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A 28-nm 484-fJ/writecycle 650-fJ/readcycle 8T Three-Port FD-SOI
SRAM for Image Processor∗
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SUMMARY This paper presents a low-power and low-voltage 64-kb
8T three-port image memory using 28-nm FD-SOI process technology. Our
proposed SRAM accommodates eight-transistor bit cells comprising one-
write/two-read ports and a majority logic circuit to save active energy. The
test chip operates at a supply voltage of 0.46 V and access time of 140 ns.
The minimum energy point is a supply voltage of 0.54 V and an access
time of 55 ns (= 18.2 MHz), at which 484 fJ/cycle in a write operation and
650 fJ/cycle in a read operation are achieved assisted by majority logic.
These factors are 69% and 47% smaller than those in a conventional 6T
SRAM using the 28-nm FD-SOI process technology.
key words: image memory, multi-port SRAM, 8T, FD-SOI, 28-nm, majority
logic

1. Introduction

Application of image recognition is being extended to var-
ious fields such as an automatic driving systems, robot vi-
sion, and augmented reality systems with improved im-
age resolution. Image resolution enhancement leads to in-
creased SRAM capacity, area, and power consumption be-
cause of the increase amount of image data. Power con-
sumption in SRAM dissipates 43% of a whole image pro-
cessor in a 65-nm CMOS process [1]. For wearable devices
handling image information, energy-efficient SRAM will be
expected, as presented in Fig. 1.

28-nm Fully Depleted SOI (FD-SOI) technology
is promising to provide high speed with low-voltage
SRAM [2]. The 28-nm FD-SOI has fully depleted transis-
tors and an ultra-thin silicon body and BOX layer, giving
them excellent electrostatic control. Therefore, it brings sta-
ble features with low voltage operation. A BOX layer re-
duces the leakage current to control the electrical flow from
a source node to a drain node in a transistor. Moreover,
the BOX layer reduces the parasitic capacitance between the
source node and the drain node. This feature of 28-nm FD-
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SOI enables the production of ultra-low-power SRAMs [3]–
[8].

Input data for image processing are stored temporarily
in SRAM. In an image processor, many processing cores ac-
cess the SRAM for multi-thread processing, as presented in
Fig. 1. Demands for multi-port SRAM have been increased
to accommodate high-speed and low-power image process-
ing. The multi-port SRAM is suitable for parallel operation.
It improves the total chip performance. To date, a multiport
SRAM that supports simultaneous write and read operations
is proposed for use as the image processor [9], [10]. The
three-port SRAM is reportedly suitable for use as an image
processor [11], [12]. When comparing features of two im-
ages, simultaneous read operations are requested to SRAM
cells. Furthermore, realizing real-time processing requires a
write operation for the next comparison at the same time as
the read operation. Therefore, two read operations and one
write operation must be performed simultaneously, which
requires multiport SRAMs that have two-read/one-write ac-
cess ports for the image processor.

The bitcell layout in the conventional three-port SRAM
needs a larger area than an 8T dual-port SRAM due to
the larger number of transistors [11]. In particular, an im-
age processor requires a larger multiport memory capacity,
which gives a serious impact on its cost. In this paper, we ex-
hibit an 8T three-port SRAM smaller the conventional three-
port one; its area is as small as the conventional 8T dual-port
SRAM.

We designed a 28-nm FD-SOI 8T three-port SRAM
for a low-power image processor and compared it to a 28-
nm FD-SOI 6T SRAM in the conventional form. Then we
demonstrated high energy-efficiency of sub-pJ/cycle in the
proposed SRAM. The remainder of this paper is organized
as follows. Section 2 presents the proposed 8T three-port
SRAM design and its operation. Measurement results are
shown in Sect. 3. The final section summarizes the findings.

Fig. 1 Memory system in image processing.
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2. Proposed 8T Three-Port SRAM

2.1 8T Three-Port SRAM Cell Design

A circuit schematic of the proposed 8T three-port SRAM is
presented in Fig. 2. It has a pair of write bitlines and two
single-ended read bitlines (one-write/two-read bitcell struc-
ture). The proposed SRAM has two pull-up PMOSs (load-
PMOS), two pull-down NMOSs (drive-NMOS), and four
transfer NMOSs (access-NMOS). In this circuit, M7 and M8
transistors are the two single-ended read ports. Source nodes
of M7 and M8 transistors are connected to node QB. The
drain nodes are connected to read bitlines (RBL A, RBL B).

The gate nodes are connected to the read wordlines
(RWL A, RWL B). This asymmetrical 8T three-port SRAM
cell achieves high density. All transistor W/L sizes in the
bitcell are shown in Table 1. The W/L size of the pull-down
transistor in the bitcell is chosen to remain a sufficient SNM
(static noise margin) even when the both read ports are acti-
vated.

Figure 3(a) presents FEOL of the proposed 8T three-
port SRAM. Read ports comprising M7 and M8 transistors
are arranged separately from a 6T SRAM cell, which share
a common contact located at the middle as the QB node.
This layout achieves a smaller cell area than in symmetrical
layout in which the additional read ports are arranged at both
ends [13].

