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Noise Tolerant Heart Rate Extraction Algorithm Using Short-Term
Autocorrelation for Wearable Healthcare Systems

Shintaro IZUMI†a), Member, Masanao NAKANO†, Ken YAMASHITA†, Yozaburo NAKAI†, Nonmembers,
Hiroshi KAWAGUCHI†, and Masahiko YOSHIMOTO†, Members

SUMMARY This report describes a robust method of instantaneous
heart rate (IHR) extraction from noisy electrocardiogram (ECG) signals.
Generally, R-waves are extracted from ECG using a threshold to calculate
the IHR from the interval of R-waves. However, noise increases the inci-
dence of misdetection and false detection in wearable healthcare systems
because the power consumption and electrode distance are limited to reduce
the size and weight. To prevent incorrect detection, we propose a short-time
autocorrelation (STAC) technique. The proposed method extracts the IHR
by determining the search window shift length which maximizes the corre-
lation coefficient between the template window and the search window. It
uses the similarity of the QRS complex waveform beat-by-beat. Therefore,
it has no threshold calculation process. Furthermore, it is robust against
noisy environments. The proposed method was evaluated using MIT-BIH
arrhythmia and noise stress test databases. Simulation results show that the
proposed method achieves a state-of-the-art success rate of IHR extraction
in a noise stress test using a muscle artifact and a motion artifact.
key words: autocorrelation, biomedical signal processing, electrocardio-
graphy, heart rate extraction, noise tolerance

1. Introduction

Mobile and wearable healthcare devices are expected to play
an increasingly prominent role in health provision due to the
advent of aging societies around the world [1]. In particular,
biosignal measurements during daily life at home are impor-
tant to prevent lifestyle diseases, which are expected to raise
the number of patients and elderly people requiring nursing
care.

This report describes a noise-tolerant instantaneous
heart rate (IHR) extraction algorithm from noisy ECG sig-
nals. The IHR is useful for heart disease detection, heart rate
variation analysis [2], and exercise intensity estimation [3].

Key factors affecting wearable system usability are
miniaturization and weight reduction. A wearable and wire-
less ECG telemetry system [4], [5] and single-chip ECG
monitoring system LSIs [6]–[8] have been developed. How-
ever, the wearable system is sensitive to noise because of
strict limitations on power consumption and electrode dis-
tance (see Fig. 1). The signal-to-noise ratio (SNR) of ECG
signals can be degraded, especially if a subject is not at rest.

In general, sophisticated analog front-end circuits
are necessary to prevent SNR degradation. The analog
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front-ends of ECG monitoring systems mainly comprise
amplifiers, analog filters, and an analog-to-digital converter
(ADC). Unfortunately, analog circuits have a large cir-
cuit area and high power consumption. Battery mass and
power consumption must be reduced because the battery
mass dominates wearable systems. The amplifier presents a
tradeoff between power consumption and performance (e.g.,
gain, phase characteristic, common mode rejection ratio).
Moreover, the analog filter in an ECG monitor has a large
RC time constant because the ECG signal frequency range
is low (f < 1 kHz). For those reasons, it is difficult to use
high-performance amplifiers and analog filters that have a
high quality factor.

Ultra-low-power ADCs, which have sub-microwatt
power consumption and a limited sample rate, have been
developed for biomedical applications [9], [10]. Further-
more, according to Moore’s law, the power of digital com-
ponents increases with the progress of process technology.
In contrast, the power consumption of analog circuits will
not decrease similarly. Therefore, as illustrated in Fig. 2,
our approach using digital signal processing aims to reduce
the performance requirements of analog components and to
minimize the system’s overall power consumption.

A preliminary version of this work has been reported in
the literature [11]. This paper presents an extended version
of the algorithm and additional details of performance evalu-
ation results. Section 2 of this report describes conventional

Fig. 1 Constraints of a wearable healthcare system.
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Fig. 2 Block diagram of ECG sensing circuits and target of this work.

heart rate extraction techniques. An improved heart rate ex-
traction scheme is proposed in Sect. 3. Section 4 presents
some simulation results including noise stress tests. Finally,
conclusions are presented in Sect. 5.

