
2017 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 25–28, 2017, TOKYO, JAPAN

A LAYER-BLOCK-WISE PIPELINE
FOR MEMORY AND BANDWIDTH REDUCTION IN DISTRIBUTED DEEP LEARNING

Haruki Mori1, Tetsuya Youkawa1, Shintaro Izumi1, Masahiko Yoshimoto1, Hiroshi Kawaguchi1,

and Atsuki Inoue2

1Graduate School of System Informatics, Kobe University, Kobe, Japan
2 Fujitsu Laboratories Ltd. Computer Systems Laboratory, Kawasaki, Japan

E-mail:mori.haruki@cs28.cs.kobe-u.ac.jp

ABSTRACT

This paper describes a pipelined stochastic gradient descent
(SGD) algorithm and its hardware architecture with a
memory distributed structure. In the proposed architecture, a
pipeline stage takes charge of multiple layers: a “layer
block.” The layer-block-wise pipeline has much less weight
parameters for network training than conventional
multithreading because weight memory is distributed to
workers assigned to pipeline stages. The memory capacity
of 2.25 GB for the four-stage proposed pipeline is about half
of the 3.82 GB for multithreading when a batch size is 32 in
VGG-F. Unlike multithreaded data parallelism, no
parameter server for weight update or shared I/O data bus is
necessary. Therefore, the memory bandwidth is drastically
reduced. The proposed four-stage pipeline only needs
memory bandwidths of 36.3 MB and 17.0 MB per batch,
respectively, for forward propagation and backpropagation
processes, whereas four-thread multithreading requires a
bandwidth of 974 MB overall for send and receive processes
to unify its weight parameters. At the parallelization degree
of four, the proposed pipeline maintains training
convergence by a factor of 1.12, compared with the
conventional multithreaded architecture although the
memory capacity and the memory bandwidth are decreased.

Index Terms— Deep neural network, Model
Parallelism, Pipelined backpropagation, Distributed
memory, Memory capacity reduction, Memory bandwidth
reduction

1. INTRODUCTION

The perceptron, a primitive artificial neural network, has a
single layer comprising input synapses and output neurons
as nonlinear activations [1]. The multilayer perceptron is an
extension of the single-layer perceptron with hidden layers,
in which training is conducted through backpropagation [2].
A convolutional neural network (CNN) imitates part of the
human visual cortex in the cerebrum. It is an extension of a

multilayer perceptron. Originally, the CNN was developed
for handwritten character recognition, and was named
“neocognitron” [3]. Actually, CNNs have been scaled up
with numerous synapses and neurons in deeper layers.
Recently, a deeper network having more than three layers is
generally called as a “deep neural network (DNN)” or “deep
learning.” The DNN has exhibited its potential for image
recognition ability. Its accuracy is improving year by year.
At the ImageNet Large Scale Visual Recognition
Competition (ILSVRC), AlexNet with five CNN layers and
three fully connected layers made an overwhelming
achievement over conventional feature-based image
recognition schemes in 2012 [4]. Its top-five error rate was
15.3%, which was more than 10% better than the second-
best entry based on the handmade features. Since 2012, the
error rate in image recognition has been improved by DNNs.
At ILSVRC 2015, ResNet, comprising with 151 CNN layers
and one fully connected layer, remarkably won the
competition by a top-five error rate of only 3.57% [5],
which is better than the 5.1% figure representing human
ability [6]. Today, DNNs are applied mainly to image
recognition applications, but DNNs themselves has general-
purpose characteristics and abilities; DNNs are now
attracting attention not only in for engineering, but also for
use in medicine, pharmacy, and biology applications [7].

As DNNs have generality with a deeper and larger-
scale network, their error rates of cognition continue to
improve. Accordingly, computational times become much
longer, particularly those for training purpose. AlexNet took
5–6 days to train 90 epochs of 1.2-M ImageNet picture data-
sets on two NVIDIA GTX580 GPUs [5]. Also, ResNet-200
(ResNet with 200 layers) designed for ImageNet, took three
weeks for its training, even with eight GPGPUs used in
parallel computing [8].

There are two concepts of parallelism to shorten the
training time for an enormous network [9]:
 Data parallelism has divided dimensions of data.

