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SUMMARY This study presents a method for improving the heart-
beat interval accuracy of photoplethysmographic (PPG) sensors at ultra-
low sampling rates. Although sampling rate reduction can extend battery
life, it increases the sampling error and degrades the accuracy of the ex-
tracted heartbeat interval. To overcome these drawbacks, a sampling-error
compensation method is proposed in this study. The sampling error is re-
duced by using linear interpolation and autocorrelation based on the wave-
form similarity of heartbeats in PPG. Furthermore, this study introduces
two-line approximation and first derivative PPG (FDPPG) to improve the
waveform similarity at ultra-low sampling rates. The proposed method was
evaluated using measured PPG and reference electrocardiogram (ECG) of
seven subjects. The results reveal that the mean absolute error (MAE) of
4.11 ms was achieved for the heartbeat intervals at a sampling rate of 10 Hz,
compared with 1-kHz ECG sampling. The heartbeat interval error was also
evaluated based on a heart rate variability (HRV) analysis. Furthermore,
the mean absolute percentage error (MAPE) of the low-frequency/high-
frequency (LF/HF) components obtained from the 10-Hz PPG is shown to
decrease from 38.3% to 3.3%. This error is small enough for practical HRV
analysis.
key words: error compensation, heartbeat, heart rate variability analysis,
sampling error, photoplethysmography (PPG)

1. Introduction

Daily health monitoring is useful for preventing lifestyle
diseases, such as cardiovascular diseases, because it raises
health awareness, and lead to improved lifestyle habits [1].
Wearable healthcare devices are important for monitoring
daily health. For daily health monitoring, there are vari-
ous important indicators (e.g. heartbeat, blood pressure, and
blood glucose level). Among these indicators, heartbeat is
considered a useful biosignal for heart disease detection,
exercise intensity estimation [2], and heart rate variability
(HRV) analysis [3], [4]. It has been reported that heart
rate variability analysis (HRVA) can recognize fatigue and
stress conditions [5], and drowsiness and diseases arising
from these conditions [6]. For practical use, it is necessary
to measure heart rates accurately over a long period. Typi-
cally, heartbeat intervals are acquired using electrocardiog-
raphy (ECG) and photoplethysmography (PPG) [7]. These
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heartbeat intervals are calculated as R-to-R interval (RRI) of
ECG and peak-to-peak interval (PPI) of PPG.

Although ECG can yield more accurate heartbeat inter-
vals, because it directly measures the potential difference on
the body surface attributable to the electrical excitation of
the heart, it is not suitable for long-term use, because it re-
quires multiple electrodes to be directly attached to the body
[8].

In contrast, PPG sensors can efficiently measure heart-
beat without electrodes. It irradiates the body’s surface with
green or red light, and measures the amount of light absorp-
tion by hemoglobin as created by changes in blood volume
[9], [10]. There is a few millisecond difference between the
heartbeat arrival time of ECG and PPG, because PPG has
propagation delay in the blood vessel [11]. However, this
difference is not a problem in most applications. Therefore,
PPG can easily be implemented in wearable devices such as
smartphones, smart bands, and smart rings [12]–[14]. Be-
cause the size of the wearable sensors and their battery ca-
pacity are strictly limited, it is necessary to reduce power
consumption.

There are two major power-consuming components in
PPG sensors: LEDs and a wireless data communication cir-
cuit (e.g. Bluetooth Low Energy). An effective way of re-
ducing their power consumption is to reduce the activity rate
of the LEDs and the amount of transmission data by lower-
ing the sampling rate. However, this leads to a large time er-
ror in the extracted heartbeats because of the sampling error;
the minimum sampling rate and power reduction efficiency
are determined based on the heartbeat accuracy interval re-
quired by the application. For instance, an application utiliz-
ing heartbeat fluctuation, such as heart rate variability anal-
ysis [3], requires that the time error in the heartbeat interval
does not exceed a few milliseconds.

