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Abstract—This paper presents an energy-efficient spectral 

analysis method for the Internet of things. The objective of this 

work is to reduce the energy consumption of edge devices. The 

proposed method uses an autoregressive (AR) model for spectral 

analysis instead of the discrete Fourier transform, and its 

calculation process is distributed to the edge device and a base 

station by considering the energy consumption tradeoff of the data 

processing and the data communication. In this work, the Yule–

Walker method is employed for the AR coefficient calculation. The 

calculation process of Yule–Walker method can be divided into 

two parts: an autocorrelation calculation and an AR coefficient 

calculation. The autocorrelation calculation is implemented in the 

edge devices, and its dedicated hardware is designed using Verilog 

HDL. Meanwhile, the AR coefficient is calculated in the base 

station and is used for the spectral analysis. According to this 

distributed processing approach, the energy consumption of the 

edge device can be reduced compared with conventional DFT 

approaches using the fast Fourier transform (FFT). The system 

level energy consumption is evaluated assuming the IoT edge 

device, which has a wireless transceiver using Bluetooth low 

energy. The evaluation results show that the proposed method can 

reduce 79% of the edge device energy consumption for spectral 

analysis in a practical application. 

 
Index Terms—Autoregressive (AR) model, data compression, 

edge computing, energy efficient devices, low power devices and 

circuits, spectral analysis, Yule–Walker method  

 

I. INTRODUCTION 

HE energy consumption of edge devices is an important 

issue of the Internet of things (IoT). In many applications, 

the edge device is powered by a battery, and the battery capacity 

is limited by constraints such as device size, weight, and life 

time. When many edge devices exist in the system, it is 

impractical to frequently replace or recharge the battery. 

Although energy harvesting has also attracted attention, the 

supply energy is limited in many cases. Therefore, an energy-

efficient system design is important. 

Recent edge devices contain wireless transceivers such as 
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Bluetooth Low Energy (BLE), ZigBee, and LoRaWAN. 

However, the wireless communication circuit consumes a 

significant amount of energy, and it occupies a large ratio in the 

total energy consumption of the edge device [1]. Data 

compression is a straightforward method to reduce 

communication energy dissipation. In particular, feature 

extraction is effective because it can reduce the transmission 

data size when only the necessary feature is transmitted from 

the edge device to a base station. Data compression also 

contributes to the efficiency of the wireless communication 

channel and the memory capacity reduction in edge devices. 

However, feature extraction requires processing energy. 

Therefore, we should consider the energy tradeoff between data 

processing and data communication to reduce the energy 

consumption of edge devices.  

This paper focuses on the spectral analysis as the feature 

extraction method. The spectral analysis is widely used in many 

applications of IoT, such as structural health monitoring [2], 

failure prediction of motors [3], speech analysis [4], and human 

heart beat variability analysis [5]. The discrete Fourier 

transform (DFT) is generally used for spectral analysis because 

the fast Fourier transform (FFT) algorithm can obtain an 

accurate spectrum with minimal calculation. Furthermore, as 

most calculations are composed of multiplication and 

accumulation, it can be easily implemented in a dedicated 

hardware. 

In this work, we employed an autoregressive (AR)-model-

based spectral analysis approach instead of the DFT to improve 

the energy dissipation of the edge devices. The AR model is a 

linear predictive modeling technique, which assumes that the 

current value of a signal can be described by a finite linear 

aggregate of the previous values. The AR model can be used 

for spectral analysis as an alternative to the Fourier transform 

[6]. The details of the AR model and spectral estimation are 

described in Section II. The performance evaluation and 

hardware implementation results of this method are compared 

with the FFT in Section III. 
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When the model order of the AR model is high, the total 

computational amount of the AR-model-based approach is 

larger than that of the FFT. To overcome this drawback, we 

divide the calculation process into two parts: autocorrelation 

calculation and AR coefficient calculation, and only the 

autocorrelation calculation part is implemented in the edge 

device. When using the Yule–Walker method [6], only the 

autocorrelation output is required for the AR coefficient 

calculation and spectral analysis [7]. Furthermore, the data size 

of the autocorrelation output is much smaller than that of the 

power spectrum, which is the output of the FFT. Therefore, the 

communication energy can be reduced and the AR coefficient 

calculation can be implemented in the base station.  

