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Abstract—For automated driving cars, we present a 40-nm 

dedicated object detection processor with only three operations: 3 
× 3 convolution, 1 × 1 convolution, and 4 × 4 deconvolution. Multi-
scale object detection at high recognition accuracy is possible by 
virtue of the deconvolution feature and concatenation. The input 
memory for a feature map has 8-bit width. A multiplier for the 
inputs has 8-bit precision. Partial-sum memory, however, has 16-
bit width to suppress detection accuracy deterioration in a layer 
with 1024 channels in the target network. By fixed-point bit 
precision, the external memory bandwidth and internal memory 
capacity are reduced. Optimized parallelization in input and 
output channels reduces the external memory bandwidth to 0.062 
billion accesses per 1280 × 384 image with internal memory 
capacity of 400 kB. The detection error is 1.9% of that using single-
precision floating point. The maximum operating frequency is 500 
MHz at a supply voltage of 1 V. Its peak performance is 1.15 TOPS. 
The maximum energy efficiency is 6.57 TOPS/W at 174 MHz and 
0.6 V. 
 

Index Terms—Automated driving, Convolutional neural 
network, Deconvolution, Multi-scale object detection 
 

I. INTRODUCTION 

n recent years, convolutional neural networks (CNNs) have 
become the most powerful and widely used method for 

computer vision. Various algorithms using CNNs have been 
developed for object detection [1−9]. Their performance is 
improving year by year. However, state-of-the-art CNN-based 
object detection models are becoming larger and deeper than 
earlier ones because the number of parameters becomes 
enormous, thereby requiring many memory resources. Storing 
all weights and feature maps on on-chip memory is becoming 
impossible. A CNN requires vast amounts of data access. 
Therefore, communication with external memory (usually 
DRAM) becomes indispensable and comes to constitute a 
bottleneck. Memory bandwidth is a crucially important issue 
for embedded systems. Moreover, access to off-chip DRAM 
consumes a hundred times the energy, or more, than on-chip  
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SRAM [10]. Reusing data and thereby reducing memory access 
with off-chip DRAM to the greatest extent possible is important. 
To reduce the memory bandwidth, earlier works have proposed 
CNN dataflows [11]. Typically, access to off-chip DRAM can 
be suppressed by keeping weights (weight stationary) and 
partial sums (row stationary / output stationary) and by reusing 
them to the greatest extent possible in local memory. 

Enormous computation costs are another issue that one must 
confront with CNN. For inference, using a fixed point instead 
of a floating point is a common approach used with embedded 
systems. Reducing bit precision saves chip power and area both 
for logic circuitry and memory. Low-precision operations also 
reduce energy and area costs: an 8-bit fixed point (INT8) adder 
consumes 1/30 of the energy and occupies only 1/116 of the 
area of a 32-bit floating point adder. Also, an INT8 multiplier 
consumes 1/18.5 of the energy and 1/27.5 of the area [12]. 
State-of-the-art CNN accelerators have reduced input and 
weight precision to 1−16 bits [13−28]. 

As described herein, we propose a multi-scale object 
detection processor that operates at low power for the 
automated driving of cars. The multi-scale object detection 
techniques are extremely important steps toward the realization 
of automated driving of cars. Hundreds of in-vehicle electronic 
control units (ECUs) are installed in automobiles. Their high 
performance and high efficiency are required. The remainder of 
this paper is organized as follows. Section II describes related 
works. Section III presents the target network using only three 
convolutional operations (reduced convolutional operations: 3 
× 3 convolution, 1 × 1 convolution, and 4 × 4 deconvolution for 
simple hardware). Some techniques to reduce memory 
bandwidth are described in Section IV. Sections V and VI 
present the proposed 8-bit processor design and its 
measurement results. The final section presents the relevant 
findings. 
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II. RELATED WORK 

A. Dataflows for CNN 

Memory access is a bottleneck in processing CNN. Various 
dataflows have been proposed for less memory bandwidth: 
Vinayak et al. proposed “nn-X” implemented with weight 
stationary dataflow [29]. The weight stationary dataflow stores 
weights from DRAM in a register file (RF), and reads from the 
RF to the greatest extent possible to minimize memory 
bandwidth reading burdens. Du et al. proposed “ShiDianNao,” 
designed with output stationary dataflow [30], which keeps 
partial sums in the RF, thereby minimizing bandwidth in 
reading and writing the partial sums. Other than optimizing 
only weights or only partial sums, row stationary dataflow was 
proposed to reuse all weights, partial sums, and activations [31]. 
We basically adopt weight stationary dataflow for the proposed 
processor, yet it is optimized for combination of input and 
channel processing in our architecture. Its dataflow strategy is 
discussed in Subsection IV.B.  

