
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Abstract—For automated driving cars, we present a 40-nm

dedicated object detection processor with only three operations: 3
× 3 convolution, 1 × 1 convolution, and 4 × 4 deconvolution. Multi-
scale object detection at high recognition accuracy is possible by
virtue of the deconvolution feature and concatenation. The input
memory for a feature map has 8-bit width. A multiplier for the
inputs has 8-bit precision. Partial-sum memory, however, has 16-
bit width to suppress detection accuracy deterioration in a layer
with 1024 channels in the target network. By fixed-point bit
precision, the external memory bandwidth and internal memory
capacity are reduced. Optimized parallelization in input and
output channels reduces the external memory bandwidth to 0.062
billion accesses per 1280 × 384 image with internal memory
capacity of 400 kB. The detection error is 1.9% of that using single-
precision floating point. The maximum operating frequency is 500
MHz at a supply voltage of 1 V. Its peak performance is 1.15 TOPS.
The maximum energy efficiency is 6.57 TOPS/W at 174 MHz and
0.6 V.

Index Terms—Automated driving, Convolutional neural
network, Deconvolution, Multi-scale object detection

I. INTRODUCTION

n recent years, convolutional neural networks (CNNs) have
become the most powerful and widely used method for

computer vision. Various algorithms using CNNs have been
developed for object detection [1−9]. Their performance is
improving year by year. However, state-of-the-art CNN-based
object detection models are becoming larger and deeper than
earlier ones because the number of parameters becomes
enormous, thereby requiring many memory resources. Storing
all weights and feature maps on on-chip memory is becoming
impossible. A CNN requires vast amounts of data access.
Therefore, communication with external memory (usually
DRAM) becomes indispensable and comes to constitute a
bottleneck. Memory bandwidth is a crucially important issue
for embedded systems. Moreover, access to off-chip DRAM
consumes a hundred times the energy, or more, than on-chip

This study was supported by the grant from Toyota Motor Corporation.
Reiya Kawamoto, Masaya Kabuto, Daisuke Watanabe, and Hiroshi

Kawaguchi are with The Graduate School of Science, Technology and
Innovation, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501,
Japan (e-mail: kawamoto.reiya@cs28.cs.kobe-u.ac.jp).

SRAM [10]. Reusing data and thereby reducing memory access
with off-chip DRAM to the greatest extent possible is important.
To reduce the memory bandwidth, earlier works have proposed
CNN dataflows [11]. Typically, access to off-chip DRAM can
be suppressed by keeping weights (weight stationary) and
partial sums (row stationary / output stationary) and by reusing
them to the greatest extent possible in local memory.

Enormous computation costs are another issue that one must
confront with CNN. For inference, using a fixed point instead
of a floating point is a common approach used with embedded
systems. Reducing bit precision saves chip power and area both
for logic circuitry and memory. Low-precision operations also
reduce energy and area costs: an 8-bit fixed point (INT8) adder
consumes 1/30 of the energy and occupies only 1/116 of the
area of a 32-bit floating point adder. Also, an INT8 multiplier
consumes 1/18.5 of the energy and 1/27.5 of the area [12].
State-of-the-art CNN accelerators have reduced input and
weight precision to 1−16 bits [13−28].

As described herein, we propose a multi-scale object
detection processor that operates at low power for the
automated driving of cars. The multi-scale object detection
techniques are extremely important steps toward the realization
of automated driving of cars. Hundreds of in-vehicle electronic
control units (ECUs) are installed in automobiles. Their high
performance and high efficiency are required. The remainder of
this paper is organized as follows. Section II describes related
works. Section III presents the target network using only three
convolutional operations (reduced convolutional operations: 3
× 3 convolution, 1 × 1 convolution, and 4 × 4 deconvolution for
simple hardware). Some techniques to reduce memory
bandwidth are described in Section IV. Sections V and VI
present the proposed 8-bit processor design and its
measurement results. The final section presents the relevant
findings.

Masakazu Taichi, Shintaro Izumi, and Masahiko Yoshimoto are with The
Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-Cho,
Nada-Ku, Kobe, 657-8501, Japan.

Go Matsukawa, Toshio Goto, and Motoshi Kojima are with Toyota Motor
Corporation, 1 Toyota-Cho, Toyota, Aichi, 471-8571, Japan.

A 1.15-TOPS 6.57-TOPS/W Neural Network
Processor for Multi-Scale Object Detection with

Reduced Convolutional Operations

Reiya Kawamoto, Masakazu Taichi, Masaya Kabuto, Daisuke Watanabe, Shintaro Izumi, Member, IEEE,
Masahiko Yoshimoto, Member, IEEE, Hiroshi Kawaguchi, Member, IEEE, Go Matsukawa, Toshio Goto, and

Motoshi Kojima

I

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

II. RELATED WORK

A. Dataflows for CNN

Memory access is a bottleneck in processing CNN. Various
dataflows have been proposed for less memory bandwidth:
Vinayak et al. proposed “nn-X” implemented with weight
stationary dataflow [29]. The weight stationary dataflow stores
weights from DRAM in a register file (RF), and reads from the
RF to the greatest extent possible to minimize memory
bandwidth reading burdens. Du et al. proposed “ShiDianNao,”
designed with output stationary dataflow [30], which keeps
partial sums in the RF, thereby minimizing bandwidth in
reading and writing the partial sums. Other than optimizing
only weights or only partial sums, row stationary dataflow was
proposed to reuse all weights, partial sums, and activations [31].
We basically adopt weight stationary dataflow for the proposed
processor, yet it is optimized for combination of input and
channel processing in our architecture. Its dataflow strategy is
discussed in Subsection IV.B.

B. Conventional accelerators for CNN

Reduction of bit precision is also important for reducing
memory bandwidth and limiting computation costs.
Nevertheless, a tradeoff exists between bit length and accuracy.
Earlier methods used a fixed point with static quantization. This
strategy uniquely sets a fractional length and an integer length
in fixed-point operations. However, in CNN, dynamic ranges of
weights, partial sums, and activations differ among layers. In
recent years, a dynamic fixed-point strategy has been adopted
by analyzing a dynamic range in each layer [13]. We take the
dynamic fixed-point strategy as well as other CNN processors
(Subsection IV.A for details). Fig. 1 shows that recently
presented exquisite CNN processors with low bit precision have
improved energy efficiency and peak performance [13–28].
Nevertheless, many use binary (ternary or 4-bit) precision,
which is not amenable to multi-scale object detection. For
convolutional operations, our CNN processor uses INT8
instead for high accuracy.