To overcome the drawback of sampling-rate reduction
methods, we propose an error compensation method based
on linear interpolation and autocorrelation using waveform
similarity. A preliminary version of this study has been re-
ported in the literature [15]. Although the preliminary study
focused on ECG in the performance evaluation, we focus
on PPG in this study, because the power consumption of
PPG can be reduced more efficiently by sampling rate re-
duction. Furthermore, this study presents additional error
reduction methods; each method is evaluated in detail using
seven subjects.

The rest of this paper is structured as follows. Sec-
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tion 2 presents the overview of conventional sampling-rate
reduction methods for PPG sensors. The proposed sampling
error compensation methods are described in Sect. 3. Sec-
tion 4 presents the experiment results of the proposed meth-
ods, which are discussed in Sect. 5. Finally, the conclusions
are presented in Sect. 6.

2. Sampling-Rate Reduction Methods for PPG

As mentioned in Sect. 1, reducing the sampling rate is im-
portant for reducing the power consumption in PPG sensors.
The simplest method is to reduce the overall sampling rate,
as shown in Fig. 1(a). Other low sampling-rate-sensing tech-
niques for PPG sensors have been proposed [16], [17].

A parabola approximation method [18] is evaluated
to mitigate the sampling error at low sampling rates (see
Fig. 1(a)). It is reported that 20-Hz sampled peaks using
parabola approximation are comparable to 250-Hz sampled
reference signal peaks.

One proposed method uses compressed sampling (CS)
technology to reduce the sampling rate to below the Nyquist
frequency (see Fig. 1(b)) [16]. The CS method assumes that
the PPG signal is sparse in the frequency domain, and per-
forms signal reconstruction on the data of a small number
of sample points using matrix operation. In health moni-
toring applications, the signal reconstruction process can be
performed using a server or a gateway (e.g. a smart phone),
and the power consumption required for calculation is neg-
ligible. However, in this method, because it is impossible
to fully reconstruct the original signal, the heartbeat interval
error becomes large, resulting in reduced reliability.

In literature [17], a method that samples only the signal
around the peak of the PPG waveform to obtain the heart-
beat interval is proposed (see Fig. 1(c)). First, two beats
extracted from the PPG waveform are sampled to obtain
one heartbeat interval. Based on the obtained heartbeat in-
terval, the timing of the detection of the peak of the next
PPG waveform is estimated. Sampling commences before

Fig. 1 Overview of conventional heartbeat sensing methods at low sam-
pling rates; (a) sampling rate reduction, (b) compressed sampling, (c) heart-
beat locked loop.

the peak, and when the peak is detected, sampling is termi-
nated. Then, the timing of the next peak is estimated again.
By restricting the sampling to the vicinity of the peak in this
method, the PPG sensor significantly reduces the activity
rate of the LED which consumes most of the power. On the
other hand, when this method fails to detect a peak, it is nec-
essary to repeat the entire process, and power consumption
increases. In particular, the peak detection may fail due to
a body motion artifact or arrhythmias, such as extrasystoles,
which may occur even in healthy subjects [19].

3. Proposed Sampling Error Compensation Method
for Heartbeat Interval Acquisition

Although reducing the sampling rate effectively contributes
to power consumption reduction, the heartbeat interval er-
ror increases according to the sampling error. Figure 2
shows the PPG waveforms sampled respectively at 1 kHz
and 20 Hz. This graph indicates that the interval between
peaks, i.e., the heartbeat interval has a large time error cor-
responding to low sampling rates.

In this study, we propose a sampling error compensa-
tion method for the ultra-low sampling-rate condition by in-
corporating interpolation and autocorrelation into the sim-
ple sampling-rate reduction method shown in Fig. 1(a). The
proposed method exploits the periodicity and similarity of
the heartbeat waveform in PPG. In addition, a waveform-
similarity improvement method using the peak waveform
approximation and waveform transform is introduced.

3.1 Heartbeat Interval Error Compensation Using Linear
Interpolation and Autocorrelation

As shown in Fig. 2, the sampling rate reduction increases the
sampling error and decreases the accuracy of the extracted
heartbeat interval. Generally, the heartbeat interval is calcu-
lated from the peak-to-peak interval of the PPG. In contrast,
we introduce a heartbeat interval extraction algorithm based
on the similarity of the heartbeat shapes.