Figure 3(b) shows the BEOL of proposed SRAM. The
SRAM cell size is determined by the number of horizon-
tal and vertical wires. In our proposed SRAM, two read
ports consisting of M7 and M8 transistors are configured as
two single-ended read ports having three bitlines and three
wordlines. The cell area is 0.56 µm2 on a logic rule base,
which is as small as the dual-port 8T bitcell [14], although
the number of ports is increased.

Fig. 2 Schematic of proposed 8T three-port SRAM.

Table 1 Transistor W/L sizes in the proposed SRAM cell.

The operating waveforms in the read operation is de-
picted in Fig. 4. No read current flows through the read
bitlines (RBL A and RBL B) when the internal node, node
QB, is “1”. Maximizing the number of “1” s at node QB is
important to reduce dynamic power in the read operation.

2.2 Precharge-Less Energy-Efficient Write Circuit

Figure 5 presents write schemes for the conventional 6T
SRAM and the proposed 8T SRAM. Figure 5(a) depicts
the conventional write circuit; it is necessary to precharge a
bitline pair to maintain stability of read operations because
both read and write operations use the common bitline pair.
Figure 5(b) depicts the precharge-less write circuit. Succes-
sive writes of the same data consume less energy because
the proposed 8T SRAM does not need a precharge scheme
on the write bitlines because of the dedicated read ports for

Fig. 3 Bitcell layout of proposed SRAM: (a) FEOL and (b) BEOL.

Fig. 4 Waveforms of proposed 8T three-port SRAM in read operation.
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Fig. 5 Schematics of write circuits: (a) conventional circuit and (b)
precharge-less circuit.

Fig. 6 Waveforms in write operation: (a) write wordline (WWL), write
bitlines (WBL and WBLB) in (b) a conventional write circuit and (c) a
precharge-less write circuit.

the read operation. However, it incurs the well-known half-
select problem along the write wordline. The divided word-
line structure is therefore adopted to avoid the half-select
problem [15].

Figure 6 portrays simplified waveforms during write
cycles. Figure 6(a) shows the waveform of the write word-
line (WWL) commonly used in the conventional SRAM and
the proposed SRAM. Figure 6(b) shows waveforms of the
write bitlines (WBL and WLBB) in the conventional write
scheme. The charge/discharge power is consumed in every
cycle by the precharge to a supply voltage. Figure 6(c) por-
trays waveforms of the write bitlines in the proposed SRAM.
By virtue of the precharge-less write scheme, which reduces
the write energy, the charge/discharge power on WBL and
WBLB is consumed only when a write datum is changed.

2.3 Static Noise Margin in Proposed 8T Three-Port
SRAM

A multiport SRAM supports simultaneous accesses from
plural cores through read and write ports. Particularly in
a one-write two-read (1W2R) three-port SRAM cell, the
two read ports are both available for simultaneous readouts,
which implies that simultaneous readouts occur [16]. Fig-
ure 7 shows a variety of read situations in the 1W2R three-
port SRAM cell when both read ports are enabled simulta-

Fig. 7 Variety of access situations in the proposed 1W2R three-port
SRAM.

Fig. 8 Simulated butterfly curves at several Vdd from 1.0 V down to
0.4 V: (a) single-port readout and (b) dual-port readout.

neously. Figure 7(a) depicts two SRAM cells on different
row addresses and different column addresses, designated
independently. No issues emerge relative to the access con-
flict. However, the simultaneous dual-port readouts to a sin-
gle SRAM cell activates both RWL A and RBL B, as pre-
sented in Fig. 7(b), which might worsen the static noise mar-
gin (SNM) because of double read currents.

Figure 8 presents simulation results of the SNM in the
proposed 1W2R 8T three-port SRAM cell at several supply
voltages of Vdd = 0.4–1.0 V. Figure 8(a) depicts the stan-
dard butterfly curves in the single port read situation: the
SNM of 171 mV are achieved at 1.0 V, leaving 85% of the
SNM in the conventional 6T SRAM [2]. Figure 8(b) depicts
the worst-case butterfly curves in the simultaneous dual-port
reads. The SNM is reduced to 101 mV at 1.0 V. An interest-
ing point is that the maximum SNM of 102 mV is observed
at 0.8 V.

2.4 Combination with Majority Logic

Our earlier study demonstrated that the majority logic cir-
cuit can conserve charge/discharge power on the read bit-
lines [17]. Image data reflect luminance information: bright
pixels have many “1” data; dark pixels have many “0” data.
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For read energy reduction, the dark pixel having many “0” s
should be inverted by the majority logic. To maximize the
number of “1” s, the majority-logic circuit counts “1” s and
decides if input data should be inverted in a write cycle, so
that “1” s are in the majority. The inversion information is
stored in an additional flag bit. In a read cycle, the procedure
is reversed. Output data are inverted if a flag bit is true, so
that the original data can be read. The majority logic does
not reduce write energy because the “1” write energy and
the “0” write energy are the same. In our proposed SRAM,
majority logic conserves charge/discharge power effectively
on the read bitlines because the number of “1” s in input data
is maximized.