Each worker trains on the same network but with a
different data example.

 Model parallelism has divided dimensions of a
model (network). Each worker trains a different
part of the model (network).

Mini-batch stochastic gradient descent (SGD) has faster
in error rate convergence than pure SGD because a matrix-
matrix operation can be better optimized than a matrix-
vector one. Multithreaded mini-batch SGD is often
exploited as a data parallelism for additional speeding up.
Deploying homogeneous workers and implementing the
same software for them is simple. Each worker has the same
network, but processes a different mini batch. In other
words, a single network is trained with different mini
batches. Each worker updates different weight parameters.
All workers must unify their own weights. The unified
weights are usually obtained by averaging their own weights
received from all workers. Then the unified weights are sent
back to the workers for the next mini-batch step. The weight
unification and replication are applied repeatedly. They
invariably consume memory bandwidth. As the number of
workers is increased, memory bandwidth turns out to be
linearly wider [10, 11]. In terms of memory capacity, each
worker must hold all weights and activations of a whole
network in the multithreaded mini-batch SGD. The
multithreaded mini-batch SGD tends to be less effective in
convergence than a single-threaded one because its effective
batch size is multiplied by the data parallelism. Therefore,
updates per epoch result in a lower number [12–14]. To
reduce the memory bandwidth and capacity and to maintain
scalability of parallelism, the model parallelism is useful. Of
course, the model parallelism can be combined with data
parallelism.

Pipelined backpropagation with distributed memory has
been studied for decades as a kind of data parallelism. In the

1990s, node parallelism [15] and layer-based pipelined
backpropagation schemes [16, 17] were proposed for epoch
learning. Since 2010, a pipelined DNN combined with a
hidden Marcov model has been proposed for speech
recognition to shorten the GPGPU training time [18−20]. As
described in this paper, we revisit the use of pipelined DNN
for image recognition with ImageNet, and propose another
model parallelism with layer blocks. The proposed layer-
block-wise pipeline with segmented bus architecture
suppresses whole memory capacity and transfer memory
bandwidth to maintain scalability of parallelism.

This paper is organized as follows: Section 2 presents
the layer-block-wise pipeline algorithm with software
implementation. Hardware architecture and its performance
are explained in Section 3. The final section presents
discussion of issues in the proposed pipeline.

2. LAYER-BLOCK-WISE PIPELINE

Fig. 1 depicts the proposed layer-block-wise pipeline as a
conceptual diagram. In the figure, each pipeline stage with
multiple layers has a worker for both forward propagation
and backpropagation. A worker takes charge of one or more
layers called “layer blocks”, shown in square model. The
layer-block-wise pipeline is categorized as a kind of model
parallelism. Its layer dimensions are divided by m or a
smaller integer (where m is the number of layers including a
layer for error calculation scheme). The number of pipeline
divisions depends on the DNN models. Each worker
executes a different task in parallel. A worker keeps a single
weight matrix corresponding to its own layer network.

Forward
propagation

Back
propagation

Weight UpdateError calculation

Stage 1

Stage 2

Stage 3

Stage P

Pipeline
Stages

Backward

Mini-batch inputs

Forward

Step T

Error outputs

T = 0 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 207

Fig. 1. Conceptual data-flow diagram of the proposed layer-block-wise pipeline with weight update latency.

Hereinafter, parameters P, T, and S respectively denote
the number of pipeline stages (number of layer blocks), a
current mini-batch step, and a current pipeline stage (current
layer block). In each pipeline stage, forward propagation is
conducted on a stage-by-stage basis. After certain latency,
backpropagation is executed with corresponding activations;
then weights are updated. Therefore, each pipeline stage
processes a different but consecutive mini batch, and
respectively propagates its activations and deltas down and
up simultaneously to adjacent pipeline stages.

In forward propagation, the (T−S+1)-th mini batch is
processed at pipeline stage S. Its activations are transferred
down to the next pipeline S+1. Finally, a mini batch is
processed at the last pipeline stage P, where errors are
calculated. The errors are going to be backpropagated at a
next time step T+1.