C. CNN for object detection

Various approaches for object detection have been proposed
in recent years. Their operating speeds and accuracies have
improved rapidly. Region-CNN (R-CNN) [1], a pioneering
method, applies a CNN to object detection. Numerous region

proposals where objects might exist are extracted from an
image by Selective Search [2]. Then, after the region proposals
are reshaped to a fixed size, object detection is performed by
calculating the feature quantity for each region proposal.
Nevertheless, execution time is very slow because R-CNN must
carry out three processes: the CNN, support vector machine
(SVM) classification, and bounding-box regression. Spatial
pyramid pooling (SPP) [3] has shortened the processing time
for object detection with pyramid feature maps: only a single
convolution process is done for an entire image. Fast R-CNN
[4] applies back propagation to all layers by introducing multi-
task loss. It takes simple region-of-interest (ROI) pooling
instead of SPP to resize a feature map. Faster R-CNN [5]
proposes a region proposal network (RPN) instead of Selective
Search to extract region proposals. This method enables end-to-
end training. By introducing a concept of anchors, objects with
different aspect ratios are classifiable after detecting their
region proposals. “You only look once” (YOLO) [6] realizes
localization and classification simultaneously with a single
CNN. After the entire image is divided into grids, classification
and a bounding box of an object are obtained on the grid bases.
It can operate at high speed because of its simple CNN structure,
although it is inferior in terms of accuracy, especially for an
object smaller than a grid. The entire image is used during
training. Therefore, false detection of the background is
suppressed. Single shot multibox detector (SSD) [7] is aimed at
a different approach using a single network. SSD estimates
object recognition and bounding box offset by convolution
layers with small filter sizes. Multi-scale detection can be
accomplished by detecting objects from multiple aspect ratios
in feature maps with different scales. Unfortunately, the
recognition rate of a small object is as low as SSD because a
feature map of a shallow layer has less semantic information.
To resolve this shortcoming, deconvolutional SSD (DSSD) [8]
added deconvolution layers to draw a high-level context for
detection. Feature fusion SSD (FSSD) [9], a recent derivative
of SSD, further introduced fusion of multiple
convolutional/deconvolutional layers of SSD: concatenation,
element-sum, and element-product are proposed as a feature
fusion module. Our target network is inspired by FSSD with
concatenation.

III. TARGET NETWORK

Fig. 2 presents the target network model. Its 63 layers include
concatenation layers. Each convolution layer consists of either
a 3 × 3 or a 1 × 1 kernel. A pooling layer is often used to reduce
the feature map size, although implementing the pooling layer
requires extra hardware (typically adders) and increases the
memory access. In our target network, the feature map size is
reduced by a factor of four with a stride of two. Moreover, its
accuracy loss is less than 1.6% compared to max pooling and

Fig. 1 Energy efficiency versus peak performance in CNN processors

presented in the ISSCCs and Symposia on VLSI Circuits in 2017–2019.

TABLE I KITTI detection results in different models (FP32 simulation).

[16]

0.1

1

10

100

1000

0.1 1 10

E
n

er
g

y
ef

fi
ci

en
cy

 [
T

O
P

S
/W

]

Peak performance [TOPS]

[18]

[23]

1-4 bit(s) in 2017
1-4 bit(s) in 2018
INT8 in 2017

Binary, ternary, or 4-bit
precision

This
work

[21]

[28]
[27]

INT8 in 2018
INT8 in 2019
This work

8-bit precision(INT8)

Target
network

Max
pooling

Average
pooling

Accuracy 88.3 89.5 89.9

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

average pooling (TABLE I). Deconvolutional layers for multi-
scale object detection have a 4 × 4 kernel. Batch normalization
[32] is performed in the convolution and deconvolution layers
(BN in the figure), except for the final output layers. The
activation function is a hardware-friendly rectified linear unit
(ReLU) [33]. The module for combining context information
refers to the concatenation module proposed in FSSD. However,
unlike FSSD, we add batch normalization to the deconvolution
layers. The prediction module outputs candidate bounding
boxes and classes.

An input image has a KITTI [34] size of 1280 × 384 pixels
with three channels: it is much larger than ImageNet [35].
KITTI is a dataset used for automobile vision. The
computational amount of the entire network is 26.9 GOPS for a
KITTI-size input image. The network detects cars, trucks, buses,
motorcycles, bicycles, people, riders, and other objects.

IV. MEMORY BANDWIDTH REDUCTION

On a CNN processor, the computation amount is constant
once a network is fixed. However, the memory bandwidth must
be considered carefully because memory accesses for kernel
weights, batch normalization parameters (shifts and scales),
feature maps (inputs), partial sums (interim results), and
activations (outputs) depend strongly on the computational
procedure in channel directions in a layer. Furthermore, bit
precision for the model strongly affects the memory bandwidth.

A. Fixed-point bit precision
For the original model implemented by Caffe [36], all

operations were conducted with single-precision floating points
(FP32). In our design, feature maps, activations, weights, and
shifts are converted to 8-bit precision integers (INT8) from the
original Caffe model. The other ones have 16-bit integers:
scales and partial sums. For inference with a small network such
as The Visual Geometry Group’s 16-layer model (VGG16) [37],
accuracy sometimes becomes even better at the entire INT8
than that for FP32 [38]. However, because our target network
comprises more than 60 layers, the accuracy degradation would
accumulate greatly if it was calculated only with INT8; we
carefully adjust their bit precisions for the parameters. All the
parameters have different dynamic ranges for each layer.
Therefore, we take the dynamic fixed-point strategy. Their
dynamic ranges in each layer are analyzed. Also, their bit
lengths in a fractional part are set so that a sum of absolute
differences between FP32 and INT8 is minimized [39].

Fig. 2 Target network model. P means padding. K and S respectively signify the kernel size and stride.

Fig. 3 A histogram of weights in a layer.

-1.5 0 1.5

0.045

0.04

0

0.035

0.03

0.025

0.02

0.015

0.01

0.005

D
en

si
ty

Weight

1:Conv 1_0,0,7,4,16,6,5

3x384x1280

2:Conv 1_1,5,7,10,16,5,4

3:Conv 2_0, 4,6,9,16,6,5

4:Conv 2_1,5,7,10,16,7,5

5:Conv 2_2,5,7,10,16,5,4

6:Conv 3_0,4,6,9,16,5,5

7:Conv 3_1,5,7,10,16,6,5

8:Conv 3_2,5,7,10,16,6,5

9:Conv 4_0,5,6,9,16,5,6

10:Conv 4_1,6,7,9,16,6,6

11:Conv 4_2,6,7,10,16,6,6

12:Conv 5_0,6,7,9,16,5,5

13:Conv 5_1,5,7,9,16,6,5

14:Conv 5_2,5,7,9,16,6,6

15:Conv 6_0,6,7,9,13,5,5

16:Conv 7_1,5,7,9,12,4,5

17:Conv 7_2,5,7,9,16,5,6

18:Conv 8_0,6,7,9,12,5,5

19:Conv 8_1,5,7,8,13,5,5

20:Conv 8_2,5,7,8,14,5,6

21:Conv 9_0,6,7,8,11,5,5

22:Conv 9_1,5,7,8,11,5,5

23:Conv 9_2,5,7,8,11,5,5

24:Deconv 1_0,5,7,8,12,5,6

25:Conv 10,6,7,9,16,5,6

26:Deconv 1_1,6,7,8,13,6,6

28:Conv 11_0,6,7,9,16,4,6

30:Deconv 1_2,6,7,9,12,4,6

33:Conv 12_0,6,7,10,16,6,6

36:Deconv 1_3,6,7,9,14,7,6

40:Conv 13_0,6,7,10,16,8,6

27:Deconv 2_0,6,7,8,16,5,6

29:Conv 11_1,6,7,9,16,4,6

31:Deconv 2_1,6,7,9,13,6,6

34:Conv 12_1,6,7,10,16,4,6

37:Deconv 2_2,6,7,10,15,5,6

41:Conv 13_1,6,7,10,16,5,6

32:Deconv 3_0,6,7,9,14,6,6

35:Conv 12_2,6,7,10,16,4,6

38:Deconv 3_1,6,7,10,16,5,6

42:Conv 13_2,6,7,10,16,5,6

39:Deconv 4_0,6,7,10,12,5,6

43:Conv 13_2,6,7,10,16,5,6

45:Concat46:Concat47:Concat48:Concat

Conv

Deconv

Conv

P=1;K=3;S=1

P=1;K=3;S=2

P=1;K=4;S=2

44:Concat

Conv

P=0;K=1;S=1

53:Conv det_4,6,6,10,16,9,8 52:Conv det_3,6,7,9,16,6,7 51:Conv det_2,5,7,8,16,5,6 50:Conv det_1,6,7,8,12,5,6 49:Conv det_0,5,7,8,14,6,6