3. Chip Implementation and Measurement Results

We fabricated a 64-kb 8T three-port SRAM macro using
28-nm FD-SOI process technology. Figure 9 shows a test
chip micrograph. The proposed 64-kb macro consists of
2 × 32-kb sub-blocks. The macro area is 0.058 mm2. Fig-
ure 10 presents a measured read Shmoo plot of the proposed
SRAM macro. We verified that it can operate with supply
voltage of 0.46 V and access time of 140 ns. At room tem-
perature (= 25 degree), the operating point that achieves the
minimum energy per cycle is a supply voltage of 0.54 V and

Fig. 9 Test chip photograph.

Fig. 10 Read Shmoo plot.

a cycle time of 55 ns (= 18.2 MHz). Figure 11 shows the
Shmoo plot in write operations. The test chip can operate at
write pulse width of 4 ns. Figure 12 portrays a schematic of
the proposed 8T three-port SRAM array and its peripheral
circuits. Figure 13 shows the measured leakage and active
energies.

In the write operation, the test pattern of the “ALL0”
write pattern means successive “0” writes to all bitcells in
the memory macro. “ALL1” means successive “1” writes.
In those cases, bitcell data do not change, and the bitline
charge/discharge energy are saved. The “01-pat.” write
pattern signifies the alternately writing “0” s and “1” s to
the bitcells. Then the charge/discharge power occurs on
the WBLs. This is the worst case in the write operation.
The worst-case write energy is 484 fJ/cycle, which is 69%

Fig. 11 Write Shmoo plot.

Fig. 12 Schematic of proposed 8T three-port SRAM array and its pe-
ripheral circuits.
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smaller than that in the 6T SRAM (see Fig. 13).
The BL lengths of the proposed three-port SRAM are

1.3 times longer than the conventional 6T SRAM because
of the three WLs (1WWL/2 RWLs) drawn through the 8T
bitcell. However, the proposed 8T three-port SRAM does
not require the WBL precharge scheme in the 6T SRAM.
Furthermore, its WL are divided by every 16 rows. There-
fore, the proposed SRAM can reduce needless energy in the
half-selected bitcells; As a result, the write energy turns out
lower than the conventional 6T SRAM.

It is noteworthy that the read circuit must have the RBL
precharge scheme because of the single-ended read ports.
In the read operation, the test patterns of the “ALL0” and
“ALL 1” mean successive “0” and “1” read operations, re-
spectively. The “01-pat.” read pattern results in the aver-
age dynamic energy of “ALL0” and “ALL1”. The respec-
tive “0” and “1” read energies are 1663.2 fJ/cycle (a read
dynamic energy of 1449 fJ/cycle + a read leakage energy
of 213.2 fJ/cycle) and 361.7 fJ/cycle (a read dynamic energy
of 168.5 fJ/cycle + a read leakage energy of 193.2 fJ/cycle).
Consequently, the energy saving in the “1” read operation
is 77%. The read energy improvement is, however, merely
35%, on average with no majority logic.

Figure 14 portrays the impact of the majority logic on
the read energy saving. In bright Image 1, the read en-
ergy was reduced by 23%, whereas, in the dark Image 6,

Fig. 13 Measured write energies, read energies, and comparisons.

Fig. 14 Read energies saved by majority logic in actual image data.

it reaches a 47% saving. As one might expect, the dark im-
age is more appropriate and effective for the majority logic.
In this case, the read energy is 650 fJ/cycle. Table 2 presents
test SRAM characteristics.

Figure 15 shows the estimated power consumption
when the proposed 8T three-port SRAM with the major-
ity logic is applied to our prior work, ME264 motion es-
timation processor [18]; the values are scaled by the pro-
cess node, supply voltage and operating frequency (28-nm
process node, 0.54-V supply voltage and 50-MHz operation
frequency). The ME264 processor has SIMD systolic-array
architecture, and a 10T three-port SRAM is used as a search
window and a template block. The energy consumed on the
proposed SRAM is saved by 290 µW, which signifies 24%
energy reduction in total over the conventional processor.
Therefore, the proposed 8T three-port SRAM is suitable for

Table 2 Test chip features.

Fig. 15 Estimated power consumption of motion estimation image pro-
cessor.
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the image processor.

4. Conclusion

As described in this paper, we presented an 8T three-port
SRAM for an image processor. The proposed SRAM com-
prises one-write/two-read ports and a majority logic circuit
to save active energy. We fabricated a 64-kb 8T three-port
SRAM using 28-nm FD-SOI process technology. The test
chip exhibits 0.46 V operation and access time of 140 ns.
The energy minimum point is a supply voltage of 0.54 V at
a frequency of 18.2 MHz, at which 484 fJ/cycle in a write
operation and 650 fJ/cycle in a read operation are achieved,
assisted by the majority logic. These factors are 69% and
47% smaller than those in a 28-nm FD-SOI 6T SRAM.
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