Fig. 1 shows a system-level design of the proposed method. 

The edge device has a dedicated hardware for the 

autocorrelation calculation to reduce energy dissipation. When 

the total energy consumption of the autocorrelation calculation 

and transmission is smaller than the energy consumption of the 

FFT calculation and power spectrum transmission, the 

proposed method can improve the energy efficiency of the 

spectral analysis. This tradeoff is discussed in Section IV. 

II. AUTOREGRESSIVE MODEL AND SPECTRAL ANALYSIS 

DFT, which is classified as a nonparametric method, is 

generally used for spectral analysis. Nevertheless, this paper 

focuses on the AR model, which is a parametric method, to 

improve the energy efficiency of the spectral analysis for the 

IoT. The AR model is a linear predictive modeling technique, 

which assumes that the current value of a signal can be 

described by a finite linear aggregate of the previous values. 

The AR model can be used for spectral analysis as an alternative 

to the Fourier transform [6]. 

A. Autoregressive (AR) Model 

The AR model expresses time-series data 𝑥 at time 𝑡 using 

its past time-series data and white noise 𝑤  as the following 

equation: 

𝑥𝑡 =  ∑ 𝑎𝑘𝑥𝑡−𝑘 + 𝑤𝑡

𝑚

𝑘=1

 (1) 

where 𝑎𝑘 is the AR coefficient; it is a weight that indicates how 

much data of a certain time in the past influences the current 

data. 𝑚 is the AR order, which is a parameter that determines 

the past search period in the AR model. 𝑤𝑡  indicates the 

prediction error between the linear sum of the past data and the 

actual current data. 

Subsequently, the power spectral density (PSD) of the time-

series data 𝑥 can be obtained using AR coefficients 𝑎𝑘 as the 

following equation: 

𝑃𝑆𝐷(𝑓) =
1

𝐹𝑠[𝐻𝑧]

𝑒𝑚

|1 + ∑ 𝑎𝑘𝑒−
2𝜋𝑖𝑘𝑓

𝐹𝑠𝑚
𝑘=1 |

2 
(2) 

Here, 𝐹𝑠 is the sampling frequency, and 𝑒𝑚 is the variance of 

the prediction error. 𝑓 represents the frequency component of 

the PSD. 

The model order 𝑚  is the hyperparameter, which is 

determined by the application requirement. For example, the 

Akaike information criterion (AIC) [8] and Bayesian 

information criterion (BIC) [8] are used for the AR order 

determination. Herein, we evaluate the performance of the 

spectral analysis with a wide range of model order to 

accommodate various IoT applications. It is also variable in our 

hardware implementation, as described in Section III. 

As described above, the PSD is estimated using the AR 

coefficient 𝑎𝑘. In other words, the AR coefficient estimation is 

the key factor in this approach. Several algorithms can be used 

to estimate the AR coefficient: Burg’s method [7], covariance 

method [7], and the Yule–Walker method [7]. Herein, we 

evaluate Burg’s method and the Yule–Walker method as the 

candidates for AR coefficient estimation for IoT applications. 

The covariance method and modified covariance method are 

not considered in this work, because they are not in the form of 

the Toeplitz matrix [9], and it is difficult to reduce the amount 

of calculation. 