In backpropagation, the (T−2P+S)-th mini batch is
processed at a pipeline stage S. It is noteworthy that a
worker at the pipeline stage S must save 2P−2S+2 datasets
of forward activations for the current and upcoming

backpropagations. Deltas are calculated with the oldest
dataset of activations. Weights are updated with the deltas.
The deltas in the shallowest layer in the pipeline stage S are
transferred up to the upstream pipeline stage S−1 for a next
time step T+1. In this manner, plural mini batches are
propagated back and forth simultaneously without waiting
for a naive parameter update. The weights are updated with
a latency of 2P−2S+1. It can be said that the proposed
pipeline has a concept of approximate computing instead of
the naive SGD.

To evaluate the accuracy and to verify training
convergence in the proposed layer-block-wise pipeline
model, we implemented Algorithm 1 with MatConvNet [21].
N signifies the total number of input mini-batch steps (the

total number of time steps for input mini batches). The input
is mini-batch data. In forward propagation, a vector of
activations YS, x for a pipeline stage S is calculated first,
where x is a dataset of activations to be saved (0 ≤ x ≤
2P−2S+2). After forward propagation is completed, an error
vector is prepared as dYP+1 for backpropagation. Then, a
vector of delta dYS and a matrix of delta weights dWS for a
pipeline stage S are calculated. A matrix of weights WS is
updated with dWS.

To demonstrate the layer-block-wise pipeline, we
adopted VGG-F as a network model [20]. VGG-F has five
CNN layers and three fully-connected layers, as presented in
Fig. 2(a), which classifies 1,000 categories. Figs. 2(b)-(d)
present two-stage, four-stage, and eight-stage pipeline cases.

Algorithm 1. Software implementation of the proposed layer-block-wise pipeline.

CONV. 1

Batch Norm.
ReLU, POOL

CONV. 2

Batch Norm.
ReLU, POOL

CONV. 3

Batch Norm.
ReLU

CONV. 4

Batch Norm.
ReLU

CONV. 5

Batch Norm.
ReLU, POOL

FULL CONNECT 1

Batch Norm.
ReLU

FULL CONNECT 2

Batch Norm.
ReLU

FULL CONNECT 3

Soft max error
calculation

Stage 1
Stage 2

(b) 2-stage pipeline
architecture

Mini-batch
input

(c) 4-stage pipeline
architecture

CONV. 1

Batch Norm.
ReLU, POOL

CONV. 2

Batch Norm.
ReLU, POOL

CONV. 3

Batch Norm.
ReLU

CONV. 4

Batch Norm.
ReLU

CONV. 5

Batch Norm.
ReLU, POOL

FULL CONNECT 1

Batch Norm.
ReLU

FULL CONNECT 2

Batch Norm.
ReLU

FULL CONNECT 3

Soft max error
calculation

Stage 1
Stage 2

Stage 3
Stage 4

Mini-batch
input

(d) 8-stage pipeline
architecture

Stage 7
Stage 8

Stage 5
Stage 4

CONV. 1

Batch Norm.
ReLU, POOL

CONV. 2

Batch Norm.
ReLU, POOL

CONV. 3

Batch Norm.
ReLU

CONV. 4

Batch Norm.
ReLU

CONV. 5

Batch Norm.
ReLU, POOL

FULL CONNECT 1

Batch Norm.
ReLU

FULL CONNECT 2

Batch Norm.
ReLU

FULL CONNECT 3

Soft max error
calculation

Stage 1
Stage 2

Stage 3
Stage 6

Mini-batch
input

(a) VGG-F network
architecture

CONV. 1

Batch Norm.
ReLU, POOL

Mini-batch
input

CONV. 2

Batch Norm.
ReLU, POOL

CONV. 3

Batch Norm.
ReLU

CONV. 4

Batch Norm.
ReLU

CONV. 5

Batch Norm.
ReLU, POOL

FULL CONNECT 1

Batch Norm.
ReLU

FULL CONNECT 2

Batch Norm.
ReLU

FULL CONNECT 3

Soft max error
calculation

C
om

pu
ta

tio
n

do
m

in
an

t l
ay

er
s

M
em

or
y

do
m

in
an

t l
ay

er
s

Forward Backward

Fig. 2. Partitioning variations for VGG-F in the layer-block-wise
pipeline.