B. Conventional accelerators for CNN 

Reduction of bit precision is also important for reducing 
memory bandwidth and limiting computation costs. 
Nevertheless, a tradeoff exists between bit length and accuracy. 
Earlier methods used a fixed point with static quantization. This 
strategy uniquely sets a fractional length and an integer length 
in fixed-point operations. However, in CNN, dynamic ranges of 
weights, partial sums, and activations differ among layers. In 
recent years, a dynamic fixed-point strategy has been adopted 
by analyzing a dynamic range in each layer [13]. We take the 
dynamic fixed-point strategy as well as other CNN processors 
(Subsection IV.A for details). Fig. 1 shows that recently 
presented exquisite CNN processors with low bit precision have 
improved energy efficiency and peak performance [13–28]. 
Nevertheless, many use binary (ternary or 4-bit) precision, 
which is not amenable to multi-scale object detection. For 
convolutional operations, our CNN processor uses INT8 
instead for high accuracy. 

C. CNN for object detection 

Various approaches for object detection have been proposed 
in recent years. Their operating speeds and accuracies have 
improved rapidly. Region-CNN (R-CNN) [1], a pioneering 
method, applies a CNN to object detection. Numerous region 

proposals where objects might exist are extracted from an 
image by Selective Search [2]. Then, after the region proposals 
are reshaped to a fixed size, object detection is performed by 
calculating the feature quantity for each region proposal. 
Nevertheless, execution time is very slow because R-CNN must 
carry out three processes: the CNN, support vector machine 
(SVM) classification, and bounding-box regression. Spatial 
pyramid pooling (SPP) [3] has shortened the processing time 
for object detection with pyramid feature maps: only a single 
convolution process is done for an entire image. Fast R-CNN 
[4] applies back propagation to all layers by introducing multi-
task loss. It takes simple region-of-interest (ROI) pooling 
instead of SPP to resize a feature map. Faster R-CNN [5] 
proposes a region proposal network (RPN) instead of Selective 
Search to extract region proposals. This method enables end-to-
end training. By introducing a concept of anchors, objects with 
different aspect ratios are classifiable after detecting their 
region proposals. “You only look once” (YOLO) [6] realizes 
localization and classification simultaneously with a single 
CNN. After the entire image is divided into grids, classification 
and a bounding box of an object are obtained on the grid bases. 
It can operate at high speed because of its simple CNN structure, 
although it is inferior in terms of accuracy, especially for an 
object smaller than a grid. The entire image is used during 
training. Therefore, false detection of the background is 
suppressed. Single shot multibox detector (SSD) [7] is aimed at 
a different approach using a single network. SSD estimates 
object recognition and bounding box offset by convolution 
layers with small filter sizes. Multi-scale detection can be 
accomplished by detecting objects from multiple aspect ratios 
in feature maps with different scales. Unfortunately, the 
recognition rate of a small object is as low as SSD because a 
feature map of a shallow layer has less semantic information. 
To resolve this shortcoming, deconvolutional SSD (DSSD) [8] 
added deconvolution layers to draw a high-level context for 
detection. Feature fusion SSD (FSSD) [9], a recent derivative 
of SSD, further introduced fusion of multiple 
convolutional/deconvolutional layers of SSD: concatenation, 
element-sum, and element-product are proposed as a feature 
fusion module. Our target network is inspired by FSSD with 
concatenation. 