2. Heart Rate Extraction Techniques

Recently, various algorithms have been proposed to improve
heart rate extraction accuracy and reliability.

Extracting R-waves using threshold determination is
a widely used approach for IHR extraction from ECG.
The Pan–Tompkins (PT) algorithm [12], which is commonly
used for beat detection, uses band-pass filtering, differenti-
ation, squaring, and moving window integration. Period-
ically, the threshold is adjusted automatically using QRS
morphology and the heart rate.

The SQRS [13] and WQRS [14] algorithms, which
have been published in PhysioNet, can respectively detect
QRS based on ECG slope and length transform. The SQRS
uses band pass filtering for noise reduction, which uses only
the integer coefficient. The WQRS also uses a low-pass fil-
ter to remove baseline wander.

The Discrete Wavelet Transform (DWT) [7], [15], [16]
uses a wavelet transform with quadratic spline wavelet
(QSW). The threshold is calculated using the root mean
square value of the wavelet transform. This algorithm has
been used in robust ECG monitoring LSIs [7], [17], [18].
The QSW requires few calculations and low hardware costs
because it can be implemented using only adders and shift
operators.

The Quad Level Vector (QLV) algorithm [19] is used in
dedicated hardware for ECG monitoring LSI [6], [20]. The
QLV is generated using DWT and the adaptive threshold.
Then, the threshold is ascertained from the maximum mean
deviation (MD) of prior heartbeats.

The Continuous Wavelet Transform (CWT) algo-
rithm [21]–[23] uses a Mexican hat wavelet in the frequency
interval of 15–18 Hz. The R-peak can be extracted using the
adaptive threshold, which is calculated using the modulus
maxima of the CWT. This algorithm was also implemented
in an earlier study [6].

Figure 3 presents the heart beat detection accu-
racy of conventional threshold based algorithms from the
1980s [12], [15], [16], [22], [24]–[46]. As depicted in Fig. 3,
no significant difference was found in the accuracy. How-
ever, these results are evaluated using only clean ECG (MIT-
BIT open ECG database record #100 [47]). As depicted
in Fig. 4, noise from various sources increases misdetection
and false detection in the wearable healthcare system. Fig-
ure 5 (a) presents frequency characteristics of the PT, SQRS,

Fig. 3 Accuracy comparison of recent heart beat detection methods with
MIT-BIH record #100.

Fig. 4 Noise problem with threshold based R-peak detection.

Fig. 5 (a) Frequency characteristics of filters with 128 Hz sampling rate.
(b) Waveform of ECG signals with noise.

and DWT with a 128 Hz sampling rate. Figure 5 (b) depicts
the ECG and well-known noise waveforms. A baseline wan-
der and a hum noise can be removed easily using digital fil-
ters. However, unfortunately, the frequency ranges of the
muscle artifact and electrode motion artifacts are similar to
those of the desired ECG signals.

Therefore, this work was undertaken for noise toler-
ance improvement. Threshold-based algorithms are classi-
fiable using preprocessing and QRS detection, as presented
in Table 1. Our proposed method, as described in Sect. 3,
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Table 1 Preprocessing and QRS detection in conventional methods.

can replace the threshold-based method. In other words, the
proposed method can be combined with any other prepro-
cessing filter technique shown in Table 1.

3. Short-Term Autocorrelation

In this work, we propose a short-term autocorrelation
(STAC) technique for IHR extraction. Autocorrelation [48],
[49] and template matching [50] use the similarity of QRS
complex waveforms and have no threshold calculation pro-
cess. Autocorrelation has been used in non-invasive mon-
itoring systems. However, the method necessitates numer-
ous computations because it calculates the average heart rate
over a long duration (30 s). In this work, we extend it for
IHR extraction by minimizing the window length because
conventional works can only extract the average heart rate
from data of a long duration. To achieve accurate heart rate
variability analysis, the IHR of every second is required.