3. HARDWARE IMPLEMENTATION

3.1. Hardware model
The main purpose of this paper is to reduce memory
bandwidth and capacity for scalability of parallelism.
Memory performance gives large impacts to speedup. We
evaluate the hardware performance using the bus models.
The layer-block-wise pipeline potentially reduces weight
parameters and memory bandwidth on an I/O data bus. Fig.
3 presents a typical multithreaded SGD architecture. In this
model, each processing unit has the same network model
duplicated for multithreading. The dedicated parameter
server for weight update is on a shared I/O data bus to
communicate with the processing units. Each processing
unit holds weights W and delta weights dW in internal
memory. Actually, dW becomes 243.4 MB per processing
unit in VGG-F. This amount of memory is pushed to and
pulled from the parameter server by a DMA controller. An
important issue related to the multithreaded architecture is
data traffic concentration on the shared I/O data bus. The
memory bandwidth comes to 243.4×n MB at every mini-
batch step (where n is the number of workers). The sheared
bus brims over with communication among multiple

Input: MiniBatchInput0 … MiniBatchInputN−1
Output: W1 … WP
1: for T = 0 ... N+2P−2 do
2: Y0, mod(T/2P) = MiniBatchInputT
3: for S = 1 … P do
4: YS, mod((T−S+1)/(2P−2S+2)) = Forward(YS−1, mod((T−S+1)/(2P−2S+4)), WS)
5: end for
6: dYP+1 = Error(YP, mod((T−P+1)/2))
7: for S = P … 1 do
8: [dYS, dWS] = Backward(dYS+1, YS, mod((T−2P+S)/(2P−2S+2)), WS)
9: WS = Update(WS, dWS)

10: end for
11: end for

workers, which has restricted system throughput in data
parallelism [10-14].

Fig. 4 depicts a model for the layer-block-wise pipeline
with distributed memory and segmented I/O data buses. The
proposed architecture divides a network across a layer
dimension. Layers are put together to an arbitrary number of
blocks. Each worker performs different tasks in parallel. The
segmented I/O data bus is used for communication only
between two adjacent workers. The bus direction is always
fixed to a single side (a sender side or a receiver side). Each
worker receives and sends partial activations Y in forward
propagation; again, each worker receives and sends partial

deltas dY in the backpropagation. No communication exists
on weights W and or delta weights dW. The layer-block-
wise pipeline prevents traffic concentration and improves
memory bandwidth. Delay to external data communication
depends on a transfer data size. TABLE I and TABLE II
show the respective memory performance comparison
between the multithreaded SGD architecture and the
proposed layer-block-wise pipeline. It is noteworthy that, in
the layer-block-wise pipeline, the memory capacity and
memory bandwidth for activations and deltas are scaled up
linearly with a batch size, although they are reasonable
values at a typical batch size of 32 (BS = 32).

Internal
memory

DMA control

Processor

Internal
memory

DMA control

Processor

Internal
memory

DMA control

Processor

Worker for thread 1

Worker for thread 2

Worker for thread 3

Worker for thread n

Each worker sends
243.4 MB weight parameters

243.4 MB

243.4 MB

Parameter server

Weight parameter
update & unification

External data bus connection

Internal
memory

DMA control

Processor

Sh
ea

re
d

bu
s

co
nn

ec
tio

n

Total transfer amount of
sheared bus communication
243.4 x n MB

243.4 MB

243.4 MB

243.4 MB

243.4 MB

243.4 MB

243.4 MB

(a) Multithreaded architecture model

Parameter acquisition dW

Parameter sharing W

Weight unification
& update

(b) Multithreaded data flow

workers

Fig. 3. (a) Architectural model of shared-bus multithreading and
(b) its data flow.

Internal
memoryDMA

control
Processor

Worker for pipeline stage 1

Internal
memoryDMA

control
Processor

Internal
memoryDMA

control
Processor

Internal
memoryDMA

control
Processor

Worker for pipeline stage n

Se
gm

en
te

d
I/O

 d
at

a
bu

s
st

ru
ct

ur
e

19.0 MB

Input data (mini-batch = 32)

5.9 MB

5.9 MB

5.9 MB

5.5 MB

5.5 MB

5.5 MB

5.5 MB

Memory bandwidth

5.5 MB

5.9 MB

5.5 MB

5.5 MB

5.5 MB

Error output

Worker for pipeline stage 2

Worker for pipeline stage 3

Fo
rw

ar
d

pr
oc

es
s

B
ac

kw
ar

d
pr

oc
es

s

Backward
dY data

Forward
Y data

(b) Pipelined data flow

(a) Pipelined architecture model

Workers

Workers

Fig. 4. (a) Architectural model of the layer-block-wise pipeline and
(b) its data flow.