B. Burg’s Method and Fast Burg’s Method 

In the original Burg’s method [10], the AR coefficient is 

calculated by the least-squares method for minimizing the 

power 𝑃𝑚 of a forward prediction error vector 𝑓𝑖  and a 

backward prediction error vector 𝑏𝑖 as described below: 

𝑓𝑖 = ∑ 𝑎𝑘𝑥𝑖−𝑘

𝑚

𝑘=0

𝑏𝑖 = ∑ 𝑎𝑘𝑥𝑖−𝑚+𝑘

𝑚

𝑘=0

 (3) 

𝑃𝑚 = ∑ {𝑓𝑖
2

𝑁−𝑚

𝑖=1

+ 𝑏𝑖
2} (4) 

Here, 𝑁  denotes the signal length. Subsequently, the AR 

coefficient 𝑎𝑘 is restricted by the Levinson–Durbin recursion as 

below [11]:  

𝑎𝑖+1 = 𝑎𝑖 + 𝑎𝑚𝑚𝑎𝑚−𝑗,𝑚−1     𝑗 = 1,2, … , 𝑚 − 1 (5) 

Under this constraint equation, parameter 𝜆𝑖 that minimizes 𝑃𝑚 

is derived as below: 

𝜆𝑖  = −
2𝑏𝑖𝑓𝑖

𝑓𝑖𝑓𝑖 + 𝑏𝑖𝑏𝑖

 (6) 

Subsequently, the (𝑖 + 1)-th order AR coefficient 𝑎𝑖+1 can be 

calculated by the 𝑖-th order AR coefficient 𝑎𝑖 as follows: 

𝑎𝑖+1 = [
𝑎𝑖

0
] + 𝜆𝑖𝐽 [

𝑎𝑖

0
] (7) 

 
Fig. 1. Proposed system design for AR-model-based spectral analysis. 
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𝐽 = [

0 ⋯ 0 1
⋮ ⋰ 1 0
0 ⋰ ⋰ ⋮
1 0 ⋯ 0

] (8) 

Here, J represents an (𝑖 + 1) × (𝑖 + 1) size matrix that inverts 

the same size matrix vertically and horizontally. 

To reduce the computational amount of these calculations, a 

fast Burg’s method [10] has been proposed. In this method, 

without explicitly calculating the forward prediction error 

energy 𝑓𝑖  and the backward prediction error energy 𝑏𝑖 , the 

reflection coefficient 𝑘𝑖 is derived as follows: 

𝑘𝑖 = −
[𝑎𝑖

𝑇 0]𝐽𝑔𝑖

[𝑎𝑖
𝑇  0]𝑔𝑖

 (9) 

where 

𝑔𝑖 = [
𝑔𝑖 + 𝑘𝑖−1 𝐽𝑔𝑖−1 + 𝛥𝑅𝑖+1𝑎𝑖

𝑟𝑖+1
𝑇 𝑎𝑖

] (10) 

𝛥𝑅𝑖+1 =  − [

𝑥𝑖

⋮
𝑥0

] [𝑥𝑖  …  𝑥0] 

                  − [

𝑥𝑁−𝑖−1

⋮
𝑥𝑁−1

] [𝑥𝑁−𝑖−1  …  𝑥𝑁−1] 

(11) 

𝑟𝑖+1 =  [

2𝑐𝑖+1

𝑟𝑖 − [

𝑥0

⋮
𝑥𝑖−1

] 𝑥𝑖 − [

𝑥𝑁−1

⋮
𝑥𝑁−𝑖

] 𝑥𝑁−𝑖−1
] (12) 

𝑐𝑖 =  [𝑥0  … 𝑥𝑁−𝑖−1] [

𝑥𝑖

⋮
𝑥𝑁−1

] (13) 

Here, 𝑐𝑖 represents the autocorrelation． 

C. Yule–Walker Method 

The Yule–Walker method [12] can estimate the AR 

coefficient using the autocorrelation of the input data. The AR 

coefficient 𝑎𝑘(𝑘 = 0, … , 𝑚)  is calculated by solving the 

following Yule–Walker equation: 