Figure 6 portrays IHR extraction using STAC. As de-
picted in Fig. 6 and (1–7), the recent interval of R-waves at
time tn (RR[n]) is obtained as a window shift length (Tshift)
that maximizes the correlation coefficient between the tem-
plate window and the search window (CC[n]). The IHR at
tn (IHR[n]) is calculable using RR[n], as shown in (6).

RR[n] = argTshift
max

RRmin≤Tshift≤RRmax

{CC[n]} (1)

CC[n] = Wc(Tshift) ·
Lw[n]∑
i=0

Ww(i) · d[tn − i]

· d[tn − i − Tshift] (2)

Wc(Tshift) = max

{
1 − 1

4
·
⌊
Tshift − RRmin

RRmin

⌋
,

1
4

}
(3)

Ww(i) = max

[
1 − 1

8
·
⌊

t
RRmin

⌋
,

1
8

]
(4)

Lw[n]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
RR[n − 1] × (1.2)3 (RRmin ≤ RR[n − 1] < 0.316)
RR[n − 1] × (1.2)2 (0.316 ≤ RR[n − 1] < 0.695)
RR[n − 1] × (1.2)1 (0.695 ≤ RR[n − 1] ≤ RRmax)

(5)

IHR[n] =
60

RR[n]
(6)

tn = tn−1 + 1 (7)

In the equations presented above, Wc and Ww denote weight

Fig. 6 IHR extraction using short-term autocorrelation (STAC).

Fig. 7 Weight coefficient Wc to suppress old R-peak misdetection.

Fig. 8 Weight coefficient Ww to improve R-peak detection accuracy.

coefficients. As depicted in Fig. 7, Wc contributes to the
choice of the recent peak of the correlation coefficient if two
or more R-peaks exist in the shift range of Tshift; Ww con-
tributes to the choice of the accurate peak of the correlation
coefficient if two or more R-peaks exist in the template of
search window because the waveform of the correlation co-
efficient has a bimodal peak in such a case (see Fig. 8).

The shift range of Tshift is decided by maximum and
minimum values of RR[n] (RRmax and RRmin). In this work,
RRmax and RRmin are set respectively as 0.25 s and 1.5 s
because the heart rate of a healthy person is 40 bpm–240
bpm in general.

The Lw in (1) and (3) denotes the window length, which
is updated according to the estimated value of RR[n] from
RR[n − 1], as shown in (5). The initial value of Lw is set
to 1.5 s in this work. Lw should be set to include one or
more beats in the template and search windows. If RR[n−1]
is smaller than 0.316 s, then three R-waves exist between
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tn−1 and tn at maximum. Then Lw is set to RR[n−1]×(1.2)3

according to the maximum rate of the beat-to-beat variation,
which is generally 20% in a healthy person [51]. Similarly,
if the RR[n − 1] is 0.3160.695 s and larger than 0.695 s,
then the respective Lw settings are RR[n − 1] × (1.2)2 and
RR[n − 1] × (1.2). This Lw optimization (5) contributes to
reduction of the computational amount and to improvement
of the IHR estimation accuracy.

Unfortunately, the computational cost of the proposed
method is about one hundred times as great as that for gen-
eral threshold methods. Nevertheless, this method can be
implemented in the digital domain. We estimate that the
power consumption of the proposed method is one-tenth
that of the analog portion, which includes an instrumental
amplifier, analog filter, and ADC. Furthermore, the power
consumption of the analog portion will be reduced using
the proposed method because it has higher noise tolerance.
Therefore, the total power consumption of the wearable
monitor can be reduced.