III. TARGET NETWORK 

Fig. 2 presents the target network model. Its 63 layers include 
concatenation layers. Each convolution layer consists of either 
a 3 × 3 or a 1 × 1 kernel. A pooling layer is often used to reduce 
the feature map size, although implementing the pooling layer 
requires extra hardware (typically adders) and increases the 
memory access. In our target network, the feature map size is 
reduced by a factor of four with a stride of two. Moreover, its 
accuracy loss is less than 1.6% compared to max pooling and 

Fig. 1 Energy efficiency versus peak performance in CNN processors

presented in the ISSCCs and Symposia on VLSI Circuits in 2017–2019. 

TABLE I KITTI detection results in different models (FP32 simulation).
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average pooling (TABLE I). Deconvolutional layers for multi-
scale object detection have a 4 × 4 kernel. Batch normalization 
[32] is performed in the convolution and deconvolution layers 
(BN in the figure), except for the final output layers. The 
activation function is a hardware-friendly rectified linear unit 
(ReLU) [33]. The module for combining context information 
refers to the concatenation module proposed in FSSD. However, 
unlike FSSD, we add batch normalization to the deconvolution 
layers. The prediction module outputs candidate bounding 
boxes and classes.  

An input image has a KITTI [34] size of 1280 × 384 pixels 
with three channels: it is much larger than ImageNet [35]. 
KITTI is a dataset used for automobile vision. The 
computational amount of the entire network is 26.9 GOPS for a 
KITTI-size input image. The network detects cars, trucks, buses, 
motorcycles, bicycles, people, riders, and other objects. 

 

IV. MEMORY BANDWIDTH REDUCTION 

On a CNN processor, the computation amount is constant 
once a network is fixed. However, the memory bandwidth must 
be considered carefully because memory accesses for kernel 
weights, batch normalization parameters (shifts and scales), 
feature maps (inputs), partial sums (interim results), and 
activations (outputs) depend strongly on the computational 
procedure in channel directions in a layer. Furthermore, bit 
precision for the model strongly affects the memory bandwidth. 

A. Fixed-point bit precision 
For the original model implemented by Caffe [36], all 

operations were conducted with single-precision floating points 
(FP32). In our design, feature maps, activations, weights, and 
shifts are converted to 8-bit precision integers (INT8) from the 
original Caffe model. The other ones have 16-bit integers: 
scales and partial sums. For inference with a small network such 
as The Visual Geometry Group’s 16-layer model (VGG16) [37], 
accuracy sometimes becomes even better at the entire INT8 
than that for FP32 [38]. However, because our target network 
comprises more than 60 layers, the accuracy degradation would 
accumulate greatly if it was calculated only with INT8; we 
carefully adjust their bit precisions for the parameters. All the 
parameters have different dynamic ranges for each layer. 
Therefore, we take the dynamic fixed-point strategy. Their 
dynamic ranges in each layer are analyzed. Also, their bit 
lengths in a fractional part are set so that a sum of absolute 
differences between FP32 and INT8 is minimized [39]. 

Fig. 2 Target network model. P means padding. K and S respectively signify the kernel size and stride. 

Fig. 3 A histogram of weights in a layer. 
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1) Kernel weights 
A histogram of weights in a shallow layer is depicted in Fig. 

3. In the figure, the precision is FP32. It exists mainly in the 
range of −1.5 to 1. As a layer deepens, the weights converge to 
zero. Moreover, the proportion that is near zero increases as the 
layer gets deeper. Therefore, some deeper layers require no 
integer part. They only have a decimal part. We carefully select 
the digit numbers in the integer and decimal parts in every layer 
to maintain accuracy, based on [39] (decimal lengths are shown 
in Fig. 2). Then the weights are tuned by retraining with 
Ristretto [40]. 

2) Batch normalization parameters 
In a CNN platform such as Caffe, normalization is conducted 

after adding a bias to the convolution result. Then, a shift and 
scale are calculated. This successive procedure requires 
multiple multiply and-accumulate (MAC) operations. The 
biases and parameters for batch normalization are determined 
at the training time. Consequently, they are all constant at an 
inferencing time; once the constants are fixed, the batch 
normalization can be conducted as a single MAC operation, as 
expressed in the following (1), where xi,c is a convolution result 
and yi,c is an activation. Also, subscripts i and c respectively 
denote a coordinate and a channel. The multiplication and 
accumulation coefficients Ac and Bc can be prepared as 
constants in (2) and (3). Therein, bc represents a bias. The batch 
normalization parameters are given as average μc, standard 
deviation σc, shift βc, scale γc, and correction term ε. 