Figure 3 shows the flowchart of the proposed method.
First, we receive the data sampled by the PPG sensor at
a low sampling rate (Fs). Next, the peak of the signal is
detected, and linear interpolation and resampling are per-
formed at 1 kHz. The peaks detected at this point are

Fig. 2 Example of PPG waveform at 1 kHz and 20 Hz.
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Fig. 3 Flowchart of heartbeat interval error compensation.

Fig. 4 Heartbeat interval error compensation technique using autocorre-
lation: (a) example of PPG wave and autocorrelation windows, (b) correla-
tion coefficient used for compensated-peak determination.

those for which the sampling error is yet to be compensated
(coarse peak detection). Finally, the peak is compensated
using the autocorrelation of the waveform near the detected
peak, as depicted in Fig. 4. The correlation operation is per-
formed using the following Eq. (1):

Cor(s) =

winr∑
i=−winl

x(pn + i)x(pn+1 + s + i) (1)

Here, x is a zero-normalized input signal: pn is a peak cor-
responding to the n-th period, winl: winr is the window size
for autocorrelation; and s is the shift amount of the window.
The search window and the template window are the same
width, and the search window is shifted closer to the peak.
Then, the point with the highest correlation coefficient, that
is, the point with the highest similarity to the template win-
dow, is designated the compensated peak of the search win-
dow corresponding to the peak of the template window. The
heartbeat interval is the length of the two peaks following
compensation.

Figure 5(a) shows a comparison of the heartbeat in-
tervals with and without the proposed error compensation
method. Figure 5(b) shows the relative errors of the heart-
beat interval that are calculated from the simultaneously
measured reference ECG at a 1-kHz sampling rate. The ac-
curacy of the heartbeat interval at 25-Hz Fs is sufficiently
improved by the proposed method, compared to simple peak

Fig. 5 Measured example of (a) heartbeat interval and (b) relative error
compared with heartbeat interval from 1-kHz sampled ECG.

Fig. 6 (a) PPG waveforms and (b) the PPG power spectral density (PSD)
at 1-kHz and 10-Hz sampling rate.

detection.

3.2 Waveform Similarity Improvement

Next, we introduce a waveform similarity improvement
method using two-line approximation. Figure 6 shows the
PPG waveform when 10-Hz Fs is superimposed on the 1-
kHz PPG waveform and the PPG power spectral density
(PSD). As shown in Fig. 6, waveform information such as
peaks, is missing at ultra-low sampling rates. Furthermore,
due to low waveform similarity, the proposed error com-
pensation described in Sect. 3.1 is not sufficiently effective.
Therefore, a pre-processing method for improving the wave-
form is required prior to error compensation using autocor-
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Fig. 7 Two-line approximation method.

relation.
In this study, pre-processing is performed using the

two-line approximation, which can improve waveform sim-
ilarity around peaks. Figure 7 illustrates the outline of this
approximation algorithm. Here, we represent the coordinate
of the peak as P(d, pk), and the coordinates on both sides
thereof as Q(d − 1, pr), R(d + 1, ne). Then, the time dis-
tance of ∆d between the detected peak and the new peak is
expressed using the following Eq. (2):

∆d =
pr − ne

2(ne − pk)
(pr > ne)

∆d =
pr − ne

2
(
pr − pk

) (pr < ne)
(2)

To apply this method to the compensation algorithm de-
scribed in Sect. 3.1, the new peak obtained using this method
and the original sampling point are linearly interpolated
along the equiangular lines. Other sampling points besides
the peak are interpolated as usual. When using a quadratic
function for peak approximation, the ∆d is expressed by the
following Eq. (3):

∆d =
pr − ne

2
(
pr + ne

)
− 4pk

(3)

3.3 Significance of Waveform Characteristics

In this section, we describe the significance of the PPG
waveform characteristics on the proposed error compensa-
tion. In our preliminary study [15], heartbeat interval com-
pensation algorithm using autocorrelation is applied to the
ECG, which has sharper waveforms, compared with PPG
(see Fig. 8). Figures 9 and 10 illustrate the correlation op-
eration (1) for the artificial waveform examples assuming
PPG and ECG, with and without superimposed noise. The
correlation coefficient, calculated by (1), of the steep wave-
form changes sharply near the peak, while that of the smooth
waveform changes gently. Thus, there is the possibility that
the desired error compensation effect cannot be achieved
due to noise in the situation.

