tive rate of the accelerometer.

5. Hardware Implementation Result

To demonstrate the performance of the proposed system, a
test chip was fabricated in a 130-nm CMOS process with
ferroelectric capacitor. Figure 6 and Table 7 present a chip
micrograph and its specifications. Figure 7 shows the ap-
plication board with the SoC, an accelerometer (KX022;
Kionix Inc.), a near field communication IC, and a CR1220
battery. Furthermore, Table 8 shows the adjustment coef-
ficient for delay values in implemented IIR filter. Those
are the values to reduce the influence of the sampling rate
change in this application board, which uses BSR of 32 Hz.
Therefore, the adjustment coefficient is recalculated for this
implementation.

In addition, effects of low power consumption achieved

Fig. 6 Test chip micrograph.

Table 7 Test chip specifications

Table 8 Adjustment coefficient value for implemented filter

with dedicated hardware and the proposed algorithm are as-
sessed. Figure 8 depicts the current consumption of the
CPU block with and without hardware assist of the sig-
nal processing, as described in Sect. 3. Earlier reported
method [16], which adopted a fixed sampling rate, re-
quired about 19.6 [µA] for processing by software with BSR
(32 Hz). The current consumption in case of software pro-
cessing with fixed 50% BSR is about 10.7 [µA]. The current
consumption using the dedicated hardware for BSR fixed
and 50% BSR fixed are 2.9 [µA] and 2.8 [µA], respectively.
Compared with the software processing, the reduction was
about 85% for the BSR fixed. Moreover, results show that
even if sampling rate changes to 50%, the current consump-
tion in hardware solution is almost identical to that of BSR
because the active CPU rate can be kept low using the two
kind of dedicated circuit. Furthermore, the active rate is in-
dependent of the output data rate of the accelerometer when
using a SoC. It has a sufficient effect of reducing the current
consumption.

The current consumption by using power gating with

Fig. 7 Application board of the proposed sensor.

Fig. 8 Current consumption of proposed CPU.
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Table 9 Results for all subjects on experimental tests

Fig. 9 Total current consumption during experimental tests.

NV-CPU and NVRAM has a potential to be higher than that
without power gating, depending on its wake-up duration
and active rate. According to our earlier study [14], it is
shown that the current consumption with power gating can
be lower than that without power gating when its wake-up
duration is 200 [msec.] or more, and active rate is 1% or less.
In the proposed algorithm and SoC, the wake-up duration is
10 [sec.] and the active rate is 0.1% (see Table 1), so that
the significant power reduction is attained by using power
gating with NV-CPU and NVRAM.

Next, this study used the test sequences shown in Ta-
ble 2 with eight subjects to assess the system-level current
consumption including the signal processing, heart rate sen-
sor, and accelerometer. The signal processing test includes
assessment of the CPU and dedicated hardware. Further-
more, the reduction of the current consumption was assessed
by the adaptive sampling. Based on experimentally obtained
results, the average current consumption in each sequence
was estimated by simulation. Table 9 presents results for
each subject. These results of Sequence 1 for all subjects
show that about 70% reduction was achieved overall in com-
parison with the result of software processing with fixed
BSR.

In Fig. 9, the average current consumption results of all

Table 10 Spent time of PA for simulation of daily usage

Fig. 10 Simulation result in daily usage of proposed system

subjects demonstrate that the proposed system can decrease
current consumption by 69% and 43%, respectively, in Se-
quences 1 and 2. Here, MCU+MEM denotes the current
consumption of signal processing hardware, memory, and
MCU of the proposed SoC. The Heart Rate denotes the cur-
rent consumption of ECG sensing block (see Fig. 2). Accel-
eration denotes the current consumption of the KX022 ac-
celerometer. About 85% reduction by the CPU (according
to Fig. 8) and about 59% (= (21 − 8.7)/21) reduction by the
accelerometer were achieved. Sequence 1 includes time at
rest, sitting, and operating a PC which greatly reduces cur-
rent consumption by adopting the adaptive sampling. The
estimated value of METs was confirmed as almost identical
to the value estimated by fixed BSR (according to Table 5),
although achieving reduction of about 70% overall.

Sequence 2 includes walking and jogging which is an
operation in BSR. Results show that the hardware current
consumption by the chip can be reduced by about 85%, sim-
ilarly to Sequence 1. However, the current consumption of
accelerometer was approximately equal to the consumption
with fixed BSR: about 19.6 [µA] Therefore, 43% reduction
was attained by the dedicated SoC solution.

Finally, we simulate how much power can be con-
sumed in daily situation using the proposed algorithm and
SoC. Healy et al. [18] reported results of measured times
of exercise intensity (Sedentary, Light activity, Moderate-
Vigorous) for 168 subjects. Table 10 shows the time ratio
of the exercise intensity. Then, base sampling rate (BSR)
= 32 Hz is set as Moderate-Vigorous. During light activity,
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the processing sampling rate is set to the midpoint between
12.5% BSR and 50% BSR, that is 25% BSR (8 Hz). During
sedentary, it is 12.5% BSR (4 Hz).

As shown in Fig. 10, the software implementation of
the adaptive sampling consumes 22.6 [µA], which is 47%
(= (22.6 − 42.6)/42.6) lower than that under the software
processing with fixed BSR. This result reflects that certain
power reduction can be achieved using the proposed algo-
rithm even if hardware assist is not used. As presented
in Table 5, its estimation accuracy also seems to exhibit
no marked decrease. Using the dedicated hardware pro-
posed herein without the adaptive sampling algorithm, 40%
(= (25.9 − 42.6)/42.6) reduction in consumption from soft-
ware processing with fixed BSR was achieved. This cur-
rent consumption is achieved by implementing the dedicated
circuit configurations into the proposed SoC. This improve-
ment is regarded as a meaningful result. The dedicated SoC
with the adaptive sampling algorithm realizes low power
consumption of about 11.3 [µA] and reduction of 74% in
comparison with software processing with fixed BSR.

Furthermore, results show that when using a CR2016,
the battery capacity is 90 [mAh]. The system which is soft-
ware processing with fixed BSR is able to operate continu-
ally for 88 days. The proposed system can operate continu-
ally for 333 days: about 1 year. This monitoring system for
PA classification and METs estimation can operate continu-
ally for a long-term.

6. Conclusion

This study is conducted to develop algorithms and SoC with
a sensor fusion approach for PA classification and METs
estimation with low power consumption. As described in
this paper, we propose a monitoring system that can achieve
both increased number of PA classification groups and sig-
nificant reduction of current consumption. In daily usage,
the proposed system can achieve average current consump-
tion of 11.3 [µA], representing a 74% reduction of the cur-
rent consumption in comparison with the previous system
with a fixed sampling rate and software processing.
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