[

𝑅0 𝑅1

𝑅1 𝑅0
⋯

𝑅𝑚−1

𝑅𝑚−2

⋮ ⋱ ⋮
𝑅𝑚−1 𝑅𝑚−2 ⋯ 𝑅0

] [

𝑎1

𝑎2

⋮
𝑎𝑚

]  =  [

𝑅1

𝑅2

⋮
𝑅𝑚

] (14) 

𝑅𝑘(𝑘 = 0, … , 𝑚) is the autocorrelation of the time-series data 

and it can be calculated by the following equation: 

𝑅𝑘 =  ∑ 𝑥𝑗𝑥𝑗−𝑘

𝑁−1

𝑗=𝑘

 (𝑘 = 0, … , 𝑚) (15) 

In the straightforward manner, the computational amount to 

solve (14) including the inverse matrix is O(𝑚4). However, the 

determinant of (14) is in the form of the Toeplitz matrix, and it 

can be solved easily using the Levinson–Durbin algorithm 

(LDA) [12] as follows: 

𝑎1 =  −
𝑅1

𝑅0

, 𝑒1 =  𝑅0 +  𝑅1𝑎1 (16) 

𝑎𝑖+1 = [
𝑎𝑖

0
] + 𝜆𝑖𝐽 [

𝑎𝑖

0
], (i > 1) (17) 

𝜆𝑖 = −
∑ 𝑎𝑗 𝑅𝑖+1−𝑗

𝑖
𝑗=0

𝑒𝑖

 (18) 

𝑒𝑖+1 = (1 − 𝜆𝑖
2)𝑒𝑖 (19) 

III. COMPARISON OF SPECTRAL ANALYSIS METHODS 

The performance evaluation and hardware implementation 

results of the spectral analysis methods are described in this 

Section. 

A. Comparison of Computational Amount 

First, we evaluate the computational amount of the edge 

device for the FFT, fast Burg’s method, and Yule–Walker 

method. Here, only real values are assumed as the input data, 

and the number of FFT calculations is computed based on this 

assumption [13]. It is noteworthy that the base station can 

calculate the PSD from the AR coefficients when using the fast 

Burg’s method. Furthermore, when using the Yule–Walker 

method, the base station only requires the autocorrelation 

results for the PSD calculation, because the AR coefficients can 

be calculated only using the autocorrelation results as shown in 

(16)-(19). In contrast, the FFT cannot realize these distributed 

computing because the intermediate data size of the FFT is not 

smaller than the input data size. Therefore, the power spectrum 

calculation of the FFT, the autocorrelation, the AR coefficient 

calculation of the fast Burg’s method, and the autocorrelation 

calculation of the Yule–Walker method are compared as the 

required computational amount in the edge device. 

Fig. 2 shows the comparison of the number of multiplications 

in the edge device. Subsequently, the number of multiplications 

of the real-value FFT is 𝑁𝑙𝑜𝑔2𝑁, when the input data length is 

𝑁  [13]. The number of multiplications of the fast Burg’s 

method and Yule–Walker method are 𝑁𝑚 + 5𝑚2  [10] and 

𝑁𝑚 − 𝑚2/2, respectively, when the AR order is 𝑚. As shown 

in Fig. 2, the FFT is advantageous in the number of 

multiplications when the AR order is high, although the 

breakeven point is shifted with the long data length. However, 

the fast Burg’s method and Yule–Walker method can reduce 

the transmitting data size as described above. Because the 

wireless data transmission energy is often larger than the 

calculation energy, this advantage is efficient for system-level 

energy reduction. This tradeoff is discussed in Section IV.  

B. Accuracy of Estimated PSD 

Fig. 3 shows the comparison of the estimated PSD using FFT, 

fast Burg’s method, and the Yule–Walker method. The input 

data is a mixed signal of 25, 40, and 55 Hz sine waves. The 

input signal is resampled by 256-Hz sampling rate, and the data 

length is set to 256 (1.0 s). The Hamming window is adopted in 

each method. The AR order of the fast Burg’s method and 

Yule–Walker method is set to 25. The Yule–Walker method is 

calculated by both the floating point and 16-bit fixed point. As 

shown in Fig. 3, although the estimated peak power of the PSD 

is fluctuated, the peak frequencies are detected accurately using 
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the AR-model-based methods including the fixed-point Yule–

Walker method. 