62:Conv cls,8,6,11, , ,363:Conv box,8,7,15, , ,7

60:Conv cls,7,5,10, , ,261:Conv box,7,7,15, , ,7

58:Conv cls ,6,5,10, , ,259:Conv box,6,7,15, , ,7

56:Conv cls,6,6,10, , ,257:Conv box,6,6,14, , ,6

54:Conv cls,6,7,10, , ,255:Conv box,6,7,15, , ,7

P=“Padding”; K=“Kernel size; S=“Stride”

Conv
BN

ReLU

Conv
BN

ReLU

Deconv
BN

ReLU

Conv

P=0;K=1;S=1

Conv

Conv
BN

ReLU

num: Layer, decimal length of input, decimal length of weight, decimal length of partial sum,
decimal length of parameter Ac, decimal length of parameter Bc, decimal length of activation

Format

Prediction module

Data length

input: 8 bits
weight: 8 bits
partial sum: 16 bits
Ac: 16 bits
Bc: 8 bits
activation: 8 bits

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

1) Kernel weights
A histogram of weights in a shallow layer is depicted in Fig.

3. In the figure, the precision is FP32. It exists mainly in the
range of −1.5 to 1. As a layer deepens, the weights converge to
zero. Moreover, the proportion that is near zero increases as the
layer gets deeper. Therefore, some deeper layers require no
integer part. They only have a decimal part. We carefully select
the digit numbers in the integer and decimal parts in every layer
to maintain accuracy, based on [39] (decimal lengths are shown
in Fig. 2). Then the weights are tuned by retraining with
Ristretto [40].

2) Batch normalization parameters
In a CNN platform such as Caffe, normalization is conducted

after adding a bias to the convolution result. Then, a shift and
scale are calculated. This successive procedure requires
multiple multiply and-accumulate (MAC) operations. The
biases and parameters for batch normalization are determined
at the training time. Consequently, they are all constant at an
inferencing time; once the constants are fixed, the batch
normalization can be conducted as a single MAC operation, as
expressed in the following (1), where xi,c is a convolution result
and yi,c is an activation. Also, subscripts i and c respectively
denote a coordinate and a channel. The multiplication and
accumulation coefficients Ac and Bc can be prepared as
constants in (2) and (3). Therein, bc represents a bias. The batch
normalization parameters are given as average μc, standard
deviation σc, shift βc, scale γc, and correction term ε.

𝑦 , 𝐴 ∙ 𝑥 , 𝐵 (1)

𝐴
𝛾

𝜎 𝜀
 (2)

𝐵
𝛾

𝜎 𝜀
𝑏 𝜇 𝛽 (3)

An example of distributions for Ac and Bc in a layer at FP32
is portrayed in Fig. 4: the KITTI dataset. Particularly, Ac is
broadly scattered and categorized into three parts: (a) minority
but strengthening the convolution result (1 < Ac < 100); (b)
weakening the convolution result (0.01 < Ac < 1) but majority;
and (c) negligible (Ac < 0.01). Actually, (a) and (b) are
distributed over a wide dynamic range of 104 (= 0.01–100),
although both are important. We set the bit width of Ac to 16-
bit to cover the wide dynamic range and to suppress accuracy
degradation. In contrast, Bc is concentrated around one; it is not
distributed as widely as Ac. Furthermore, Bc is not so dominant
a parameter as Ac. We keep Bc at INT8. Actually, Ac and Bc
depend on a dataset. Fig. 5 portrays the distribution for Ac and
Bc trained with the Berkeley DeepDrive (BDD) dataset, which
shows different aspects from Fig. 4 even in the same layer but
with less dynamic range. Therefore, it can be considered that
16-bit Ac and 8-bit Bc are sufficient.
3) Partial sums

The target network model has a layer with 3–1024 channels.
Fig. 6 presents a transition of partial sum’s distributions in a
layer with 512 input channels. In the example, 512 input
channels are divided into 64 times in partial-sum calculation:
The partial sum is accumulated in every eight input channels.
Figs. 6(a) and 6(b) respectively portray distributions of the first

Fig. 4 Distributions of batch normalization parameters Ac and Bc on KITTI

dataset.

Fig. 5 Distributions of batch normalization parameters Ac and Bc on the BDD

dataset.

Fig. 6 Transition of the distribution of partial sums.
Fig.7 Histgram of activation in a layer.

0 1024
channel

B
N

 p
a

ra
m

et
e

r
(A

c)

10-1

10-3

100

1

10-2

10

10-4

0 1024
channel

B
N

 p
a

ra
m

et
e

r
(A

c)

1

10-5

10-10

10-20

10-15

10-25

10-30

10

1

10-3

10-2

10-1

channel

B
N

 p
a

ra
m

e
te

r
(B

c
)

0 1024

0.6

0

0.5

0.4

0.3

0.2

0.1

0 51 2 3 4

D
e

n
s

it
y

Activation

1

10-5

10-10

10-20

10-15

10-25

10-30

10-1

10-3

100

1

10-2

10

10-4

(a)

(b)(c)

channel

B
N

 p
a

ra
m

e
te

r
(A

c
)

0 1024
channel

0 1024

B
N

 p
a

ra
m

e
te

r
(A

c
)

10

1

10-3

10-2

10-1

channel

B
N

 p
a

ra
m

e
te

r
(B

c)

0 1024

0.25

0

0.2

0.15

0.1

0.05

0-20 20-15 -10 -5 155 10

0.08

0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0-200 200-150 -100 -50 50 150100

D
en

s
it

y

D
en

s
it

y

Partial sum of first Partial sum of last

(a) (b)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

and last (= 64th) partial sums. The partial sums swell to a large
value particularly when the input has 512 channels or more. We
set the bit length of the partial sum to 16 bits for the large
number of input channels.
4) Activations

The distribution of activations in a layer in the target network
model is depicted in Fig. 7. It is suppressed mainly in a small
range (0–2) by virtue of batch normalization and ReLU.
Therefore, the bit length of activations is set back to INT8 as a
final output of the layer, although the partial sums have 16-bit
precision. Unlike other parameters, zero or signed values can be
taken by adapting the ReLU treatment; it is not necessary to
consider a sign bit in an activation.

