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ABSTRACT 
 

This paper describes a pipelined stochastic gradient descent 
(SGD) algorithm and its hardware architecture with a 
memory distributed structure. In the proposed architecture, a 
pipeline stage takes charge of multiple layers: a “layer 
block.” The layer-block-wise pipeline has much less weight 
parameters for network training than conventional 
multithreading because weight memory is distributed to 
workers assigned to pipeline stages. The memory capacity 
of 2.25 GB for the four-stage proposed pipeline is about half 
of the 3.82 GB for multithreading when a batch size is 32 in 
VGG-F. Unlike multithreaded data parallelism, no 
parameter server for weight update or shared I/O data bus is 
necessary. Therefore, the memory bandwidth is drastically 
reduced. The proposed four-stage pipeline only needs 
memory bandwidths of 36.3 MB and 17.0 MB per batch, 
respectively, for forward propagation and backpropagation 
processes, whereas four-thread multithreading requires a 
bandwidth of 974 MB overall for send and receive processes 
to unify its weight parameters. At the parallelization degree 
of four, the proposed pipeline maintains training 
convergence by a factor of 1.12, compared with the 
conventional multithreaded architecture although the 
memory capacity and the memory bandwidth are decreased. 

Index Terms— Deep neural network, Model 
Parallelism, Pipelined backpropagation, Distributed 
memory, Memory capacity reduction, Memory bandwidth 
reduction 

 
1. INTRODUCTION 

 
The perceptron, a primitive artificial neural network, has a 
single layer comprising input synapses and output neurons 
as nonlinear activations [1]. The multilayer perceptron is an 
extension of the single-layer perceptron with hidden layers, 
in which training is conducted through backpropagation [2].  
A convolutional neural network (CNN) imitates part of the 
human visual cortex in the cerebrum. It is an extension of a 

multilayer perceptron. Originally, the CNN was developed 
for handwritten character recognition, and was named 
“neocognitron” [3]. Actually, CNNs have been scaled up 
with numerous synapses and neurons in deeper layers. 
Recently, a deeper network having more than three layers is 
generally called as a “deep neural network (DNN)” or “deep 
learning.” The DNN has exhibited its potential for image 
recognition ability. Its accuracy is improving year by year. 
At the ImageNet Large Scale Visual Recognition 
Competition (ILSVRC), AlexNet with five CNN layers and 
three fully connected layers made an overwhelming 
achievement over conventional feature-based image 
recognition schemes in 2012 [4]. Its top-five error rate was 
15.3%, which was more than 10% better than the second-
best entry based on the handmade features. Since 2012, the 
error rate in image recognition has been improved by DNNs. 
At ILSVRC 2015, ResNet, comprising with 151 CNN layers 
and one fully connected layer, remarkably won the 
competition by a top-five error rate of only 3.57% [5], 
which is better than the 5.1% figure representing human 
ability [6]. Today, DNNs are applied mainly to image 
recognition applications, but DNNs themselves has general-
purpose characteristics and abilities; DNNs are now 
attracting attention not only in for engineering, but also for 
use in medicine, pharmacy, and biology applications [7]. 

As DNNs have generality with a deeper and larger-
scale network, their error rates of cognition continue to 
improve. Accordingly, computational times become much 
longer, particularly those for training purpose. AlexNet took 
5–6 days to train 90 epochs of 1.2-M ImageNet picture data-
sets on two NVIDIA GTX580 GPUs [5]. Also, ResNet-200 
(ResNet with 200 layers) designed for ImageNet, took three 
weeks for its training, even with eight GPGPUs used in 
parallel computing [8]. 

There are two concepts of parallelism to shorten the 
training time for an enormous network [9]: 
 Data parallelism has divided dimensions of data. 

Each worker trains on the same network but with a 
different data example. 



 Model parallelism has divided dimensions of a 
model (network). Each worker trains a different 
part of the model (network). 

Mini-batch stochastic gradient descent (SGD) has faster 
in error rate convergence than pure SGD because a matrix-
matrix operation can be better optimized than a matrix-
vector one. Multithreaded mini-batch SGD is often 
exploited as a data parallelism for additional speeding up. 
Deploying homogeneous workers and implementing the 
same software for them is simple. Each worker has the same 
network, but processes a different mini batch. In other 
words, a single network is trained with different mini 
batches. Each worker updates different weight parameters. 
All workers must unify their own weights. The unified 
weights are usually obtained by averaging their own weights 
received from all workers. Then the unified weights are sent 
back to the workers for the next mini-batch step. The weight 
unification and replication are applied repeatedly. They 
invariably consume memory bandwidth. As the number of 
workers is increased, memory bandwidth turns out to be 
linearly wider [10, 11]. In terms of memory capacity, each 
worker must hold all weights and activations of a whole 
network in the multithreaded mini-batch SGD. The 
multithreaded mini-batch SGD tends to be less effective in 
convergence than a single-threaded one because its effective 
batch size is multiplied by the data parallelism. Therefore, 
updates per epoch result in a lower number [12–14]. To 
reduce the memory bandwidth and capacity and to maintain 
scalability of parallelism, the model parallelism is useful. Of 
course, the model parallelism can be combined with data 
parallelism. 