Next, we evaluated the PSD estimation accuracy with a 

practical application example: heart rate variability analysis. 

Fig. 4 shows a time series of the human heart beat. The 

frequency characteristics of the heart beat interval fluctuation 

indicate the activity of autonomic nerves [5].Subsequently, the 

ratio of a low-frequency component (LF) and a high-frequency 

component (HF) are used as an index. The respective frequency 

ranges of the LF and HF are 0.05 Hz to 0.15 Hz and 0.15 Hz to 

0.40 Hz. The sum of the power spectra in those frequency 

ranges is calculated. When the LF is larger than the HF, the 

sympathetic nerve is tensed. Conversely, when the HF is larger 

than the LF, the parasympathetic nerve is tensed. 

Fig. 5 depicts the estimated PSDs from the heart beat 

intervals shown in Fig. 4. The AR order and data length are 

respectively set to 25 and 256. As shown in Fig. 5, although the 

shape of the PSDs appears to be different, the frequency peaks 

at 0.09 Hz and 0.18 Hz are correctly detected by each method. 

Furthermore, the error of the ratio of LF/HF is less than 0.07 

between the FFT and fixed point Yule–Walker method. This 

error is sufficiently small for this application. 

C. Hardware Implementation and Comparison of Energy 

Consumption 

As shown in Fig. 2, the computational amount of the edge 

device for the Yule–Walker method is always smaller than that 

for the fast Burg’s method. Furthermore, it has the smallest 

transmission data size. Figs. 3 and 5 show that the estimated 

PSD using the fixed-point Yule–Walker method can be used for 

practical applications. Thus, we chose the Yule–Walker method 

with 16-bit fixed point as the spectral analysis method in the 

IoTs.  

To evaluate the accurate energy consumption of the Yule–

Walker method, we designed a dedicated hardware for the 

(a) 

 
(b) 

 
Fig. 2.   Relationship between computational amount and AR order: (a) 

256 input data length and (b) 1024 input data length. 
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Fig. 3.  Comparison of estimated PSD with 25, 40, and 55 Hz sine wave 

input. Sampling rate, input data length, and AR order are respectively set 

to 256, 256, and 25. 

 

 
Fig. 4.  Measured example of human heart beat for heart rate variability 

analysis. 

 
Fig. 5.  Comparison of estimated PSD with heart beat intervals. Sampling 

rate, input data length, and AR order are respectively set to 256, 256, and 
25. 
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autocorrelation calculation. Because most operations of the 

autocorrelation are multiply–accumulate, it can be easily 

implemented as the dedicated hardware.  

Fig. 6 shows the processing flow of the PSD estimation using 

the Yule–Walker method. As shown in Fig. 6, only the 

autocorrelation process is implemented in the edge device. 

Fig. 7 illustrates the block diagram of the hardware-

implemented autocorrelation without parallelization. This 

hardware can easily extend to a parallel architecture because the 

autocorrelation is the appropriate calculation for spatial 

parallelism. To reduce the memory access and latency, a 

parallel architecture is designed as shown in Fig. 8. When the 

degree of parallelism is set to 𝑖, the required hardware resource 

is decided as shown in Table 1. Subsequently, the latency of 

each autocorrelation calculation line is illustrated in Fig. 9. As 

shown in Table 1 and Fig. 9, a tradeoff exists between the 

degree of parallelism and latency. If a mismatch exists between 

AR order and parallelism, the higher parallelism architecture 

causes redundant circuit and calculation energy consumption. 

For example, when the AR order is 20 and parallelism is 16, 12 

autocorrelation lines consume unnecessary energy. 

Next, the autocorrelation hardware is implemented using 

Verilog HDL to evaluate the accurate energy consumption. 