B. Memory access

Fig. 8(a) portrays the tradeoffs among input-channel
parallelization, output-channel parallelization, and their
combination. When parallel processing is executed along with
the input channels, a single partial sum is calculated using one
computation. A bandwidth for the partial sums is reduced, but
inputs must be reread frequently from external memory. In
contrast, partial sums are repeatedly output and input in the

output-channel parallelization. Our design takes a combination
of them. In doing so, it is possible to suppress both memory
accesses of the inputs and the partial sums. Then they are not
lopsided to either side. The memory access is minimized to
0.167 billion accesses per image when an input-channel
parallelization degree ci = 8 and an output-channel
parallelization co = 16 in Fig. 9. The external memory access
can be reduced further using internal memory as a buffer; if
sufficient capacity were secured as portrayed in Fig. 8(b), it
would come to 0.045 billion accesses per image. Our design
takes an internal memory capacity of 400 kB (16 kB × 25 banks)
and external memory accesses of 0.062 billion per image.

V. PROCESSOR DESIGN

Fig. 10 portrays a block diagram of the processor architecture.
The input (IN) memory and partial-sum (PS) memories are,
respectively, 144 kB (16 kB × 9 banks) and 256 kB (16 kB ×
16 banks), which is 400 kB in all, as discussed above. Every
memory has 64-bit width per word (8 × 8 bits). Kernel weights
(W in the figure) and batch normalization parameters (BN) are
implemented with FIFOs (W_buffer) in each processor element
cluster (PEC) to perform convolution, deconvolution, and batch
normalization. A 3 × 3 convolution occupies more than 50% of
the network operations. 64-bit inputs (an 8-bit feature map × 8
channels) are read out from IN memories. The IN memory
aligner feeds eight 3 × 3 inputs through 16 PECs, which means
that ci = 8 and co = 16 in this architecture. Eight processor
elements (PEs) in a PEC correspond to parallel processing in
the input channel direction. Also, 16 PECs correspond to
parallel processing in the output direction. In shallow layers

Fig. 8 (a) Memory access tradeoff in channel directions and (b) memory

bandwidth when the internal memory capacity is varied. An access to DRAM

has a 64-bit width.

Fig. 9 Channel division: CI and CO respectively signify the total numbers of

input channels and output channels.

Fig. 10 Processor architecture.

Fig. 11 Block diagram of a 3 × 3 systolic array as a reference.

INa

64 bits x
2k words x

9 banks

PE0-7

IN
 m

em
o

ry
 a

li
g

n
er

INb

INc

INd

INe

INf

INg

INh

INi

PE

PE

PE

PE

PE

PE

PE

PE

W64

72 72

BN

PEC00

ReLU

PS memory aligner

P
S
A

0

P
S
A

1

…
64 bits x

2k words x
16 banks

64

16 16

64

ACC0(32b)

ACC2(32b)

ACC1(32b)

P
S
H

1

64

72

W_buffer 24

PE0-7

PE

PE

PE

PE

PE

PE

PE

PE

W
72

BN

PEC01

ReLU

16 16

ACC0(32b)

ACC2(32b)

ACC1(32b)

PE0-7

PE

PE

PE

PE

PE

PE

PE

PE

W
72

BN

PEC15

ReLU

16 16

ACC0(32b)

ACC2(32b)

ACC1(32b)

P
S
B

0

P
S
B

1

P
S
G

0

P
S
G

1

P
S
H

0

…

…

…

…

…

…

…

…

…

Input-
channel
parallel

(ci = 128,
co = 1)

M
em

o
ry

 a
cc

es
s

[B
il

li
o

n
 a

cc
es

se
s/

im
ag

e]

Output-
channel
parallel
(ci = 1,
co = 128)

Combi-
nation
(ci = 8,
co = 16)

(a)

0.1
0

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Weights and
BN params
Inputs
Partial sums in
Partial sums out
Outputs

0.945

0.167

0.843

(b)

M
em

o
ry

 a
cc

es
s

[B
il

li
o

n
 a

cc
es

se
s/

im
ag

e]

Internal memory capacity [kB]
0 100 400 Infinite

0.093

0.062
0.045

Weights and
BN params
Inputs
Partial sums in
Partial sums out
Outputs0.1

0.167

0.15

0.2

0

0.05

ci

co

Kernels
(co / CO)

Inputs
(ci / CI)

Partial
sums

Wa

INa

Wa Wb Wc

Wd We Wf

Wg Wh Wi

INa INb INc

INd INe INf

INg INh INi

Acc

Wb

INa

Acc

Wc

INa

Acc

Wd

INa

Acc

We

INa

Acc

Wf

INa

Acc

Wg

INa

Acc

Wh

INa

Acc

Wi

INa

Acc

ACC0

Clock0 Clock1 Clock2 Clock3 Clock4 Clock6 Clock7Clock5 Clock8

Next row PEs

Previous row PEs

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

near an image input, an input channel is less than 8, in which
case some PEs do not work. Similarly, when an output channel
is less than 16, some PECs do not work. For example, half of
the PEs and half of the PECs do not work in a layer where ci =
4 and co = 8; its core utilization results in 25%.

A. PEs: processor elements

Fig. 11 shows a block diagram of a commonly used systolic
array with 9-grid MAC units [41]. In the conventional systolic
array for a 3 × 3 convolution operation, input INa and weight
Wa are multiplied at the first clock cycle; then, in the next clock
cycle, INb × Wb are accumulated at the next clock cycle. The
data flow is repeated to the right end. The systolic array covers
various MAC operations. It is therefore versatile, but with high
latency. Each grid is associated with a MAC operation and is
on simple data paths. However, it has several pipeline registers
and accumulators for the data path, necessitating complicated
control. In our design presented in Fig. 13(a), a PE is
implemented straightforwardly as SIMD with an adder tree
with a three-stage pipeline; it is not versatile but it is dedicated
for 3×3 convolution operations. As shown in Figs. 12(a) and
12(b), for processor design simplicity, adders of only two types
(four-input 20-bit and two-input 32-bit adders) are used. As a
multiplier, an 8 × 8 Wallace tree is used for 8-bit convolution;
four 8 × 8 multipliers are used for 16-bit batch normalization in
a PEC. Only the input to the first layer is signed: the others are
all unsigned as inputs. Therefore, the eight-bit multiplier
supports both a signed input × a signed weight and an unsigned
input × a signed weight. Input data and weights with 8-bit fixed-
point precision are multiplied. They generate 16-bit output.
Their outputs are accumulated with 20-bit precision, which is
forwarded to the PE output (Fig. 12(a)). Then, in a PEC, eight
PE outputs are accumulated as a partial sum with 32-bit
precision (Fig. 10). Finally, the 32-bit partial sum is reduced to
16-bit precision and is stored in PS memory. For a final

activation, 32-bit precision output is generated by the batch
normalization; then it is reduced to 8-bit precision (Fig. 12(b)).

In a PE, a kernel is shifted corresponding to a stride
downward from the upper left end in the input feature map.
When the bottom end is completed, the kernel is applied
sequentially again from the top of the next column. At this time,
newly required inputs must be read again from the IN memory.
In this way, inputs are aligned with the IN memory aligner.