Pipelined backpropagation with distributed memory has 
been studied for decades as a kind of data parallelism. In the 

1990s, node parallelism [15] and layer-based pipelined 
backpropagation schemes [16, 17] were proposed for epoch 
learning. Since 2010, a pipelined DNN combined with a 
hidden Marcov model has been proposed for speech 
recognition to shorten the GPGPU training time [18−20]. As 
described in this paper, we revisit the use of pipelined DNN 
for image recognition with ImageNet, and propose another 
model parallelism with layer blocks. The proposed layer-
block-wise pipeline with segmented bus architecture 
suppresses whole memory capacity and transfer memory 
bandwidth to maintain scalability of parallelism. 

This paper is organized as follows: Section 2 presents 
the layer-block-wise pipeline algorithm with software 
implementation. Hardware architecture and its performance 
are explained in Section 3. The final section presents 
discussion of issues in the proposed pipeline. 

 
2. LAYER-BLOCK-WISE PIPELINE  

 
Fig. 1 depicts the proposed layer-block-wise pipeline as a 
conceptual diagram. In the figure, each pipeline stage with 
multiple layers has a worker for both forward propagation 
and backpropagation. A worker takes charge of one or more 
layers called “layer blocks”, shown in square model. The 
layer-block-wise pipeline is categorized as a kind of model 
parallelism. Its layer dimensions are divided by m or a 
smaller integer (where m is the number of layers including a 
layer for error calculation scheme). The number of pipeline 
divisions depends on the DNN models. Each worker 
executes a different task in parallel. A worker keeps a single 
weight matrix corresponding to its own layer network. 
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Fig. 1. Conceptual data-flow diagram of the proposed layer-block-wise pipeline with weight update latency. 
 

Hereinafter, parameters P, T, and S respectively denote 
the number of pipeline stages (number of layer blocks), a 
current mini-batch step, and a current pipeline stage (current 
layer block). In each pipeline stage, forward propagation is 
conducted on a stage-by-stage basis. After certain latency, 
backpropagation is executed with corresponding activations; 
then weights are updated. Therefore, each pipeline stage 
processes a different but consecutive mini batch, and 
respectively propagates its activations and deltas down and 
up simultaneously to adjacent pipeline stages. 

In forward propagation, the (T−S+1)-th mini batch is 
processed at pipeline stage S. Its activations are transferred 
down to the next pipeline S+1. Finally, a mini batch is 
processed at the last pipeline stage P, where errors are 
calculated. The errors are going to be backpropagated at a 
next time step T+1. 

In backpropagation, the (T−2P+S)-th mini batch is 
processed at a pipeline stage S. It is noteworthy that a 
worker at the pipeline stage S must save 2P−2S+2 datasets 
of forward activations for the current and upcoming 



backpropagations. Deltas are calculated with the oldest 
dataset of activations. Weights are updated with the deltas. 
The deltas in the shallowest layer in the pipeline stage S are 
transferred up to the upstream pipeline stage S−1 for a next 
time step T+1. In this manner, plural mini batches are 
propagated back and forth simultaneously without waiting 
for a naive parameter update. The weights are updated with 
a latency of 2P−2S+1. It can be said that the proposed 
pipeline has a concept of approximate computing instead of 
the naive SGD. 

To evaluate the accuracy and to verify training 
convergence in the proposed layer-block-wise pipeline 
model, we implemented Algorithm 1 with MatConvNet [21]. 
N signifies the total number of input mini-batch steps (the 

total number of time steps for input mini batches). The input 
is mini-batch data. In forward propagation, a vector of 
activations YS, x for a pipeline stage S is calculated first, 
where x is a dataset of activations to be saved (0 ≤ x ≤ 
2P−2S+2). After forward propagation is completed, an error 
vector is prepared as dYP+1 for backpropagation. Then, a 
vector of delta dYS and a matrix of delta weights dWS for a 
pipeline stage S are calculated. A matrix of weights WS is 
updated with dWS. 

To demonstrate the layer-block-wise pipeline, we 
adopted VGG-F as a network model [20]. VGG-F has five 
CNN layers and three fully-connected layers, as presented in 
Fig. 2(a), which classifies 1,000 categories. Figs. 2(b)-(d) 
present two-stage, four-stage, and eight-stage pipeline cases. 