Logic synthesis and power estimation are performed using 

Synopsys Design Compiler Version 2017.09 with standard cell 

and SRAM libraries designed by the 65-nm CMOS process. 

Table 2 shows the summary of the implementation result. 

Fig. 10 shows the energy consumption of the proposed 

hardware for autocorrelation when the input data length is 256 

and the AR order is 25. The energy consumption of memory 

access (active) and memory retention (static) is dominant in the 

total energy consumption without parallelism. When the degree 

of parallelism is increased, both the active and static power of 

the memory can be reduced, because both the number of 

memory access and the calculation cycles are reduced. 

Fig. 11 shows the effect of the AR order on the normalized 

energy consumption. The conventional FFT hardware 

implementations [14]-[16] are also indicated in Fig. 11. It is 

noteworthy that these energy consumptions are normalized by 

the following equation [15]: 

 
Fig. 6.  Processing flow of PSD estimation using AR-model-based 
approach with Yule–Walker method. 

 

(a) 

 
(b) 

 
Fig. 7.  (a) Block diagram of autocorrelation processor without parallelism, 

and (b) implementation of autocorrelation calculation line. 
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Fig. 9.  Timing chart of parallel autocorrelation processing. 
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𝐸norm =  
𝑃𝑜𝑤𝑒𝑟[𝑛𝑊] × 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 [𝑠𝑒𝑐] 

(
𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 [𝑛𝑚]

65 [𝑛𝑚]
) (

𝑉𝑑𝑑 [𝑉]
1.2 [𝑉]

)
2  

(18) 

The prior work [14] does not explain the FFT hardware power 

consumption with 256 input data length. Furthermore, the FFT 

hardware presented in prior works [15, 16] can input complex 

values. These hardware consumes two times larger power 

compared with real value input FFT hardware, when assuming 

that four times real value multiplication are required for one 

complex value multiplication. Therefore, in this work, we 

compared half the value of normalized energy consumption 

with the proposed hardware implementation. When the degree 

of parallelism is doubled, the circuit area is increased by 

approximately 1.8 times. The required execution cycle is 

approximately (𝑁𝑚 − 𝑚2/2)/𝑖 when the degree of parallelism 

is 𝑖.  

IV. SYSTEM LEVEL PERFORMANCE EVALUATION 

As shown in Fig. 1, we aim to distribute the processing of the 

spectrum analysis to the edge device and the base station. As 

described in Section III, the Yule–Walker method can be 

TABLE II 

SUMMARY OF HARDWARE IMPLEMENTATION FOR ENERGY EVALUATION 

Method Yule-Walker 

Technology node 65 nm 

Supply voltage 1.2 V 

Frequency 300 MHz 

Bit width (input/output) 16 bits 

Input buffer memory size (𝑁 ×16) bits 

Output buffer memory size {(𝑚 + 1) ×16} bits 

Input data length 𝑁 * 256, 1024 

AR order 𝑚* From 2 to (𝑁 − 1) 

* 𝑁 and 𝑚 are programmable in our hardware design using 

Verilog HDL. 

 

 
Fig. 12.  Comparison of PSD estimation flow in edge device and base 

station (BS). 
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Fig. 11.  Comparison of processing energy consumption in edge device; 

(a) 256 input data length and (b) 1024 input data length. 
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divided into two parts: the autocorrelation calculation and the 

AR coefficient calculation. Because the data size of the 

autocorrelation results is smaller than the power spectrum 

output of the FFT, the Yule–Walker method is advantageous as 

it can reduce the transmitting data size from the edge device to 

the base station. Subsequently, only the autocorrelation 

calculation process is implemented in the edge device. Fig. 12 

summarizes the difference in PSD calculation flow with FFT 

and the AR model using the Yule–Walker method. 