B. IN memory aligner

The IN memory aligner receives 576 bits (8 bits × 8 channels
× 9 banks) from IN memories. It then forwards them to each
input channel (8 bits × 9 pixels × 8 PEs) through 8 PEs in 16
PECs. The input channels are common in PEC0 – PEC15. Fig.
13(a) portrays a PE configuration for the 3×3 convolution: nine
MACs are executed for a single-input channel. Although the PE
is optimized for 3 × 3 convolution, it can be exploited for 1 × 1
convolution. Fig. 13(b) shows that a PE calculates eight MACs
in parallel for eight input channels. The parallelism of the input
channels is 64 (8 channels × 8 PEs). The IN memory e is not

Fig. 12 (a) 8-bit convolution MACs and (b) a 16-

bit batch normalization MAC.

Fig. 13 PE configurations for (a) 3 × 3 convolution, (b) 1 × 1 convolution, and (c) 4×4 deconvolution.

Fig. 14 4 × 4 deconvolution in the processor design.

(b)

Wa Wb Wc Wd WgWf Wh Wi

INa INb INc INd INgINf INh INi

ACC0

WiWhWgWfWdWcWbWa

INiINhINgINfINdINcINbINa

Wa Wb Wc Wd We WgWf Wh Wi

INa INb INc INd INe INgINf INh INi

ACC0

Wa Wb Wc

Wd We Wf

Wg Wh Wi

INa INb INc

INd INe INf

INg INh INi

(a)

(c)

ACC1 ACC1ACC2 ACC2

Wa Wc Wi Wk WjWb Wd Wl We Wg Wo WhWf Wn Wp

INa INb INc INd INh INi

Wa Wb Wc Wd

We Wf Wg Wh

Wi Wj Wk Wl

Wm Wn Wo Wp Wm

Selector

Selector

Selector Selector

INf INgINe INa INb INc INd INh INiINf INgINe

INa INb INc

INd INe INf

INg INh INi

Wb Wd

We Wf Wg Wh

Wj Wl

Wm Wn Wo Wp

INa INb INc

INd INe INf

INg INh INi

INc

INf

INg INh INi

INa INb

INd INe

INa INb INc

INf

INi

INd INe

INg INh

INa

INd

INg INh INi

INb INc

INe INf

Wa Wb Wc Wd

Wf Wh

Wi Wj Wk Wl

Wn Wp

Wa Wc

Wi Wk

Wa Wc

We Wf Wg Wh

Wi Wk

Wm Wn Wo Wp

Wa Wb Wc Wd

We Wg

Wi Wj Wk Wl

Wm Wo

We Wg

Wm Wo

Wb Wd

Wj Wl

Wf Wh

Wn Wp

O1 O2

O3 O4

O1

O2

O3

O4

INa

INb

INi

Wi

Wb

Wa 16

20

20

20

20

16

8

8

8

8

20-bit adder

20-bit adder

20-bit adder

8x8 Wallace tree
1

sign frag

(a)

… …

Partial sum

Param_B

Param_A

16x16 Wallace tree

32-bit adder

16

16

32

8

ReLU
Extract

8bit
8832

(b)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

used. The 64 channels at the same coordinate are divided into
eight channels and are stored in the IN memories a–d and f–i.
In this case, in the IN memory aligner, dummy data zero are fed
for the IN memory e.

A 4 × 4 deconvolution operation with a stride of two extends
a feature map by a factor of four, as presented in Fig. 14. The 4
× 4 deconvolution is well implemented, as presented in Fig.
13(c). The 2 × 2 partial sums are obtained by 3 × 3 inputs and a
4 × 4 kernel. Two PEs in different PECs are connected because
16 MACs are necessary for deconvolution. Some input data
must be shared in the deconvolution. Therefore, they must be
sent to the MAC via the selector. Their wiring lengths differ
slightly from those in convolution, but no overhead on power
exists because routing is implemented small multiplexers in a
PE. Consequently, the parallelism of output channels is reduced
to eight in the deconvolution.

C. PS memory aligner

Partial sum has a 16-bit width to suppress deterioration of the
detection accuracy. The partial sums are read out from PS
memories through the PS memory aligner. After the partial
sums and activations are added up, new partial sums are written
to the PS memories in the next cycle. A PS memory holds 64
bit width (8 bits × 8 output channels). Because a partial sum has
16-bit length, it must be divided into upper and lower parts: The

PS memories have a pair configuration (A0 and A1, B0 and B1,
…, H0 and H1).

In the convolution, partial sums for PECs 0–7 are read out
sequentially in either pair of PS memories A–D, as presented in
Fig. 15(a). Similarly, partial sums for PECs 8–15 come from
either pair of PS memories E–H. At the same time, renewed
partial sums output from the accumulator 0 (ACC0) are written
back to another pair of PS memories.

In the deconvolution, two partial sums exist from ACC1 and
ACC2 in a PEC. Two pairs of PS memories A–D hold outputs
for PECs 0–7 (Fig. 15(b): The same is applied to PS memories
E–H for PECs 8–15). The internal memory bandwidth for the
deconvolution is twice that used for the convolution.

VI. MEASUREMENT RESULTS

Fig. 16 shows some detection examples on KITTI with FP32
Caffe simulation and proposed processor (INT8). The detection
error is 1.9% compared to FP32 after retraining with Ristretto
[40]. In some cases, the proposed processor detects objects that
were not detectable in a single-precision floating point. Fig. 17
shows precision-recall curves for FP32 and INT8: their mean
average precisions (mAPs) are 88.3% and 86.4%, respectively.
As well, Fig. 18 shows the degradation of accuracy due to the
bit precision. The accuracy in use of a 4-bit precision after
retraining is illustrated as a reference; its accuracy is fatally
degraded in object detection.

Fig. 19 portrays a chip micrograph and a demonstration
system with a hosting FPGA. The test chip was fabricated in a
TSMC 40-nm generic process. Fig. 20 is a Shmoo plot. The test
chip operates at a supply voltage of 0.6–1.0 V and a frequency
of 174–500 MHz (it does not function below 0.6 V because of

Fig. 15 Role of the PS memory per cycle (R, read; W, write).

Fig. 17 Accuracy comparison in KITTI database: FP32 and INT8.

Fig. 19 Chip micrograph and demonstration system.

Fig. 18 Degradation in accuracy with bit precision.

Fig. 20 Shmoo plot of test chip.