𝑦 , 𝐴 ∙ 𝑥 , 𝐵  (1) 

𝐴
𝛾

𝜎 𝜀
 (2) 

𝐵
𝛾

𝜎 𝜀
𝑏 𝜇 𝛽  (3) 

An example of distributions for Ac and Bc in a layer at FP32 
is portrayed in Fig. 4: the KITTI dataset. Particularly, Ac is 
broadly scattered and categorized into three parts: (a) minority 
but strengthening the convolution result (1 < Ac < 100); (b) 
weakening the convolution result (0.01 < Ac < 1) but majority; 
and (c) negligible (Ac < 0.01). Actually, (a) and (b) are 
distributed over a wide dynamic range of 104 (= 0.01–100), 
although both are important. We set the bit width of Ac to 16-
bit to cover the wide dynamic range and to suppress accuracy 
degradation. In contrast, Bc is concentrated around one; it is not 
distributed as widely as Ac. Furthermore, Bc is not so dominant 
a parameter as Ac. We keep Bc at INT8. Actually, Ac and Bc 
depend on a dataset. Fig. 5 portrays the distribution for Ac and 
Bc trained with the Berkeley DeepDrive (BDD) dataset, which 
shows different aspects from Fig. 4 even in the same layer but 
with less dynamic range. Therefore, it can be considered that 
16-bit Ac and 8-bit Bc are sufficient. 
3) Partial sums 

The target network model has a layer with 3–1024 channels. 
Fig. 6 presents a transition of partial sum’s distributions in a 
layer with 512 input channels. In the example, 512 input 
channels are divided into 64 times in partial-sum calculation: 
The partial sum is accumulated in every eight input channels. 
Figs. 6(a) and 6(b) respectively portray distributions of the first 

Fig. 4 Distributions of batch normalization parameters Ac and Bc on KITTI 

dataset. 

Fig. 5 Distributions of batch normalization parameters Ac and Bc on the BDD

dataset. 

Fig. 6 Transition of the distribution of partial sums. 
Fig.7 Histgram of activation in a layer. 
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and last (= 64th) partial sums. The partial sums swell to a large 
value particularly when the input has 512 channels or more. We 
set the bit length of the partial sum to 16 bits for the large 
number of input channels. 
4) Activations 

The distribution of activations in a layer in the target network 
model is depicted in Fig. 7. It is suppressed mainly in a small 
range (0–2) by virtue of batch normalization and ReLU. 
Therefore, the bit length of activations is set back to INT8 as a 
final output of the layer, although the partial sums have 16-bit 
precision. Unlike other parameters, zero or signed values can be 
taken by adapting the ReLU treatment; it is not necessary to 
consider a sign bit in an activation.  

B. Memory access 

Fig. 8(a) portrays the tradeoffs among input-channel 
parallelization, output-channel parallelization, and their 
combination. When parallel processing is executed along with 
the input channels, a single partial sum is calculated using one 
computation. A bandwidth for the partial sums is reduced, but 
inputs must be reread frequently from external memory. In 
contrast, partial sums are repeatedly output and input in the 

output-channel parallelization. Our design takes a combination 
of them. In doing so, it is possible to suppress both memory 
accesses of the inputs and the partial sums. Then they are not 
lopsided to either side. The memory access is minimized to 
0.167 billion accesses per image when an input-channel 
parallelization degree ci = 8 and an output-channel 
parallelization co = 16 in Fig. 9. The external memory access 
can be reduced further using internal memory as a buffer; if 
sufficient capacity were secured as portrayed in Fig. 8(b), it 
would come to 0.045 billion accesses per image. Our design 
takes an internal memory capacity of 400 kB (16 kB × 25 banks) 
and external memory accesses of 0.062 billion per image.  