Thus, the dependence of the error compensation effi-
ciency of the proposed error compensation algorithm on the
steepness of the peak waveform is a drawback. To mitigate
this problem, we use the first derivative of PPG (FDPPG),

Fig. 8 Waveform examples: (a) ECG (b) PPG.

Fig. 9 Autocorrelation of artificial waves without noise: (a) smooth
wave-like PPG, (b) steep wave-like ECG.

Fig. 10 Autocorrelation of artificial waves with noise: (a) smooth wave-
like PPG, (b) steep wave-like ECG.

which has a steep change (see Fig. 11(b)). In addition, be-
cause the slope around the peak of FDPPG is symmetrical,
the two-line approximation works effectively. Figure 11(c)
shows the comparison between PPG and FDPPG PSDs.

Figure 12 illustrates a modified flowchart of heartbeat
interval detection from Fig. 3 by adding the two-line approx-
imation algorithm and FDPPG.



WATANABE et al.: HEARTBEAT INTERVAL ERROR COMPENSATION METHOD FOR LOW SAMPLING RATES PHOTOPLETHYSMOGRAPHY SENSORS
649

Fig. 11 (a) PPG and (b) FDPPG waveforms and (c) the PSDs of PPG
and FDPPG.

Fig. 12 Flowchart of heartbeat interval error compensation with wave-
form similarity improvement methods.

4. Performance Evaluation

4.1 Evaluation Methods

To evaluate the performance of heartbeat interval error com-
pensation, 360 seconds duration of PPG and ECG as a ref-
erence were synchronously measured from seven subjects
(healthy, 21–24 years old male, at rest).

The mean absolute error (MAE) was used to evaluate
the heartbeat interval error (4).

MAE =
1
n

n∑
i=1

|PPIi − RRIi| (4)

Here, RRIi is the i-th heartbeat interval according to the
ECG, and PPIi is the i-th heartbeat interval according to the
PPG. n is the number of data.

Fig. 13 The heartbeat interval error at 10 Hz: (a) PPG, (b) FDPPG, (c)
PPG and approximation and (d) FDPPG and approximation.

4.2 Heartbeat Interval

Figure 13 shows the comparison of the heartbeat interval
error extracted by the conventional simple peak detection
and the proposed error compensation using autocorrelation.
Then, the sampling rate of PPG signal is set to 10-Hz Fs.
PPG is used in Figs. 13(a) and (c), and FDPPG is used in
Figs. 13(b) and (d). Figures 13 (c) and (d) show the results of
applying each approximation method to Figs. 13(a) and (b).
The combination of error compensation and approximation
methods achieves minimum interval error.

Figure 14 shows the average MAE at each sampling
rate for all the subjects. A combination of two-line approx-
imation to the FDPPG and compensation using autocorrela-
tion was characterized by less reduction in accuracy when
the sampling rate is lowered to 10 Hz. When the sampling
rate is 10 Hz, the MAE is 4.11 ms, and the accuracy degra-
dation is only 0.52 ms with respect to the 1-kHz MAE. Fig-
ure 15 shows the MAE for each subject at the sampling rate
of 10 Hz. The best MAE is exhibited by the autocorrelation
method based on the two-line approximation to the FDPPG.