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

F F F F P

F F F F F P

F F F F F F P

F F F F F F F P

F F F F F F F F F P

F F F F F F F F F F F P

F F F F F F F F F F F F F F P

F F F F F F F F F F F F F F F F F P

F F F F F F F F F F F F F F F F F F F P P P P P P P P P P P P P P P P P P

F F

F F

1 2 3 4 5 6 7 8 9 10
Cycle time [nS]

S
u

p
p

ly
 v

o
lt

a
g

e
 [

V
]

Convolution

Operations per cycle

PS A(E) R W R W

PS B(F) R W R W

PS C(G) R W R W

PS D(H) R W R

Deconvolution

Operations per cycle

PS A(E) R W R W R W R W

PS B(F) R W R W R W R

PS C(G) R W R W R W R W

PS D(H) R W R W R W R

(a) (b)

88.3
100
90

70
80

60

30
40
50

10
20

0
32bit 8bit 4bit

A
cc

u
ra

cy
[%

]

Bit precision

86.4

2.7

3 mm

16
processor
element
clusters
(PECs)

9-
b

an
k

in
p

u
t

(I
N

)
m

em
o

ry

3
 m

m

16-bank
partial-sum (PS)

memory

P
L

L

0
0 0.2 0.4 0.6 0.8 1.0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

P
re

ci
si

o
n

Recall

INT8

FP32 mAP: 88.3%
mAP: 86.4%

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 8

the PLL). Fig. 21 shows the operating frequency and power
characteristics. The maximum operating frequency of 500 MHz
was verified at a supply voltage of 1 V; peak performance was
achieved as 1.15 TOPS. The maximum energy efficiencies are
6.57 TOPS/W at 174 MHz and 0.6 V. TABLE II presents the
simulated and measured power breakdowns to circuit
components in the architecture. The simulation was conducted
under typical process conditions and at room temperature. The
powers in the simulation and the measurement match well.

The external memory bandwidth for DRAM shows strong
effects on the inference time. Fig. 22 is a so-called roofline
model [42], which shows a frame rate versus memory
bandwidth for the target network. The proposed processor
achieves up to 38.76 fps when the memory bandwidth is 20
GB/s.

TABLE III presents specifications that are useful for
comparison among INT8 processors. One earlier study [21]
exploited network sparsity, with energy-efficient and peak
performance reaching 62.1 TOPS/W and 5.638 TOPS,
respectively, when inputs and weights both have sparsity of 5%.
In practical use, however, the energy efficiency is reduced
drastically to 1.038 TOPS/W. Another study [23] examined
adoption of 14-nm tri-gate technology by Intel Corp. Although
it brings excellent energy efficiency of 11.3 TOPS/W, its peak
performance is limited by the small chip area. Another study
[27] achieved 6.9 TOPS and 11.5 TOPS/W with 75% zero
weight. However, the performance and energy efficiency
decreased respectively to 1.91 TOPS and 3.4 TOPS/W as the
ratio of zero weight decreased. The proposed processor exhibits
remarkable precision and figures for new applications such as
automated driving of cars, which requires highly energy-
efficient multi-scale object detection.

VII. SUMMARY

We described a 40-nm object detection processor for
automated driving of cars. The processor performs only three
operations: 3 × 3 convolution, 1 × 1 convolution, and 4 × 4
deconvolution. Multi-scale object detection is possible by
virtue of the deconvolution feature. In the target network model,
the bit widths of weights and activations are reduced to INT8
from the original FP32 Caffe model. Partial sums and batch
normalization parameters are 16-bit precision to suppress the
deterioration of accuracy. The input channel parallel and output
channel parallel combination reduces the external memory
bandwidth to 0.50 GB per KITTI-sized image with internal
memory capacity of 400 kB. The detection error was found to
be 1.9% of that produced by the original FP32 Caffe model. Its
maximum operating frequency is 500 MHz at a supply voltage
of 1 V. Its peak performance is 1.15 TOPS. Measurement
results show that its maximum energy efficiency is 6.57
TOPS/W at 174 MHz and 0.6 V.

Fig. 21 Operation frequency and power characteristics. Fig. 22 Inference time by different parallel strategies.

O
p

e
ra

ti
n

g
 f

re
q

u
en

c
y

[M
H

z]

1.15 TOPS
at 500 MHz and 730 mW

6.57 TOPS/W
at 174 MHz and 61 mW

P
o

w
er

 [
m

W
]

Supply voltage [V]

500

700
600

300

400

800

200
100
0

0.6 0.7 0.8 0.9 1

100

200

300

400

500

600

Component
Power [mW]

Simulation Measurement

Logic
circuitry

Clock 83.9
501

Combinational logic 398.4

Memory 210.7 229

Sum 693.0 730

TABLE II Simulated and measured power breakdowns to circuit components
in the architecture at 500 MHz.

45

40

35
30

25

0
1 20 40 60 120

F
ra

m
e

ra
te

[f
p

s]

Memory bandwidth
[GB/s]

Combination without SRAM

Input-channel parallel
Output-channel parallel

38.76

19.76

15.63

20
15

80 100

10

5

140

Combination with
400kB SRAM

Frequency: 500 MHz

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 9

TABLE III Specifications of INT8 DNN processors

Fig. 16 Detection examples with Caffe FP32 and INT8 proposed processor.

[16] [18] [21] [23] [27] [28] This work
INT precision 8 8 (1, 4, 16) 8 8 (16, FP16) 8(16) 8 8

Purpose
CONV/FC/REC/

POOL/LSTM
CONV/FC/RNN

CONV/FC/
POOL

General
purpose

CONV/FC CONV
CONV/

DECONV
Process [nm] 65 65 65 14 8 28 40

Area [mm2] 19.36 16 12 0.024 5.5 10.92 9
Supply voltage [V] 0.67–1.2 0.63–1.1 0.67–1.0 0.28–0.9 0.5–0.8 0.63–0.9 0.6–1.0
Frequency [MHz] 10–200 200 10–200 2.3–1460 67–933 90–215 174–500

Power [mW] 4–447 3.2–297 20.5–248.4 0.026–93.3 39–1553 61.75–243.6 61–730
Energy efficiency [TOPS/W] 5.09 5.57 1.038 11.3 3.4 5.34 6.57
Peak performance [TOPS] 0.4096 0.6912 5.638 0.1866 1.91 0.8796 1.15

CONV: convolution, FC: full connect, REC: recurrent
POOL: pooling, LSTM: Long short-term memory, DECONV: deconvolution

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 10

REFERENCES
[1] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies

for accurate object detection and semantic segmentation,” Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 580–587, June
2014.

[2] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders,
“Selective Search for Object Recognition,” International Journal of
Computer Vision (IJCV), vol. 104, pp. 154–171, Sep. 2013.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial Pyramid Pooling in Deep
Convolutional Networks for Visual Recognition,” European Conference
on Computer Vision (ECCV), pp. 346–361, Sep. 2014.

[4] R. Girshic, “Fast R-CNN,” International Conference on Computer Vision
(ICCV), pp. 1440–1448, Dec. 2015.

[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Network,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6,
pp. 1137–1149, June 2017.

[6] J. Redmon, S. Divvala, R. Grishick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 779–788, June 2016.

[7] W. Liu, D. Anguelov, D. Erhan, S. Christian, S. Reed, C.-Y. Fu, and A. C.
Berg, “SSD: Single Shot MultiBox Detector,” European Conference on
Computer Vision (ECCV), pp. 21–37, Oct. 2016.

[8] C. Fu, W. Liu, A. Ranga, A. Tyagi, and A. Berg, “DSSD: Deconvolutional
Single Shot Detector,” arXiv:1701.06659, Jan. 2017.

[9] Z. Li and F. Zhou, “FSSD: Feature Fusion Single Shot Multibox Detector,”
arXiv:1712,00960, Dec. 2017.

[10] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,
“EIE: Efficient Inference Engine on Compressed Deep Neural Network,”
ACM/IEEE International Symposium on Computer Architecture (ISCA),
pp. 243–254, June 2016.

[11] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient Processing of Deep
Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE, vol.
105, no. 12, pp. 2295–2329, Dec. 2017.