4. Performance Evaluation

To evaluate the noise tolerance of heart rate extraction algo-
rithms, we implemented the proposed STAC algorithm and
conventional algorithms using MATLAB. The objective of
the proposed method is IHR extraction every second. There-
fore, the proposed method cannot detect all heart beats in the
ECG if the interval of R-waves is less than 1 s. To compare
the IHR extraction success rate every second, the IHR of the
conventional threshold-based method is calculated from the
recent interval of R-waves at evaluation time tn in (7).

4.1 IHR Extraction Success Rate with Clean ECG

First, we investigated the success rate of heart rate ex-
traction using 48 records from the MIT-BIH arrhythmia
database [47]. As described above, the proposed STAC can
be combined with any other preprocessing filter technique
shown in Table 1. The DWT [16] and CWT [22] are imple-
mented as filters in this simulation because the DWT can be
realized by simple implementation in hardware and because
the CWT is the most noise-tolerant filter technique for ECG.

The threshold of conventional methods is calculated as
explained below: In Pan-Tompkins, the threshold is calcu-
lated using (ECGmax/8+(PrevTH−PrevTH/8)). Here, PrevTH

and ECGmax respectively denote the previous value of the
threshold and the maximum value of ECG in 2 s. In SQRS,
the threshold is calculated using ((PrevTH+ECGABSmax/4−
PrevTH)/8). Here, ECGABSmax denotes the maximum of
the absolute value of ECG in 2 s search range. In WQRS,
the average value of ECG in 8 s is used first. Subsequently,
the threshold is updated by adding (ECGmax − PrevTH/3).
In QLV, the ECG is divided into blocks of 0.04 s duration.
The threshold is calculated using half of the mean deviation
(MD) value of eight blocks that have a larger MD value than
the threshold. In DWT, the threshold is calculated using the
eighth of the root mean square value of ECG in prior 2 s.

Table 2 IHR extraction success rate of proposed STAC with DWT and
CWT filters for MIT-BIH waveforms.

Table 3 Relation between success rate and type of arrhythmia in 48
records of MIT-BIH.

In CWT, the threshold is calculated using 30% of the maxi-
mum value of ECG in the prior 2 s.

Table 2 presents the simulation results. Compared with
the conventional algorithms depicted in Fig. 3, no signifi-
cant difference was found in the success rate obtained with
record #100. However, for two reasons, the success rate was
degraded for several records (e.g. #119, #208, and #233).
The first reason for the performance degradation is a certain
type of arrhythmia, which has irregular heart beat waveform
(e.g. premature ventricular contraction). As Table 3 shows,
although the proposed method shows equivalent or better



IZUMI et al.: NOISE TOLERANT HEART RATE EXTRACTION ALGORITHM USING SHORT-TERM AUTOCORRELATION
1099

Fig. 9 Noise stress test using MIT-BIH record #100 with motion artifact.

Fig. 10 Noise stress test using MIT-BIH record #100 with muscle arti-
fact.

performance in most cases, it is degraded by such types of
arrhythmia because the proposed algorithm uses similarity
of the QRS waveform. Therefore, it is difficult to detect a
sudden change in the QRS waveform.

The second reason is heart rate variation. Although we
assume that the maximum rate of the beat-to-beat variation
is 20%, several records include 30% or greater variation.
Although this problem can be solvable through parameter
tuning, a tradeoff exists between the success rate and the
computational amount.

4.2 Performance Comparison in Noise Stress Tests

Next, we evaluated the noise tolerance using the MIT-BIH
noise stress test database [52]. Figures 9–12 show the re-
lation between the noise intensity and the success rate of
IHR extraction. The MIT-BIH records #100 and #122 are
used to evaluate the effects of noise contamination and to
eliminate the effects of arrhythmia because these records in-
clude few arrhythmia beats. A muscle artifact and motion
artifact records are used because these noises have critical
frequency characteristics, as presented in Fig. 5. Then, the
signal-to-noise ratio (SNR) is defined as shown below.

Fig. 11 Noise stress test using MIT-BIH record #122 with motion arti-
fact.

Fig. 12 Noise stress test using MIT-BIH record #122 with muscle arti-
fact.