The transmitted data size depends on the input data length 𝑁 

and AR order 𝑚. Fig. 13 shows the transmitted data size in each 

AR order. Subsequently, the bit width of the input data is set to 

16. When the AR order is set to 𝑁/𝑚, the transmitted data size 

of the Yule–Walker method is the same as that of the FFT. If 

the AR order is smaller than 𝑁/2, the Yule–Walker method is 

advantageous in terms of the transmitted data size.  

However, the Yule–Walker method is disadvantageous in 

terms of the processing energy, as discussed in Section III. 

Therefore, a tradeoff exists between the transmitting energy and 

processing energy. 

In this work, BLE is assumed as the wireless communication 

standard for the edge device. In a state-of-the-art BLE 

transceiver [17], approximately 2.9-mW transmitting energy is 

achieved with 1Mbps data rate. This transmitting energy is used 

in this evaluation. The overhead of the link connection and 

packets is not considered for simplicity. 

Fig. 14 shows the total energy consumption of edge device 

for spectral analysis. The proposed method assumes 4-

parallelism. The Direct Current (DC) component elimination 

and hamming window calculation are negligible because they 

consume less than 1% of the processing energy shown is Fig. 

14. 

As shown in Fig. 14, the Yule–Walker method achieves 

smaller energy consumption, when the AR order is smaller than 

𝑁/4 . Although the processing energy consumption of the 

Yule–Walker method is larger than that of the FFT and it 

increases in proportion to the AR order, the transmitting energy 

is still dominant because the proposed dedicated hardware can 

achieve small energy dissipation comparable with the FFT 

hardware. Detailed performance comparison result is 

(a) 

 
(b) 

 
Fig. 14.  Comparison of total energy consumption in edge device including 

processing energy and transmitted energy; (a) 256 input data length and 

(b) 1024 input data length. 
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Fig. 13.  Comparison of transmitted data size from edge device to base 

station; (a) 256 input data length and (b) 1024 input data length. 
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summarized in Table 3. Here, the energy for processing in Table 

3 shows the normalized energy consumption calculated by (18). 

As discussed in Section II.B, the Yule–Walker method with 

256 input data length and the 25-th AR order can be used in a 

practical application: heart rate variability analysis. In this 

condition, the proposed method can achieve 1.25-μJ energy 

consumption in the edge device, which is 79% smaller than the 

conventional method using FFT. Subsequently, as shown in Fig. 

5, the error caused by the proposed method is less than 0.07 in 

the LF/HF ratio, which is sufficiently small for the required 

accuracy in this application. When raw data is transmitted in 

this application, the estimated energy consumption is 11.9-μJ. 

Compared with this result, the proposed method achieves 

89.5% lower energy consumption. Furthermore, when the edge 

node performs all process of PSD calculation using AR model, 

the computational amount of AR coefficient calculation is 

 𝑁𝑚 + 𝑚2/2 according to (15)-(19). When the data length 𝑁 

and AR order 𝑚 are respectively set to 256 and 25, the number 

of calculations is approximately 6.7 kilo-operations. The 

computational amount of PSD calculation for each frequency 

domain is 2m according to (4).  We assumed that the frequency 

resolution of the PSD is 0.002 Hz and the frequency range is 

between 0 and 0.5 Hz with 1-kHz sampling rate. Then, 

approximately 13 kilo-operations are required, because 250-

frequency domains are calculated to obtain the PSD. On the 

other hand, only 6.1 kilo-operations are required to calculate the 

autocorrelation coefficient 𝑅 , which is the part of AR 

coefficient calculation, as shown in Fig. 2. It is three times 

smaller than the total computational amount of the AR 

coefficient and PSD. 

V. DISCUSSION 

In this paper, we focused on the AR-model-based spectral 

analysis approach instead of the Fourier transform to improve 

the energy dissipation of the edge devices. For example, 

literature [5] shows that the AR-model based approach can 

achieve equivalent results to FFT in the heart rate variability 

analysis. Furthermore, this method has an advantage compared 

with the FFT that more accurate PSD can be obtained with short 

window length. The evaluation results show that the AR-model-

based spectral analysis can be implemented with lower power 

consumption compared with the FFT. 