 
Algorithm 1. Software implementation of the proposed layer-block-wise pipeline. 
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Fig. 2. Partitioning variations for VGG-F in the layer-block-wise 
pipeline. 

 
3. HARDWARE IMPLEMENTATION 

 
3.1. Hardware model 
The main purpose of this paper is to reduce memory 
bandwidth and capacity for scalability of parallelism. 
Memory performance gives large impacts to speedup. We 
evaluate the hardware performance using the bus models. 
The layer-block-wise pipeline potentially reduces weight 
parameters and memory bandwidth on an I/O data bus. Fig. 
3 presents a typical multithreaded SGD architecture. In this 
model, each processing unit has the same network model 
duplicated for multithreading. The dedicated parameter 
server for weight update is on a shared I/O data bus to 
communicate with the processing units. Each processing 
unit holds weights W and delta weights dW in internal 
memory. Actually, dW becomes 243.4 MB per processing 
unit in VGG-F. This amount of memory is pushed to and 
pulled from the parameter server by a DMA controller. An 
important issue related to the multithreaded architecture is 
data traffic concentration on the shared I/O data bus. The 
memory bandwidth comes to 243.4×n MB at every mini-
batch step (where n is the number of workers). The sheared 
bus brims over with communication among multiple 

Input: MiniBatchInput0 … MiniBatchInputN−1 
Output: W1 … WP 
1: for T = 0 ... N+2P−2 do 
2:     Y0, mod(T/2P) = MiniBatchInputT 
3:     for S = 1 … P do 
4:         YS, mod((T−S+1)/(2P−2S+2)) = Forward(YS−1, mod((T−S+1)/(2P−2S+4)), WS) 
5:     end for 
6:     dYP+1 = Error(YP, mod((T−P+1)/2)) 
7:     for S = P … 1 do 
8:         [dYS, dWS] = Backward(dYS+1, YS, mod((T−2P+S)/(2P−2S+2)), WS) 
9:         WS = Update(WS, dWS) 

10:     end for 
11: end for 



workers, which has restricted system throughput in data 
parallelism [10-14]. 

Fig. 4 depicts a model for the layer-block-wise pipeline 
with distributed memory and segmented I/O data buses. The 
proposed architecture divides a network across a layer 
dimension. Layers are put together to an arbitrary number of 
blocks. Each worker performs different tasks in parallel. The 
segmented I/O data bus is used for communication only 
between two adjacent workers. The bus direction is always 
fixed to a single side (a sender side or a receiver side). Each 
worker receives and sends partial activations Y in forward 
propagation; again, each worker receives and sends partial 

deltas dY in the backpropagation. No communication exists 
on weights W and or delta weights dW. The layer-block-
wise pipeline prevents traffic concentration and improves 
memory bandwidth. Delay to external data communication 
depends on a transfer data size. TABLE I and TABLE II 
show the respective memory performance comparison 
between the multithreaded SGD architecture and the 
proposed layer-block-wise pipeline. It is noteworthy that, in 
the layer-block-wise pipeline, the memory capacity and 
memory bandwidth for activations and deltas are scaled up 
linearly with a batch size, although they are reasonable 
values at a typical batch size of 32 (BS = 32). 
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Fig. 3. (a) Architectural model of shared-bus multithreading and 
(b) its data flow. 
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Fig. 4. (a) Architectural model of the layer-block-wise pipeline and 
(b) its data flow. 

 
TABLE I 

Memory capacity and memory bandwidth at four-degree of multithreads 

W dW Y dY Y dY
Thread 1 243.45 243.45 7.31 7.31 233.92 233.92 Receive / Send
Thread 2 243.45 243.45 7.31 7.31 233.92 233.92 Receive / Send
Thread 3 243.45 243.45 7.31 7.31 233.92 233.92 Receive / Send
Thread 4 243.45 243.45 7.31 7.31 233.92 233.92 Receive / Send
Sub total 973.80 973.80 29.24 29.24 935.68 935.68

Total

Memory bandwidth

W       /     dW W       /     dW

Weight parameter
memory [MB]

Internal memory capacity
Transfer

data amount [MB]

243.45  /  243.45
243.45  /  243.45

243.45  /  243.45
243.45  /  243.45
243.45  /  243.45
243.45  /  243.45

4-degree of
multithreads

BS = 1 BS = 32

I/O data
memory [MB]

BS = 1Status

Total 973.8   /  973.8 973.8   /  973.8 

243.45  /  243.45
243.45  /  243.45

BS = 32

2,006.08 3,818.96  
 

TABLE II 
Memory capacity and memory bandwidth at four-stage layer-block-wise pipeline 

W dW Y dY Y dY BS = 1 BS = 32 BS = 1 BS = 32
Stage 1 Receive 0.60 19.26 Receive 0.19 5.98