TABLE I

Memory capacity and memory bandwidth at four-degree of multithreads

W dW Y dY Y dY
Thread 1 243.45 243.45 7.31 7.31 233.92 233.92 Receive / Send
Thread 2 243.45 243.45 7.31 7.31 233.92 233.92 Receive / Send
Thread 3 243.45 243.45 7.31 7.31 233.92 233.92 Receive / Send
Thread 4 243.45 243.45 7.31 7.31 233.92 233.92 Receive / Send
Sub total 973.80 973.80 29.24 29.24 935.68 935.68

Total

Memory bandwidth

W / dW W / dW

Weight parameter
memory [MB]

Internal memory capacity
Transfer

data amount [MB]

243.45 / 243.45
243.45 / 243.45

243.45 / 243.45
243.45 / 243.45
243.45 / 243.45
243.45 / 243.45

4-degree of
multithreads

BS = 1 BS = 32

I/O data
memory [MB]

BS = 1Status

Total 973.8 / 973.8 973.8 / 973.8

243.45 / 243.45
243.45 / 243.45

BS = 32

2,006.08 3,818.96

TABLE II
Memory capacity and memory bandwidth at four-stage layer-block-wise pipeline

W dW Y dY Y dY BS = 1 BS = 32 BS = 1 BS = 32
Stage 1 Receive 0.60 19.26 Receive 0.19 5.98

Send 0.19 5.98 Send - -
Stage 2 Receive 0.19 5.98 Receive 0.17 5.53

Send 0.17 5.53 Send 0.19 5.98
Stage 3 Receive 0.17 5.53 Receive 0.17 5.53

Send 0.17 5.53 Send 0.17 5.53
Stage 4 Receive 0.17 5.53 Receive - -

Send - - Send 0.17 5.53
Sub total 243.45 243.45 45.89 9.17 1,468.48 293.44 Receive total 1.13 36.30 Receive total 0.53 17.04

Total Send total 0.53 17.04 Send total 0.36 17.04

234.61234.61

0.09

1.64

7.09 3.46 110.72

Weight parameter
memory [MB]

I/O data
memory [MB]

0.09

1.64

7.09

24.22

Backward process
Transfer

data amount [MB/batch]Status Status
Transfer

data amount [MB/batch]

775.04

463.04

221.44

8.96

Internal memory capacity Memory bandwidth
Forward process4-stage

pipeline

0.28 8.96

BS = 1 BS = 32

0.28

3.02 96.64

2.41 77.12

541.96 2,248.82

14.47

6.92

Fig. 5 portrays memory bandwidth trends in the
multithreaded SGD. A memory bandwidth of 974.0 MB is
required overall for send and receive processes to unify the
weight parameters when a parallelization degree is four. Fig.
6 presents memory bandwidth trends against the batch size
in the layer-block-wise pipeline. The memory bandwidth per
batch increases linearly with increasing mini-batch size. It is
noteworthy that layer-block-wise pipeline has different
values of memory bandwidth on forward and backward
processes. As described above, our target batch size is 32, in
which case the memory bandwidth both forward
propagation and back propagation are, respectively, 36.3
MB and 17.0 MB. The total memory bandwidth for the both
directions does not exceed 100.0 MB.

106

105

104

103

102

101

100

10-1

M
em

or
y

ba
nd

w
id

th
 [M

B
/b

at
ch

]
(B

S
=

32
)

1 2 4 8 16 32 64 128 256
Parallelization degree n

Memory bandwidth = 973.8 MB/batch
@ Parallelization = 4

With VGG-F network

Fig. 5. Memory bandwidth trends against the parallelization degree
in multithreading.