Fig. 13 Noise stress test using MIT-BIH record #100 with motion arti-
fact. Conventional detection methods are combined with CWT filter.

SNR = 10 log
S

N × a2
(8)

Here, S, N, and a respectively denote the signal power,
frequency-weighted noise power, and scale factor.

Simulation results show that the proposed STAC can
improve noise tolerance in both cases of combination: with
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Fig. 14 Noise stress test using MIT-BIH record #100 with muscle arti-
fact. Conventional detection methods are combined with CWT filter.

Fig. 15 Noise stress test using MIT-BIH record #122 with motion arti-
fact. Conventional detection methods are combined with CWT filter.

the DWT filter and with the CWT filter. The combination of
the STAC and CWT filter achieves the top of noise tolerance
with both the muscle artifact and the motion artifact.

Furthermore, in Figs. 13–16, the proposed method is
compared to the combination of the CWT filter with conven-
tional QRS detection (threshold) methods, as shown in Ta-
ble 1. Results show that the success rate of conventional de-
tection methods with CWT filter is improved from original
method. This result demonstrates that the CWT filter itself
can improve the performance. Note that the combination of
the CWT filter and the proposed STAC method still shows
better performance in most cases compared with other com-
binations. Therefore, both the CWT filter and the pro-
posed STAC method contribute synergistically to improved
performance.

4.3 Required Resolution of ECG for Hardware Implemen-
tation

Finally, we evaluate the required resolution of the ECG sig-
nal. The computational amount and the hardware overhead

Fig. 16 Noise stress test using MIT-BIH record #122 with muscle arti-
fact. Conventional detection methods are combined with CWT filter.

Fig. 17 Bit width of ECG signal versus average success rate of all MIT-
BIH waveforms in Table 2 with and without 9-dB motion artifact. The
sampling rate is set to 128 samples/s.

Fig. 18 Sampling rate of ECG signal versus average success rate of all
MIT-BIH waveforms in Table 2 with and without 9-dB motion artifact. The
bit resolution is set to eight bits.

of IHR extraction should be minimized because the battery
capacity is strictly limited in our target application. The bit
width and the sampling rate of ECG signal directly affect
the overhead.

Figure 17 presents simulation results of the average
IHR extraction success rate from 48 records in Table 2 with
4-bit to 11-bit width. The sampling rate of the ECG signal
is set to 128 samples/s in this simulation. Results show that
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the success rate is degraded when the bit width is less than
six in both clean and noisy conditions.

Figure 18 portrays the effects of sampling rate differ-
ences. The bit width is fixed to eight bits. Other simulation
conditions are presented in Fig. 17. Simulation results show
that a 128 samples/s sampling rate is needed for extraction
of IHR without degradation.

5. Conclusion

As this report has described, we proposed a noise-tolerant
IHR extraction algorithm using short-term autocorrelation
(STAC). We limited the window length to 1.5 s according to
the heart rate of a healthy person, which is 40–240 bpm in
general. The window length should be longer than the max-
imum R2R interval because at least one heart beat should
be presented in the window. To realize accurate heart rate
extraction using the minimum window length, there are two
improved points against the previous autocorrelation algo-
rithm. First, two weight coefficients are introduced to mini-
mize incorrect peak detection both in the window and in the
search range. Next, we combined the STAC with DWT and
CWT filters because the window length reduction causes
noise tolerance degradation. Therefore, we can achieve both
noise tolerance improvement and computational reduction.
Simulation results show that the IHR extraction success rate
of the proposed STAC with the CWT filter is 99.89% for
MIT-BIH record #100 and 92.48% on average for 48 records
of MIT-BIH. In the noise stress test, the proposed method
achieves state-of-the-art noise tolerance both with the mus-
cle artifact and the motion artifact. The required resolution
of ECG signal is also evaluated. The proposed method re-
quires seven-bit width and a 128 samples/s sampling rate
for ECG signals to extract the IHR without success rate
degradation.
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