V. PROCESSOR DESIGN 

Fig. 10 portrays a block diagram of the processor architecture. 
The input (IN) memory and partial-sum (PS) memories are, 
respectively, 144 kB (16 kB × 9 banks) and 256 kB (16 kB × 
16 banks), which is 400 kB in all, as discussed above. Every 
memory has 64-bit width per word (8 × 8 bits). Kernel weights 
(W in the figure) and batch normalization parameters (BN) are 
implemented with FIFOs (W_buffer) in each processor element 
cluster (PEC) to perform convolution, deconvolution, and batch 
normalization. A 3 × 3 convolution occupies more than 50% of 
the network operations. 64-bit inputs (an 8-bit feature map × 8 
channels) are read out from IN memories. The IN memory 
aligner feeds eight 3 × 3 inputs through 16 PECs, which means 
that ci = 8 and co = 16 in this architecture. Eight processor 
elements (PEs) in a PEC correspond to parallel processing in 
the input channel direction. Also, 16 PECs correspond to 
parallel processing in the output direction. In shallow layers 

Fig. 8 (a) Memory access tradeoff in channel directions and (b) memory

bandwidth when the internal memory capacity is varied. An access to DRAM

has a 64-bit width. 

Fig. 9 Channel division: CI and CO respectively signify the total numbers of 

input channels and output channels. 

Fig. 10 Processor architecture. 

Fig. 11 Block diagram of a 3 × 3 systolic array as a reference. 
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near an image input, an input channel is less than 8, in which 
case some PEs do not work. Similarly, when an output channel 
is less than 16, some PECs do not work. For example, half of 
the PEs and half of the PECs do not work in a layer where ci = 
4 and co = 8; its core utilization results in 25%. 

A. PEs: processor elements 

Fig. 11 shows a block diagram of a commonly used systolic 
array with 9-grid MAC units [41]. In the conventional systolic 
array for a 3 × 3 convolution operation, input INa and weight 
Wa are multiplied at the first clock cycle; then, in the next clock 
cycle, INb × Wb are accumulated at the next clock cycle. The 
data flow is repeated to the right end. The systolic array covers 
various MAC operations. It is therefore versatile, but with high 
latency. Each grid is associated with a MAC operation and is 
on simple data paths. However, it has several pipeline registers 
and accumulators for the data path, necessitating complicated 
control. In our design presented in Fig. 13(a), a PE is 
implemented straightforwardly as SIMD with an adder tree 
with a three-stage pipeline; it is not versatile but it is dedicated 
for 3×3 convolution operations. As shown in Figs. 12(a) and 
12(b), for processor design simplicity, adders of only two types 
(four-input 20-bit and two-input 32-bit adders) are used. As a 
multiplier, an 8 × 8 Wallace tree is used for 8-bit convolution; 
four 8 × 8 multipliers are used for 16-bit batch normalization in 
a PEC. Only the input to the first layer is signed: the others are 
all unsigned as inputs. Therefore, the eight-bit multiplier 
supports both a signed input × a signed weight and an unsigned 
input × a signed weight. Input data and weights with 8-bit fixed-
point precision are multiplied. They generate 16-bit output. 
Their outputs are accumulated with 20-bit precision, which is 
forwarded to the PE output (Fig. 12(a)). Then, in a PEC, eight 
PE outputs are accumulated as a partial sum with 32-bit 
precision (Fig. 10). Finally, the 32-bit partial sum is reduced to 
16-bit precision and is stored in PS memory. For a final 

activation, 32-bit precision output is generated by the batch 
normalization; then it is reduced to 8-bit precision (Fig. 12(b)). 

In a PE, a kernel is shifted corresponding to a stride 
downward from the upper left end in the input feature map. 
When the bottom end is completed, the kernel is applied 
sequentially again from the top of the next column. At this time, 
newly required inputs must be read again from the IN memory. 
In this way, inputs are aligned with the IN memory aligner. 

B. IN memory aligner 

The IN memory aligner receives 576 bits (8 bits × 8 channels 
× 9 banks) from IN memories. It then forwards them to each 
input channel (8 bits × 9 pixels × 8 PEs) through 8 PEs in 16 
PECs. The input channels are common in PEC0 – PEC15. Fig. 
13(a) portrays a PE configuration for the 3×3 convolution: nine 
MACs are executed for a single-input channel. Although the PE 
is optimized for 3 × 3 convolution, it can be exploited for 1 × 1 
convolution. Fig. 13(b) shows that a PE calculates eight MACs 
in parallel for eight input channels. The parallelism of the input 
channels is 64 (8 channels × 8 PEs). The IN memory e is not 

Fig. 12 (a) 8-bit convolution MACs and (b) a 16-

bit batch normalization MAC. 