103

102

101

100

10-1

M
em

or
y

ba
nd

w
id

th
 [M

B
/b

at
ch

]

Batch size BS
1 2 4 8 16 32 64 128 256

Forward process Backward process

Linearly increasing

36.3 MB/batch
17.0 MB/batch

With VGG-F network

Fig. 6. Memory bandwidth trends against the batch size in the
layer-block-wise pipeline.

3.2. Performance evaluation
Fig. 7 shows a comparison of training convergences for the
naive SGD and the proposed layer-block-wise pipeline. The
convergence is the time when the miss rate comes to 75%. A
50,000-image dataset is used for training VGG-F; 50 images
per category are sampled from the ImageNet dataset. The
layer-block-wise pipeline is 2.0 times faster in the two-stage
pipeline, and is 3.5 times faster in the four-stage pipeline.
With eight pipeline stages, the acceleration factor is
saturated to 5.1. Fig. 8 presents a convergence speed
comparison. For a parallelization degree of four or fewer,
the layer-block-wise pipeline maintain almost same
convergence as multithreading.

Fig. 9 presents acceleration factors when the memory
capacity is varied. The internal memory amount depends on

the parallelization degree. In multithreading, the memory
capacity increases linearly with the parallelization degree,
although such is not the case in the proposed pipeline (only
activations and deltas are increased. The memory capacity
for weights is not changed). Therefore, the proposed
pipeline has less memory than the multithread for the same
parallelization degree. The layer-block-wise pipeline has
41% less memory when the parallelization degree is four,
with better acceleration performance per unit of memory
capacity: 2.25 GB for pipeline and 3.82 GB for multithread.

60

65

70

80

75

85

90

95

100
Naive SGD
2 pipeline SGD
4 pipeline SGD
8 pipeline SGD

= Speed x 1.0 (Original)
= Speed x 2.0
= Speed x 3.5
= Speed x 5.1

x3.5 speedup
@ 4 pipelined SGD

Normalized learning epochs [a.u.]

To
p-

5
er

ro
r r

at
e

[%
]

W/ VGG-F network

Fig. 7. Training convergence comparison between the
multithreaded SGD and the layer-block-wise pipeline.

Ac
ce

le
ra

tio
n

fa
ct

or

0

2

3

5

6

8

Parallelization degree n
8

7

4

1

7654321

Multithread SGD

Pipeline SGD

x1.12 speedup

x3.5

x3.1x2.3

x2.0

x1.0

x5.1

x7.0

x1.0

Parallelization Limit in VGG-F

W/ VGG-F network

Fig. 8. Training convergence comparison for parallelization
degrees of one, two, four, and eight.

0 8754321 6
Internal memory capacity [GB]

Ac
ce

le
ra

tio
n

fa
ct

or

Pipeline exhibits superiority

W/ VGG-F network
Multithread SGD

Pipeline SGD

0

2

3

5

6

8

7

4

1

x7.0

x5.1

x3.1
x2.3x2.0

x3.5

x1.0
x1.0

-41% saving memory
capacity

Fig. 9. Training convergence in the conventional multithreaded
SGD and the proposed layer-block-wise pipeline.

4. DISCUSSION

Much deeper networks such as ResNet [8] are attracting
attention for more accurate recognition. In multithreading,

higher memory bandwidth and more memory capacity will
be necessary for deeper networks. Hardware costs and
computation time will increase continuously. Realizing fast
yet low-cost hardware is expected even if the network goes
deeper. We have demonstrated superiority of our pipeline
architecture in terms of hardware cost reduction, but how to
partition a network remains as an issue to be tackled for a
more effective pipeline. Layers in the VGG-F network show
large variation in computation. Convolutional layers
dominantly require many more operations than other layers
such as a fully connected layer, a normalization layer,
pooling layers, and an activation layer. Even in the
convolutional layers in VGG-F, computations show wide
variation. To synchronize the pipeline stages strictly and to
avoid division loss of the pipeline, heterogeneous
architecture with dedicated processors is ideal. However,
such a system is nonsensical and virtually impossible.
Fortunately, in ResNet, variation in convolutional layers is
small. It will be easier to balance pipeline stages in
homogeneous workers. Another approach to balance
workloads in a pipeline is stochastic computing.
Computation in a heavier pipeline stage can be reduced
stochastically [22].

ACKNOWREDGEMENT

This study was carried out by the research grant from
Fujitsu Laboratories Ltd.