4.3 Heart Rate Variability (HRV) Analysis

In the HRV analysis, changes in heartbeat interval are an-
alyzed in the time and frequency domains [3]. This re-
sult can be used for purposes such as heart disease detec-
tion and stress monitoring. In this paper, analysis in this
study is dominantly performed in the frequency domain.
The frequency analysis in the HRV spline interpolates the
time series data of the heartbeat interval, and resamples
at 4 Hz. Then, the sum of the power spectral density of
the low-frequency component (LF) ranging from 0.04 Hz
to 0.15 Hz and the high-frequency component (HF) rang-
ing from 0.15 Hz to 0.40 Hz is calculated. The LF, HF, and
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LF/HF are generally used as evaluation indexes.
The LF and HF are reflect the sympathetic and

parasympathetic nerve activities, respectively. Therefore,
LF/HF represents the balance between the sympathetic and
parasympathetic nerve activities. A high LF/HF denotes that
the sympathetic nervous system has been activated, whereas
a low LF/HF signifies that the parasympathetic nervous sys-
tem has been activated.

Fig. 14 Relationship between MAE of heartbeat interval and sampling
rates in each methods.

Fig. 15 MAE comparison of each method and subject at 10 Hz.

Figure 16 shows a sample heartbeat interval and the
corresponding result of the HRV analysis. The LF/HF in the
heartbeat interval obtained from the ECG at 1 kHz and the
PPG at 10 Hz are 1.482 and 0.612, respectively; a large error
occurs if compensation is not performed. The LF/HF in the
heartbeat interval determined using the autocorrelation of
the FDPPG using a two-line approximation was 1.460. The
very close results are attributed to the fact that the LF/HF
obtained from the 1-kHz PPG is 1.520. Similarly, Table 1
shows the evaluation results of the LF/HF for each subject.
Consequently, using the proposed method resulted in im-
proved accuracy for all the subjects, and the mean absolute
percentage error (MAPE) was reduced from 38.7% to 3.3%.

5. Discussion

The evaluation results in Sect. 4 suggest that the proposed
method improves the accuracy at a low sampling rate. How-
ever, the peak approximation by the quadratic function at
10 Hz causes accuracy degradation. Nevertheless, the extent
of accuracy degradation is reasonable, especially consider-
ing the fact that this method is inherently sensitive to noise,

Fig. 16 Examples of measured (a) heartbeat intervals and (b) HRV anal-
ysis result of frequency domain.

Table 1 Comparison of LF/HF in each subject.
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and such accuracy degradation is obtained at a low sampling
rate where the signal-to-noise ratio reduces.

In HRV analysis, some subjects were slightly deteri-
orated in LF/HF although the accuracy was improved in
MAE. This results may caused by the intrinsic difference
of LF/HF between PPG and ECG [11], [20], [21].

In this study, we proposed a method that enables the ac-
curate acquisition of heartbeat intervals using PPG at ultra-
low sampling rates. This makes it possible to greatly re-
duce the activity rate of the LEDs, which although being a
necessary portion of the PPG measurement, consume power
significantly. To illustrate, a previous study [22] measures
the PPG at sampling rate of 100 Hz, and found that the LED
consumed the most power of all the components of the PPG
sensor. By applying the proposed method toward similar
end, the power consumption of the LED can be reduced
by up to 1/10, that is, it can be reduced from 4400 µW to
440 µW.

Recently, an image PPG (iPPG) using a video camera
for non-contact PPG measurement has also been proposed
[23]. Because the frame rate of the video camera is gener-
ally limited, the proposed method can also be adopted and
incorporated into the iPPG to improve the accuracy of the
heartbeat interval. On the other hand, because the iPPG
uses a non-contact sensor, various noises are easily super-
imposed on the results, and noise elimination becomes an
important issue. Thus, it necessitates the incorporation of a
noise removal algorithm, such as that in a prior study [24].

6. Conclusion

We proposed a sampling-rate reduction method based on
linear interpolation and autocorrelation for heartbeat in-
terval acquisition using PPG. By applying the proposed
method, it is possible to reduce the activity rate of the cir-
cuits and LEDs in the PPG sensors, which can contribute
to the reduction of power consumption. The results ob-
tained using PPG show that it is possible to reduce the sam-
pling rate to 10 Hz with a MAE of 4.11-ms through a pre-
processing method based on two-line approximation and
FDPPG. In the frequency analysis of the HRV, the LF/HF
can be calculated with only 3.3% of the MAPE degradation
at 10 Hz.
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