Fig. 13 PE configurations for (a) 3 × 3 convolution, (b) 1 × 1 convolution, and (c) 4×4 deconvolution.

Fig. 14 4 × 4 deconvolution in the processor design. 
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used. The 64 channels at the same coordinate are divided into 
eight channels and are stored in the IN memories a–d and f–i. 
In this case, in the IN memory aligner, dummy data zero are fed 
for the IN memory e. 

A 4 × 4 deconvolution operation with a stride of two extends 
a feature map by a factor of four, as presented in Fig. 14. The 4 
× 4 deconvolution is well implemented, as presented in Fig. 
13(c). The 2 × 2 partial sums are obtained by 3 × 3 inputs and a 
4 × 4 kernel. Two PEs in different PECs are connected because 
16 MACs are necessary for deconvolution. Some input data 
must be shared in the deconvolution. Therefore, they must be 
sent to the MAC via the selector. Their wiring lengths differ 
slightly from those in convolution, but no overhead on power 
exists because routing is implemented small multiplexers in a 
PE. Consequently, the parallelism of output channels is reduced 
to eight in the deconvolution. 

C. PS memory aligner 

Partial sum has a 16-bit width to suppress deterioration of the 
detection accuracy. The partial sums are read out from PS 
memories through the PS memory aligner. After the partial 
sums and activations are added up, new partial sums are written 
to the PS memories in the next cycle. A PS memory holds 64 
bit width (8 bits × 8 output channels). Because a partial sum has 
16-bit length, it must be divided into upper and lower parts: The 

PS memories have a pair configuration (A0 and A1, B0 and B1, 
…, H0 and H1). 

In the convolution, partial sums for PECs 0–7 are read out 
sequentially in either pair of PS memories A–D, as presented in 
Fig. 15(a). Similarly, partial sums for PECs 8–15 come from 
either pair of PS memories E–H. At the same time, renewed 
partial sums output from the accumulator 0 (ACC0) are written 
back to another pair of PS memories. 

In the deconvolution, two partial sums exist from ACC1 and 
ACC2 in a PEC. Two pairs of PS memories A–D hold outputs 
for PECs 0–7 (Fig. 15(b): The same is applied to PS memories 
E–H for PECs 8–15). The internal memory bandwidth for the 
deconvolution is twice that used for the convolution. 

VI. MEASUREMENT RESULTS 

Fig. 16 shows some detection examples on KITTI with FP32 
Caffe simulation and proposed processor (INT8). The detection 
error is 1.9% compared to FP32 after retraining with Ristretto 
[40]. In some cases, the proposed processor detects objects that 
were not detectable in a single-precision floating point. Fig. 17 
shows precision-recall curves for FP32 and INT8: their mean 
average precisions (mAPs) are 88.3% and 86.4%, respectively. 
As well, Fig. 18 shows the degradation of accuracy due to the 
bit precision. The accuracy in use of a 4-bit precision after 
retraining is illustrated as a reference; its accuracy is fatally 
degraded in object detection. 

Fig. 19 portrays a chip micrograph and a demonstration 
system with a hosting FPGA. The test chip was fabricated in a 
TSMC 40-nm generic process. Fig. 20 is a Shmoo plot. The test 
chip operates at a supply voltage of 0.6–1.0 V and a frequency 
of 174–500 MHz (it does not function below 0.6 V because of 

Fig. 15 Role of the PS memory per cycle (R, read; W, write). 

Fig. 17 Accuracy comparison in KITTI database: FP32 and INT8. 

Fig. 19 Chip micrograph and demonstration system. 

Fig. 18 Degradation in accuracy with bit precision. 