Send 0.19 5.98 Send - -
Stage 2 Receive 0.19 5.98 Receive 0.17 5.53

Send 0.17 5.53 Send 0.19 5.98
Stage 3 Receive 0.17 5.53 Receive 0.17 5.53

Send 0.17 5.53 Send 0.17 5.53
Stage 4 Receive 0.17 5.53 Receive - -

Send - - Send 0.17 5.53
Sub total 243.45 243.45 45.89 9.17 1,468.48 293.44 Receive total 1.13 36.30 Receive total 0.53 17.04

Total Send total 0.53 17.04 Send total 0.36 17.04

234.61234.61

0.09

1.64

7.09 3.46 110.72

Weight parameter
memory [MB]

I/O data
memory [MB]

0.09

1.64

7.09

24.22

Backward process
Transfer

data amount [MB/batch]Status Status
Transfer

data amount [MB/batch]

775.04

463.04

221.44

8.96

Internal memory capacity Memory bandwidth
Forward process4-stage

pipeline

0.28 8.96

BS = 1 BS = 32

0.28

3.02 96.64

2.41 77.12

541.96 2,248.82

14.47

6.92

 



Fig. 5 portrays memory bandwidth trends in the 
multithreaded SGD. A memory bandwidth of 974.0 MB is 
required overall for send and receive processes to unify the 
weight parameters when a parallelization degree is four. Fig. 
6 presents memory bandwidth trends against the batch size 
in the layer-block-wise pipeline. The memory bandwidth per 
batch increases linearly with increasing mini-batch size. It is 
noteworthy that layer-block-wise pipeline has different 
values of memory bandwidth on forward and backward 
processes. As described above, our target batch size is 32, in 
which case the memory bandwidth both forward 
propagation and back propagation are, respectively, 36.3 
MB and 17.0 MB. The total memory bandwidth for the both 
directions does not exceed 100.0 MB. 
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Fig. 5. Memory bandwidth trends against the parallelization degree 
in multithreading. 
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Fig. 6. Memory bandwidth trends against the batch size in the 
layer-block-wise pipeline. 
 
3.2. Performance evaluation 
Fig. 7 shows a comparison of training convergences for the 
naive SGD and the proposed layer-block-wise pipeline. The 
convergence is the time when the miss rate comes to 75%. A 
50,000-image dataset is used for training VGG-F; 50 images 
per category are sampled from the ImageNet dataset. The 
layer-block-wise pipeline is 2.0 times faster in the two-stage 
pipeline, and is 3.5 times faster in the four-stage pipeline. 
With eight pipeline stages, the acceleration factor is 
saturated to 5.1. Fig. 8 presents a convergence speed 
comparison. For a parallelization degree of four or fewer, 
the layer-block-wise pipeline maintain almost same 
convergence as multithreading. 

Fig. 9 presents acceleration factors when the memory 
capacity is varied. The internal memory amount depends on 

the parallelization degree. In multithreading, the memory 
capacity increases linearly with the parallelization degree, 
although such is not the case in the proposed pipeline (only 
activations and deltas are increased. The memory capacity 
for weights is not changed). Therefore, the proposed 
pipeline has less memory than the multithread for the same 
parallelization degree. The layer-block-wise pipeline has 
41% less memory when the parallelization degree is four, 
with better acceleration performance per unit of memory 
capacity: 2.25 GB for pipeline and 3.82 GB for multithread. 
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Fig. 7. Training convergence comparison between the 
multithreaded SGD and the layer-block-wise pipeline. 
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Fig. 9. Training convergence in the conventional multithreaded 
SGD and the proposed layer-block-wise pipeline. 

 
4. DISCUSSION 

 
Much deeper networks such as ResNet [8] are attracting 
attention for more accurate recognition. In multithreading, 



higher memory bandwidth and more memory capacity will 
be necessary for deeper networks. Hardware costs and 
computation time will increase continuously. Realizing fast 
yet low-cost hardware is expected even if the network goes 
deeper. We have demonstrated superiority of our pipeline 
architecture in terms of hardware cost reduction, but how to 
partition a network remains as an issue to be tackled for a 
more effective pipeline. Layers in the VGG-F network show 
large variation in computation. Convolutional layers 
dominantly require many more operations than other layers 
such as a fully connected layer, a normalization layer, 
pooling layers, and an activation layer. Even in the 
convolutional layers in VGG-F, computations show wide 
variation. To synchronize the pipeline stages strictly and to 
avoid division loss of the pipeline, heterogeneous 
architecture with dedicated processors is ideal. However, 
such a system is nonsensical and virtually impossible. 
Fortunately, in ResNet, variation in convolutional layers is 
small. It will be easier to balance pipeline stages in 
homogeneous workers. Another approach to balance 
workloads in a pipeline is stochastic computing. 
Computation in a heavier pipeline stage can be reduced 
stochastically [22]. 
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