In prior works, a hybrid data compression algorithm [18] and 

compressed sensing schemes [19, 20] are used for data 

compression and sensor active rate reduction. Adaptive 

sampling schemes have also been proposed to reduce the sensor 

active rate [21]. These conventional methods can reduce the 

transmission data by decimating data and lossy compression. In 

contrast, the proposed method reduces transmission data using 

the characteristics of frequency analysis based on AR model: 

the data amount of correlation coefficients, which is 

intermediate data calculated by the edge node, is smaller than 

the PSD calculated in the base station. When using FFT, the 

transmission data cannot be compressed in the same manner, 

because the amount of intermediate data is larger than the PSD 

(see Fig. 12). As shown in Fig. 14, compared with conventional 

dedicated hardware implementations of FFT, the proposed 

scheme has an advantage in the system level power 

consumption even in higher AR order. Then, the compression 

ratio can be controlled by the AR order. Note that this paper is 

first hardware implementation of AR-model-based frequency 

analysis. Furthermore, the conventional sampling rate reduction 

techniques can be combined with the proposed method. 

In our implementation, the FFT, fast Burg's method, and 

Yule-Walker method respectively requires about 1-kilo 

operations, 8 kilo-operations, and 6 kilo-operations 

computational amount, when the data length and AR order are 

respectively set to 256 and 25. Then, the PSD calculation is 

executed every seconds. Furthermore, the transmission data 

required by the FFT, fast Burg's method, and Yule-Walker 

method are 2,048 bits/s, 400 bits/s, and 400 bits/s, respectively. 

Because the BLE transceiver with 1-Mbps data rate is assumed 

in this work, it has enough capacity for this application. Note 

that the transmission energy is 2.9-nJ/bit and the evaluation 

results shown in Fig. 14 is calculated based on these values. 

The proposed method can realize 2.04-μW operation with 

256 data length and 25-th AR order. Then, we assume the 

energy dissipation shown in Fig. 14 and the environmental 

setting shown in Table 2. It is assumed that the clock and power 

source are gated while stand-by state. This power dissipation is 

sufficiently small value compared to the state-of-the-art low-

power IoT edge devices (e.g. 17.4-W in literature [22] and 24-

uW in literature [23]). 

When the data length 𝑁 and AR order 𝑚 are respectively set 

to 256 and 25, the required energy for the frequency analysis is 

about 1.3 μJ. The expected average power consumption is about 

1.3 nW, when assuming that the frequency analysis is 

performed every seconds. Then, the estimated operating time is 

about 32,000-hours with CR1220 Lithium battery, which has 

1.0-g weight and 35-mAh capacity. This power consumption 

can also be covered by an energy harvester like wearable 

thermoelectric generator (TEG), which can generate 20-W 

power from 14.4-K temperature difference with 0.97-cm2 area 

[24]. 

VI. CONCLUSION 

We herein proposed an energy-efficient spectral analysis 

method using the AR-model-based approach to reduce the edge 

device energy consumption. The network distributed 

processing and the dedicated hardware for the Yule–Walker 

method, which calculates the AR coefficient to estimate the 

PSD, were implemented and evaluated in this work. The 

evaluation result shows that the proposed method is 

advantageous in terms of the system-level energy consumption, 

because the Yule–Walker method can reduce the transmitting 

data despite the computational amount overhead. The wireless 

transmitting energy is still dominant in the system level, even if 

the state-of-the-art transceiver is used in the edge device. 

Furthermore, the proposed dedicated hardware implementation 

of the autocorrelation process of the Yule–Walker method 

achieves small energy dissipation, which is comparable with the 

FFT hardware. The system-level evaluation result shows that 
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the proposed method can achieve smaller energy consumption 

compared with conventional methods using FFT. When the 

input data length and the AR order are respectively set to 256 

and 25, the proposed method can reduce 79% of the energy 

consumption in practical applications.  
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