REFERENCES

[1] F. Rosenblatt, “The Perceptron: A Probabilistic Model for
Information Storage and Organization in the Brain,” Psychological
Review, vol. 65, no. 6, pp. 386-408, Nov. 1958.
[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323, pp.
533-536, Oct. 1986.
[3] K. Fukushima, “Neocognitron: A Self-Organizing Neural
Network Model for a Mechanism of Pattern Recognition
Unaffected by Shift in Position,” Biological Cybernetics, vol. 36,
no. 4, pp. 93-202, Apr. 1980.
[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,”
Proceedings of Neural Information Processing Systems (NIPS), pp.
1097-1105, Dec. 2012.
[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 770-778,
June 2016.
[6] A. Karpathy, “What I learned from competing against a
ConvNet on ImageNet,” Blog at
http://karpathy.github.io/2014/09/02/what-i-learned-from-
competing-against-a-convnet-on-imagenet/.
[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, pp. 436-444, May 2015.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Identity Mappings in
Deep Residual Networks,” Proceedings of European Conference
on Computer Vision (ECCV), arXiv:1603.05027, July 2016.
[9] A. Krizhevsky, “One weird trick for parallelizing convolutional
neural networks,” arXiv:1404.5997, Apr. 2014.
[10] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V.
Le, M. Z. Mao, M.’A. Ranzato, A. Senior, P. Tucker, K. Yang, and
A. Y. Ng, “Large Scale Distributed Deep Networks,” Proceedings
of Neural Information Processing Systems (NIPS), pp. 1223-1231,
Dec. 2012.
[11] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C.
Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I.
Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L.
Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D.
Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O.
Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X.
Zheng, “TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems,” arXiv:1603.04467, Mar.
2016.
[12] Y. Bengio, “Practical Recommendations for Gradient-Based
Training of Deep Architectures,” arXiv:1206.5533, Sep. 2012.
[13] S. Gupta, W. Zhang, F. Wang “Model Accuracy and Runtime
Tradeoff in Distributed Deep Learning: A Systematic Study,”
Proceedings of IEEE International Conference on Data Mining
(ICDM), arXiv:1509.04210, Dec. 2016.
[14] J. Keuper, and F.-J. Pfreundt, “Distributed Training of Deep
Neural Networks: Theoretical and Practical Limits of Parallel
Scalability,” arXiv:1609.06870, Dec. 2016.
[15] H. Yoon, J. H. Nang, and S. R. Maeng, “A Distributed
Backpropagation Algorithm of Neural Networks on Distributed-
Memory Multiprocessors,” Proceedings of Symposium on the
Frontiers of Massively Parallel Computation, pp. 358-363, Oct.
1990.
[16] A. Petrowski, G. Dreyfus, and C. Girault “Performance
Analysis of a Pipelined Backpropagation Parallel Algorithm,”
IEEE Transactions on Neural Networks, vol. 4, no. 6, pp. 970-981,
Nov 1993.
[17] S. Zickenheiner, M. Wendt, B. Klauer, and K. Waldschmidt,
“Pipelining and Parallel Training of Neural Networks on
Distributed-Memory Multiprocessors,” Proceedings of IEEE
International Conference on Neural Networks, pp. 2052-2057,
June 1994.
[18] K. Vesely, L. Burget, and F. Grezl, “Parallel Training of
Neural Networks for Speech Recognition,” Proceedings of IEEE
International Conference on Neural Networks, pp. 2934-2937, Sep.
2010.
[19] F. Seide, G. Li, and D. Yu, “Conversational Speech
Transcription Using Context-Dependent Deep Neural Networks,”
Proceedings of ISCA Interspeech, pp. 437-440, Aug. 2011.
[20] X. Chen, A. Eversole, G. Li, D. Yu, and F. Seide, “Pipelined
Back-Propagation for Context-Dependent Deep Neural Networks,”
Proceedings of ISCA Interspeech, pp. 26-29, Sep. 2012.
[21] MatConvNet at http://www.vlfeat.org/matconvnet/.
[22] G. Huang, Y. Sun, Z. Liuy, D. Sedra, and K. Q. Weinberger,
“Deep Networks with Stochastic Depth,” arXiv:1603.09382, July
2016.