Fig. 20 Shmoo plot of test chip. 
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the PLL). Fig. 21 shows the operating frequency and power 
characteristics. The maximum operating frequency of 500 MHz 
was verified at a supply voltage of 1 V; peak performance was 
achieved as 1.15 TOPS. The maximum energy efficiencies are 
6.57 TOPS/W at 174 MHz and 0.6 V. TABLE II presents the 
simulated and measured power breakdowns to circuit 
components in the architecture. The simulation was conducted 
under typical process conditions and at room temperature. The 
powers in the simulation and the measurement match well. 

The external memory bandwidth for DRAM shows strong 
effects on the inference time. Fig. 22 is a so-called roofline 
model [42], which shows a frame rate versus memory 
bandwidth for the target network. The proposed processor 
achieves up to 38.76 fps when the memory bandwidth is 20 
GB/s. 

TABLE III presents specifications that are useful for 
comparison among INT8 processors. One earlier study [21] 
exploited network sparsity, with energy-efficient and peak 
performance reaching 62.1 TOPS/W and 5.638 TOPS, 
respectively, when inputs and weights both have sparsity of 5%. 
In practical use, however, the energy efficiency is reduced 
drastically to 1.038 TOPS/W. Another study [23] examined 
adoption of 14-nm tri-gate technology by Intel Corp. Although 
it brings excellent energy efficiency of 11.3 TOPS/W, its peak 
performance is limited by the small chip area. Another study 
[27] achieved 6.9 TOPS and 11.5 TOPS/W with 75% zero 
weight. However, the performance and energy efficiency 
decreased respectively to 1.91 TOPS and 3.4 TOPS/W as the 
ratio of zero weight decreased. The proposed processor exhibits 
remarkable precision and figures for new applications such as 
automated driving of cars, which requires highly energy-
efficient multi-scale object detection. 
 

VII. SUMMARY 

We described a 40-nm object detection processor for 
automated driving of cars. The processor performs only three 
operations: 3 × 3 convolution, 1 × 1 convolution, and 4 × 4 
deconvolution. Multi-scale object detection is possible by 
virtue of the deconvolution feature. In the target network model, 
the bit widths of weights and activations are reduced to INT8 
from the original FP32 Caffe model. Partial sums and batch 
normalization parameters are 16-bit precision to suppress the 
deterioration of accuracy. The input channel parallel and output 
channel parallel combination reduces the external memory 
bandwidth to 0.50 GB per KITTI-sized image with internal 
memory capacity of 400 kB. The detection error was found to 
be 1.9% of that produced by the original FP32 Caffe model. Its 
maximum operating frequency is 500 MHz at a supply voltage 
of 1 V. Its peak performance is 1.15 TOPS. Measurement 
results show that its maximum energy efficiency is 6.57 
TOPS/W at 174 MHz and 0.6 V. 

Fig. 21 Operation frequency and power characteristics. Fig. 22 Inference time by different parallel strategies. 
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TABLE III Specifications of INT8 DNN processors  

Fig. 16 Detection examples with Caffe FP32 and INT8 proposed processor. 

[16] [18] [21] [23] [27] [28] This work
INT precision 8 8 (1, 4, 16) 8 8 (16, FP16) 8(16) 8 8

Purpose
CONV/FC/REC/

POOL/LSTM
CONV/FC/RNN

CONV/FC/
POOL

General
purpose

CONV/FC CONV
CONV/

DECONV
Process [nm] 65 65 65 14 8 28 40

Area [mm2] 19.36 16 12 0.024 5.5 10.92 9
Supply voltage [V] 0.67–1.2 0.63–1.1 0.67–1.0 0.28–0.9 0.5–0.8 0.63–0.9 0.6–1.0
Frequency [MHz] 10–200 200 10–200 2.3–1460 67–933 90–215 174–500

Power [mW] 4–447 3.2–297 20.5–248.4 0.026–93.3 39–1553 61.75–243.6 61–730
Energy efficiency [TOPS/W] 5.09 5.57 1.038 11.3 3.4 5.34 6.57
Peak performance [TOPS] 0.4096 0.6912 5.638 0.1866 1.91 0.8796 1.15

CONV: convolution, FC:  full connect, REC: recurrent
POOL: pooling, LSTM: Long short-term memory, DECONV: deconvolution
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