[12] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” International Solid-State Circuits Conference (ISSCC), pp. 10–14, Feb.
2014.

[13] D. Shin, J. Lee, J. Lee, and H. Yoo, “DNPU: An 8.1 TOPS/W
Reconfigurable CNN-RNN Processor for General-Purpose Deep Neural
Networks,” International Solid-State Circuits Conference (ISSCC), pp.
240–241, Feb. 2017.

[14] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “ENVISION:
A 0.26-to-10TOPS/W Subword-Parallel Dynamic-Voltage-Accuracy-
Frequency-Scalable Convolutional Neural Network Processor in 28 nm
FDSOI,” International Solid-State Circuits Conference (ISSCC), pp. 246–
247, Feb. 2017.

[15] K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato, H. Nakahara, M.
Ikebe, T. Asai, S. T.-Yamazaki, T. Kuroda, and M. Motomura, “BRein
Memory: A 13-Layer 4.2 K Neuron/0.8 M Synapse Binary/Ternary
Reconfigurable in-Memory Deep Neural Network Accelerator in 65 nm
CMOS,” Symposia on VLSI Circuits, pp. C24–C25, June 2017.

[16] S. Yin, P. Ouyang, S. Tang, F. Tu, X. Li, L. Liu, and S. Wei, “A 1.06-to-
5.09 TOPS/W Reconfigurable Hybrid-Neural- Network Processor for
Deep Learning Applications,” Symposia on VLSI Circuits, pp. C26–C27,
June 2017.

[17] K. Ueyoshi, K. Ando, K. Hirose, S. T.-Yamazaki, J. Kadomoto, T. Miyata,
M. Hamada, T. Kuroda, and M. Motomura, “QUEST: A 7.49 TOPS Multi-
Purpose Log-Quantized DNN Inference Engine Stacked on 96MB 3D
SRAM Using Inductive-Coupling Technology in 40 nm CMOS,”
International Solid-State Circuits Conference (ISSCC), pp. 216–217, Feb.
2018.

[18] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H. Yoo, “UNPU: A 50.6
TOPS/W Unified Deep Neural Network Accelerator with 1b-to16b Fully
Variable Weight Bit-Precision,” International Solid-State Circuits
Conference (ISSCC), pp. 218–219, Feb. 2018.

[19] D. Bankman, L. Yang, B. Moons, and M. Verhelst, “An Always-On
3.8μJ/86% CIFAR-10 Mixed-Signal Binary CNN Processor with All
Memory on Chip in 28 nm CMOS,” International Solid-State Circuits
Conference (ISSCC), pp. 222–223, Feb. 2018.

[20] A. Biswas and A. P. Chandrakasan, “Conv-RAM: An Energy-Efficient
SRAM with Embedded Convolution Computation for Low-Power CNN-
Based Machine Learning Applications,” International Solid-State Circuits
Conference (ISSCC), pp. 488–489, Feb. 2018.

[21] Z. Yuan, J. Yue, H. Yang, Z. Wang, J. Li, Y. Yang, Q. Guo, X. Li, M.-F.
Chang, H. Yang, and Y. Liu, “STICKER: A 0.41–62.1 TOPS/W 8bit
Neural Network Processor with Multi-Sparsity-Compatible Convolution
Arrays and Online Tuning Acceleration for Fully Connected Layers,”
Symposia on VLSI Circuits, pp. 33–34, June 2018.

[22] S. Yin, P. Ouyang, J. Yang, T. Lu, X. Li, L. Liu, and S. Wei, “An Ultra-
High Energy-Efficient Reconfigurable Processor for Deep Neural
Networks with Binary/Ternary Weights in 28 nm CMOS,” Symposia on
VLSI Circuits, pp. 37–38, June 2018.

[23] M. Anders, H. Kaul, S. Mathew, V. Suresh, S. Satpathy, A. Agarwal, S.
Hsu, and R. Krishnamurthy, “2.9 TOPS/W Reconfigurable Dense/Sparse
Matrix-Multiply Accelerator with Unified INT8/INT16/FP16 Datapath in
14 nm Tri-gate CMOS,” Symposia on VLSI Circuits, pp. 39–40, June 2018.

[24] S. Kang, J. Lee, C. Kim, and H. Yoo, “B-Face: 0.2 mW CNN-Based Face
Recognition Processor with Face Alignment for Mobile User
Identification,” Symposia on VLSI Circuits, pp. 137–138, June 2018.

[25] S. Yin, P. Ouyang, S. Zheng, D. Song, X. Li, L. Liu, and S. Wei, “A 141
uW, 2.46 pJ/Neuron Binarized Convolutional Neural Network based Self-
Learning Speech Recognition Processor in 28 nm CMOS,” Symposia on
VLSI Circuits, pp. 139–140, June 2018.

[26] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A Mixed-Signal
Binarized Convolutional-Neural-Network Accelerator Integrating Dense
Weight Storage and Multiplication for Reduced Data Movement,”
Symposia on VLSI Circuits, pp. 141–142, June 2018.

[27] J. Song, Y. Cho, J.-S. Park, J.-W. Jang, S. Lee, J.-H. Song, J.-G. Lee, and
I. Kang, “An 11.5TOPS/W 1024-MAC Butterfly Structure Deal-Core
Sparsity-Aware Neural Processing Unit in 8 nm Flagship Mobile SoC,”
International Solid-State Circuits Conference (ISSCC), pp. 130–131, Feb.
2019.

[28] Z. Li, Y. Chen, L. Gong, L. Liu, D. Sylvester, D. Blaauw, and H.-S. Kim,
“An 879GOPS 243 mW 80 fps VGA Fully Visual CNN-SLAM Processor
for Wide-Range Autonomous Exploration,” International Solid-State
Circuits Conference (ISSCC), pp. 134–135, Feb. 2019.

[29] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, “A 240 G-
ops/s Mobile Coprocessor for Deep Neural Networks,” IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, pp.
696–701, June 2014.

[30] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “ShiDianNao: Shifting vision processing closer to the
sensor,” ACM/IEEE International Symposium on Computer Architecture
(ISCA), pp. 92–104, June 2015.

[31] Y. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for Energy-
Efficient Dataflow for Convolutional Neural Networks,” ACM/IEEE
International Symposium on Computer Architecture (ISCA), pp. 367–379,
June 2016.

[32] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” arXiv:
1502.03167, Feb. 2015.

[33] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural
Networks,” International Conference on Artificial Intelligence and
Statistics (AISTATS), pp. 315–323, Apr. 2011.

[34] KITTI: www.cvlibs.net/datasets/kitti.
[35] ImageNet: www.image-net.org.
[36] Caffe: https://caffe.berkeleyvision.org.
[37] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for

Large-Scale Image Recognition,” arXiv:1409.1556, Sep. 2014.
[38] H. Naganuma and R. Yokota, “Accelerating Convolutional Neural

Networks Using Low Precision Arithmetic,” International Conference on
High Performance Computing in Asia–Pacific Region (HPCAsia), 2018.

[39] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu, S.
Song, Y. Wang, and H. Yang, “Going Deeper with Embedded FPGA
Platform for Convolutional Neural Network,” ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), pp. 26–35, Feb.
2016.

[40] Ristretto: http://lepsucd.com/ristretto-cnn-approximation.
[41] J. Zhang, K. Rangineni, Z. Ghodsi, and S. Garg, “ThUnderVolt: Enabling

Aggressive Voltage Underscaling and Timing Error Resilience for Energy
Efficient Deep Learning Accelerators,” ACM Design Automation
Conference (DAC), no. 19, June 2018.

[42] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based Accelerator Design for Deep Convolutional Neural
Networks,” ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), pp. 161–170, Feb. 2015.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 11

Reiya Kawamoto received a B.E. degree in
Computer Science and System Engineering
from Kobe University, Kobe, Japan in 2018. He
is currently in the master course at Kobe
University. His current research is a low-power
Deep Learning processor for automotive
systems.

Masakazu Taichi received a B.E. degree in
Computer Science and System Engineering
from Kobe University, Kobe, Japan in 2018. He
is currently in the master course at Kobe
University. His current research is a low-power
Deep Learning processor for automotive
systems..

Masaya Kabuto received a B.E. degree in
Computer Science and System Engineering
from Kobe University, Kobe, Japan in 2018. He
is currently in the master course at Kobe
University. His current research is a low-power
Deep Learning processor for automotive
systems.

Daisuke Watanabe received a B.E. degree in
Computer Science and System Engineering
from Kobe University, Kobe, Japan in 2018.
He is currently in the master course at Kobe
University. His current research is a low-power
Deep Learning processor for automotive
systems.

Shintaro Izumi received his B.Eng. and M.Eng.
degrees in Computer Science and Systems
Engineering from Kobe University, Hyogo,
Japan, respectively, in 2007 and 2008. He
received his Ph.D. degree in Engineering from
Kobe University in 2011. He was a JSPS
research fellow at Kobe University from 2009
to 2011. Since 2011, he has been an Assistant
Professor in the Organization of Advanced
Science and Technology at Kobe University.

His current research interests include biomedical signal processing,
communication protocols, low-power VLSI design, and sensor
networks.
He has served as a Vice Chair of IEEE Kansai Section Young
Professional Affinity Group, as a Student Activity Committee Member
for IEEE Kansai Section, as a Program Committee Member for IEEE
Symposium on Low-Power and High-Speed Chips (COOL Chips), and
as a Guest Associate Editor of IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences. He was a
recipient of the 2010 IEEE SSCS Japan Chapter Young Researchers
Award.

Masahiko Yoshimoto joined the LSI
Laboratory, Mitsubishi Electric Corporation,
Itami, Japan, in 1977. From 1978 to 1983 he
was engaged in the design of NMOS and
CMOS static RAM. Since 1984, he was
involved in the research and development of
multimedia ULSI systems. He earned a Ph.D.
degree in Electrical Engineering from Nagoya
University, Nagoya, Japan in 1998. Since 2000,
he was a professor of Dept. of Electrical &

Electronic System Engineering in Kanazawa University, Japan. Since
2004, he has been a professor of the Dept. of Computer and Systems
Engineering in Kobe University, Japan. His current activity
specifically emphasizes the research and development of ultra-low-
power multimedia and ubiquitous media VLSI systems and a
dependable SRAM circuit. He holds 70 registered patents. He served
on the program committee of the IEEE International Solid State Circuit
Conference from 1991 to 1993. In addition, he served as Guest Editor
for special issues on Low-Power System LSI, IP and Related
Technologies of IEICE Transactions in 2004. He was a chair of IEEE
Solid State Circuits Society (SSCS) Kansai Chapter from 2009 through
2010. He is also a chair of the IEICE Electronics Society Technical
Committee on Integrated Circuits and Devices from 2011–2012. He
received R&D100 awards from R&D magazine for the development
of the DISP and the development of the real-time MPEG2 video
encoder chipset respectively in 1990 and 1996. He also received the
21st TELECOM System Technology Award in 2006.

Hiroshi Kawaguchi received B.Eng. and M.Eng.
degrees in electronic engineering from Chiba
University, Chiba, Japan, in 1991 and 1993,
respectively, and earned a Ph.D. degree in
electronic engineering from The University of
Tokyo, Tokyo, Japan, in 2006.
He joined Konami Corporation, Kobe, Japan, in
1993, where he developed arcade entertainment
systems. He moved to The Institute of Industrial

Science, The University of Tokyo, as a Technical Associate in 1996,
and was appointed as a Research Associate in 2003. In 2005, he moved
to The Graduate School of Engineering, Kobe University, Kobe, Japan,
as a Research Associate. From 2015 to 2016, he was a Visiting
Researcher at Politecnico di Milano. Since 2016, he has been a Full
Professor at The Graduate School of Science, Technology and
Innovation, Kobe University. He is also a Collaborative Researcher
with The Institute of Industrial Science, The University of Tokyo. His
current research interests include low-voltage operating circuits, soft
error characterization and mitigation, ubiquitous sensor networks,
organic semiconductor circuits, data converters, healthcare devices,
and neuro computer architecture.
Dr. Kawaguchi was a recipient of IEEE ISSCC 2004 Takuo Sugano
Outstanding Paper Award, ACM/IEEE ASP-DAC 2013 University
Design Contest Best Design Award, and IEEE ICECS 2016 Best Paper
Award. He has served as a Design and Implementation of Signal
Processing Systems (DISPS) Technical Committee Member for IEEE
Signal Processing Society, as a Technical Program Committee
Member for IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), IEEE Global Conference on Signal and
Information Processing (GlobalSIP), IEEE Workshop on Signal
Processing Systems (SiPS), IEEE Custom Integrated Circuits
Conference (CICC), and IEEE Symposium on Low-Power and High-
Speed Chips (COOL Chips), as an Organizing Committee Member for
IEEE Asian Solid-State Circuits Conference (A-SSCC), and
ACM/IEEE Asia and South Pacific Design Automation Conference
(ASP-DAC), and as an Associate Editor of Springer Journal of Signal
Processing Systems, IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, IEICE

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 12

Transactions on Electronics, and IPSJ Transactions on System LSI
Design Methodology (TSLDM).He is a member of the IEEE, ACM,
and the IEICE.

Go Matsukawa received Bachelor's and
Master's in Computer and Systems
Engineering from Kobe University in 2013 and
2014. He received his Ph.D. degree in
Engineering from Kobe University in 2017.
Since 2018, he has been with Toyota Motor
Corporation, Toyota City, Japan, where he is
working on Toyota Research Institute
Advanced Development. He is currently
engaged in the development of SoC and High

Performance Computing system for automated driving.

Toshio Goto received Bachelor's and Master's
degree in Electronic Engineering from Meiji
University in 1997 and 1999, respectively.
Since 1999, he has been with Toyota Motor
Corporation, Toyota City, Japan, where he is
working on Toyota Research Institute
Advanced Development. He is currently
engaged in the development of SoC and High
Performance Computing system for automated
driving.

Motoshi Kojima received a Bachelor's degree
in Computer Science from The University of
Electro-Communications in 1989. Since 1989,
he has been with Toyota Motor Corporation,
Japan. He is currently a Lead of High-
Performance Computing at Toyota Research
Institute Advanced Development, Inc.

